1
|
Zeng X, Huang D, Zhu Z, Cai Q, Yang Y, Lu H, Chen J. Mechanism-guided drug development and treatment for liver fibrosis: a clinical perspective. Front Pharmacol 2025; 16:1574385. [PMID: 40492139 PMCID: PMC12146339 DOI: 10.3389/fphar.2025.1574385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/07/2025] [Indexed: 06/11/2025] Open
Abstract
Liver fibrosis is a common response to chronic liver injury due to multiple etiologies and plays a crucial in the progression of chronic liver disease to cirrhosis, hepatocellular carcinoma, and other liver-related clinical outcomes. Currently, available treatments to block liver fibrosis are designed to eliminate the underlying causes of liver disease. The lack of truly effective drugs to regress or reverse fibrosis is a major unmet clinical need. In this context, this article briefly describes the pathological process of hepatic fibrosis and focuses on reviewing the progress of clinical studies on mechanism-based anti-fibrotic drug development and therapy, highlighting that the positive effect of thyroid hormone receptor-β (THR-β) analogs, fibroblast growth factor 21 (FGF21) analogues, Glucagon-like peptide 1 receptor (GLP-1R) agonists, pan-peroxisome proliferator-activated receptor (pan-PPAR) agonists, fatty acid synthase (FASN) inhibitors, and hydronidone in reducing liver fibrosis caused by specific etiologies. Moreover, multi-pathway guided combination therapy or traditional Chinese medicine demonstrate significant advantages in combating liver fibrosis. Finally, new technologies and approaches affecting the clinical development of anti-hepatic fibrosis drugs were discussed.
Collapse
Affiliation(s)
- Xiangchang Zeng
- Department of Liver Diseases, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Deliang Huang
- Department of Liver Diseases, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhibin Zhu
- Department of Liver Diseases, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qingxian Cai
- Department of Liver Diseases, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hongzhou Lu
- Department of Liver Diseases, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jun Chen
- Department of Liver Diseases, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Girisa S, Aswani BS, Manickasamy MK, Hegde M, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Restoring FXR expression as a novel treatment strategy in liver cancer and other liver disorders. Expert Opin Ther Targets 2025; 29:193-221. [PMID: 40169227 DOI: 10.1080/14728222.2025.2487465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
INTRODUCTION Liver cancer is a leading cause of cancer-associated mortality and is often linked to preexisting liver conditions. Emerging research demonstrates FXR dysregulation, particularly its reduced expression, in the pathogenesis of liver diseases, including inflammation, fibrosis, cholestatic disorders, metabolic dysregulation, and liver cancer. Therefore, this review explores the role of FXR and its agonists in mitigating these conditions. AREAS COVERED This article summarizes FXR's involvement in liver disorders, primarily emphasizing on hepatic neoplasms, and examines the potential of FXR agonists in restoring FXR activity in liver diseases, thereby preventing their progression to liver cancer. The information presented is drawn from existing preclinical and clinical studies specific to each liver disorder, sourced from PubMed. EXPERT OPINION It is well established that FXR expression is downregulated in liver disorders, contributing to disease progression. Notably, FXR agonists have demonstrated therapeutic potential in ameliorating liver diseases, including hepatocellular carcinoma. We believe that activating or restoring FXR expression with agonists offers significant promise for the treatment of liver cancer and other liver conditions. Therefore, FXR modulation by agonists, particularly in combination with other therapeutic agents, could lead to more targeted treatments, improving efficacy while reducing side effects.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| |
Collapse
|
3
|
Zhang M, Zhong J, Shen Y, Song Z. Crosstalk between bile acids and gut microbiota: a potential target for precancerous lesions of gastric cancer. Front Pharmacol 2025; 16:1533141. [PMID: 40183085 PMCID: PMC11965922 DOI: 10.3389/fphar.2025.1533141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
As a critical juncture in the pathological continuum from gastritis to gastric cancer, precancerous lesions of gastric cancer (PLGC) are increasingly prevalent, significantly undermining the health of the global population. The primary constituents of bile, specifically bile acids (BAs), disrupt the equilibrium of gastric hormone secretion and compromise the structural integrity of the gastric mucosa, thereby facilitating gastric oncogenesis. Moreover, gut microbiota modulate host physiological and pathological processes through immune response regulation, metabolic pathway interference, and direct interaction with gastric tumor cells. Extensive research has elucidated that the metabolic dysregulation of BAs and gut microbiota, in concert with the resultant impairment of the gastric mucosa, are central to the pathogenesis of PLGC. In anticipation of future clinical preventive and therapeutic strategies, this review collates recent insights into the roles of BAs and gut bacteria in PLGC, examining their interplay and significance in the pathogenic mechanism of PLGC.
Collapse
Affiliation(s)
- Maofu Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jialin Zhong
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanyun Shen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhongyang Song
- Department of Oncology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Wang D, Wang X, Gu X, Zhang Y, Jiang Y, Liu Y, Di X. Systematic screening of hepatoprotective components from traditional Chinese medicine: Zuojin Pill as an example. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117556. [PMID: 38072292 DOI: 10.1016/j.jep.2023.117556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojin Pill (ZJP), composed of Coptis chinensis Franch. and Euodia ruticarpa (A. Juss.) Benth. in a mass ratio of 6:1, is a famous traditional Chinese medicine (TCM) formula recorded in "Danxi's Experiential Therapy", an ancient medical book from the Ming Dynasty of China. It is used to treat liver fire invading the stomach, which is caused by liver stagnation transforming into fire and disharmony between the liver and stomach. AIM OF THE STUDY To develop a systematic strategy to screen hepatoprotective components from TCM using ZJP as a model sample. MATERIALS AND METHODS A CCl4-induced mouse model of acute liver injury was used for the verification of the hepatoprotective effects of ZJP. UPLC-Q-Exactive Plus Orbitrap MS/MS was used for the identification of the components in mouse serum after intragastric administration of ZJP. The hepatoprotective activities of the components found in mouse serum were tested in primary cultured mouse hepatocytes induced by CCl4. RESULTS Nine components with significant hepatoprotective activity including berberine, epiberberine, coptisine, palmatine, jatrorrhizine, rutaecarpin, dehydroevodiamine, evocarpine and chlorogenic acid were successfully screened out. CONCLUSIONS Our developed strategy has the advantages of high efficiency and low cost, and would provide a powerful tool for screening potential hepatoprotective components from TCM.
Collapse
Affiliation(s)
- Dongwu Wang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xin Wang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xiaoting Gu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yu Zhang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yanhui Jiang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Youping Liu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xin Di
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|