1
|
Li K, Liu Y, Gong J, Li J, Zhao M, Hong C, Zhang Y, He M, Zhu Z, Chen Z, Wang Z. Reactive astrocyte-derived exosomes enhance intracranial lymphatic drainage in mice after intracranial hemorrhage. Fluids Barriers CNS 2025; 22:37. [PMID: 40229887 PMCID: PMC11995599 DOI: 10.1186/s12987-025-00651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND After intracranial hemorrhage (ICH), the formation of primary hematoma foci leads to the development of secondary brain injury factors such as perihematomal edema (PHE) and accumulation of toxic metabolites, which severely affect the survival and prognosis of patients. The intracerebral lymphatic system, proposed by Jeffrey J. Iliff et al., plays an important role in central nervous system (CNS) fluid homeostasis and waste removal, while reactive astrocyte-derived exosomes have shown therapeutic potential in CNS disorders. Our study focuses on the effects of hemin-treated reactive astrocyte-derived exosomes on the functional integrity of the glymphatic system (GLS) after ICH and their potential mechanism of action in repairing brain injury. METHODS Hemin, an iron-rich porphyrin compound, was used to construct the in vitro model of ICH. Primary astrocytes were treated with complete medium supplemented with different concentrations of hemin to obtain exosomes secreted by them, and mice with ICH induced by the collagenase method were intervened by intranasal administration. Solute clearance efficiency was assessed by intracranial injection of cerebrospinal fluid tracers and fluorescent magnetic beads. Immunofluorescence analysis of Aquaporin 4 (AQP4) polarization and astrocyte proliferation. Magnetic Resonance Imaging was used to visualize and quantify the volume of hematoma foci and PHE, and Western Blot was used to analyze the accumulation of toxic metabolites, while neuronal apoptosis was detected by a combination of TUNEL assay apoptosis detection kit and Nissl staining, and their functional status was analyzed. Gait analysis software was used to detect functional recovery of the affected limb in mice. RESULTS Exosomes from hemin treated astrocytes facilitated the recovery of AQP4 polarization and attenuated astrocyte proliferation around hematoma foci in mice with ICH, thereby promoting the recovery of the GLS. Meanwhile, exosomes from hemin treated astrocytes reduced PHE and toxic protein accumulation, decreased apoptosis of cortical neurons on the affected side, and facilitated recovery of motor function of the affected limb, and these effects were blocked by TGN020, an AQP4-specific inhibitor. CONCLUSIONS Exosomes from hemin treated astrocytes attenuated secondary brain injury and neurological deficits in mice with ICH by promoting the repair of GLS injury.
Collapse
Affiliation(s)
- Kexin Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin, Tianjin, China
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin, Tianjin, China
| | - Junjie Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin, Tianjin, China
| | - Jing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin, Tianjin, China
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin, Tianjin, China
| | - Chengyou Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin, Tianjin, China
| | - Yuchi Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin, Tianjin, China
| | - Mengyao He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin, Tianjin, China
| | - Zhenye Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin, Tianjin, China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
2
|
Chen L, Yu Z, Zhu S, Song S, He G, Chi ZL, Wu W. Astrocyte-Derived Extracellular Vesicles Alleviate Optic Nerve Injury Through Remodeling of Retinal Microenvironmental Homeostasis. Invest Ophthalmol Vis Sci 2025; 66:16. [PMID: 40192635 PMCID: PMC11980952 DOI: 10.1167/iovs.66.4.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Purpose Traumatic optic neuropathy (TON) leads to the loss of retinal ganglion cells (RGCs) and results in permanent visual impairment. Protecting and regenerating RGCs is crucial for the treatment of TON. Studies have demonstrated that astrocyte-derived extracellular vesicles (ADEVs) exhibit neuroprotective effects in models of central nervous system (CNS) injury. This study aimed to investigate whether ADEVs have a similar neuroprotective effect on RGCs in an optic nerve crush (ONC) rat model. Methods ADEVs were collected from primary rat astrocytes, and an ONC model was established to evaluate the effects of ADEVs on retinal structure and visual function using optical coherence tomography (OCT), hematoxylin and eosin (H&E) staining, and flash visual evoked potential (f-VEP) analysis. Immunofluorescence was used to examine RGCs and investigate reactive gliotic changes. Additionally, miRNA sequencing of ADEVs and retinal mRNA sequencing were performed to identify the potential mechanisms involved. Results ADEVs protected RGCs from progressive loss and improved visual function. ADEVs also significantly increased the expression of glial fibrillary acidic protein (GFAP) and modulated microglial activation. The miRNAs associated with ADEVs were targeted by neuroprotective signals, such as MAPK, PI3K-AKT, and TNF-α, and through the targeting network generated via retinal mRNA sequencing, we found that potential functional genes, such as THBS1, PAK3, and Gstm1, likely participate in microenvironmental regulation. Conclusions We discovered that ADEVs play a neuroprotective role in optic nerve injury. Our findings provide a new cell-free therapeutic strategy for optic neuropathy.
Collapse
Affiliation(s)
- Lili Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhonghao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Senmiao Zhu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shihan Song
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guanwen He
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zai-Long Chi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Yuan Y, Liu H, Dai Z, He C, Qin S, Su Z. From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury. Neurosci Bull 2025; 41:131-154. [PMID: 39080102 PMCID: PMC11748647 DOI: 10.1007/s12264-024-01258-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 01/19/2025] Open
Abstract
In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.
Collapse
Affiliation(s)
- Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Xu T, Ye J, Gan L, Deng S, Guo Y, Tang Y. Advancing Neurological Health: Insights into Aging, Immunity, and Vascular Dynamics. Aging Dis 2024; 15:939-944. [PMID: 38722789 PMCID: PMC11081148 DOI: 10.14336/ad.2024.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
This editorial provides an overview of recent advancements in the understanding and treatment of neurological disorders, focusing on aging, immunity, and blood flow, as featured in this special issue. The first section explores the importance of identifying biomarkers of aging and aging-related diseases, such as Alzheimer's Disease, highlighting the emerging role of saliva-based biomarkers and the gut-brain axis in disease diagnosis and management. In the subsequent section, the dysregulated immune systems associated with aging are discussed, emphasizing the intricate landscape of the immune system during aging and its bidirectional relationship with neuroinflammation. Additionally, insights into the involvement of Myeloid-Derived Suppressor Cells (MDSCs) in Multiple Sclerosis (MS) pathogenesis are presented. The third section examines the role of microglia in neuroinflammation and various neurological diseases, including age-related macular degeneration (AMD) and Tuberculous Meningitis (TBM). Furthermore, the therapeutic potential of stem cell and extracellular vesicle-based therapies for stroke is explored, along with molecular mechanism of how inflammation regulates cerebral and myocardial ischemia. Finally, the importance of blood flow in maintaining vascular health and its impact on neurological disorders are discussed, highlighting the potential of novel assessment methods for optimizing patient care. Overall, this special issue offers valuable insights into the complex mechanisms underlying neurological disorders and identifies potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Tongtong Xu
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jing Ye
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lin Gan
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shiyu Deng
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yiyan Guo
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaohui Tang
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
5
|
Qiu Y, Lu G, Li N, Hu Y, Tan H, Jiang C. Exosome-mediated communication between gastric cancer cells and macrophages: implications for tumor microenvironment. Front Immunol 2024; 15:1327281. [PMID: 38455041 PMCID: PMC10917936 DOI: 10.3389/fimmu.2024.1327281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Gastric cancer (GC) is a malignant neoplasm originating from the epithelial cells of the gastric mucosa. The pathogenesis of GC is intricately linked to the tumor microenvironment within which the cancer cells reside. Tumor-associated macrophages (TAMs) primarily differentiate from peripheral blood monocytes and can be broadly categorized into M1 and M2 subtypes. M2-type TAMs have been shown to promote tumor growth, tissue remodeling, and angiogenesis. Furthermore, they can actively suppress acquired immunity, leading to a poorer prognosis and reduced tolerance to chemotherapy. Exosomes, which contain a myriad of biologically active molecules including lipids, proteins, mRNA, and noncoding RNAs, have emerged as key mediators of communication between tumor cells and TAMs. The exchange of these molecules via exosomes can markedly influence the tumor microenvironment and consequently impact tumor progression. Recent studies have elucidated a correlation between TAMs and various clinicopathological parameters of GC, such as tumor size, differentiation, infiltration depth, lymph node metastasis, and TNM staging, highlighting the pivotal role of TAMs in GC development and metastasis. In this review, we aim to comprehensively examine the bidirectional communication between GC cells and TAMs, the implications of alterations in the tumor microenvironment on immune escape, invasion, and metastasis in GC, targeted therapeutic approaches for GC, and the efficacy of potential GC drug resistance strategies.
Collapse
Affiliation(s)
- Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Guimei Lu
- Department of Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Na Li
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yanyan Hu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Hao Tan
- Thoracic Esophageal Radiotherapy Department, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Chengyao Jiang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Alvarez MM, Salazar FE, Rodriguez T, D’Egidio F, Borlongan CV, Lee JY. Endogenous Extracellular Vesicles Participate in Brain Remodeling after Ischemic Stroke. Int J Mol Sci 2023; 24:16857. [PMID: 38069179 PMCID: PMC10706116 DOI: 10.3390/ijms242316857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Brain remodeling after an ischemic stroke represents a promising avenue for exploring the cellular mechanisms of endogenous brain repair. A deeper understanding of these mechanisms is crucial for optimizing the safety and efficacy of neuroprotective treatments for stroke patients. Here, we interrogated the role of extracellular vesicles, particularly exosomes, as potential mediators of endogenous repair within the neurovascular unit (NVU). We hypothesized that these extracellular vesicles may play a role in achieving transient stroke neuroprotection. Using the established ischemic stroke model of middle cerebral artery occlusion in adult rats, we detected a surged in the extracellular vesicle marker CD63 in the peri-infarct area that either juxtaposed or co-localized with GFAP-positive glial cells, MAP2-labeled young neurons, and VEGF-marked angiogenic cells. This novel observation that CD63 exosomes spatially and temporally approximated glial activation, neurogenesis, and angiogenesis suggests that extracellular vesicles, especially exosomes, contribute to the endogenous repair of the NVU, warranting exploration of extracellular vesicle-based stroke therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; (M.M.A.); (F.E.S.); (T.R.); (F.D.); (J.-Y.L.)
| | | |
Collapse
|