1
|
Aguiar BRL, Ferreira EB, Normando AGC, Dias SDS, Guerra ENS, Reis PED. Potential Single Nucleotide Polymorphisms markers for radiation dermatitis in head and neck cancer patients: a meta-analysis. Strahlenther Onkol 2024; 200:568-582. [PMID: 38668865 DOI: 10.1007/s00066-024-02237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/07/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE To identify potential Single Nucleotide Polymorphisms (SNPs) of susceptibility for the development of acute radiation dermatitis in head and neck cancer patients, and also to verify the association between SNPs and the severity of RD. METHODS This systematic review was reported according to the PRISMA guideline. The proportion meta-analysis was performed to identify the prevalence of genetic markers by geographical region and radiation dermatitis severity. The meta-analysis was performed to verify the association between genetic markers and RD severity. The certainty of the evidence was assessed by GRADE. RESULTS Thirteen studies were included. The most prevalent SNPs were XRCC3 (rs861639) (36%), TGFβ1 (rs1800469) (35%), and RAD51 (rs1801321) (34%). There are prevalence studies in Europe and Asia, with a similar prevalence for all SNPs (29-40%). The prevalence was higher in patients who developed radiation dermatitis ≤2 for any subtype of genes (75-76%). No SNP showed a statistically significant association with very low certainty of evidence. CONCLUSION The most prevalent SNPs may be predictors of acute RD. The analysis of SNP before starting radiation therapy may be a promising method to predict the risk of developing radiation dermatitis and allow radiosensitive patients to have a customized treatment. This current review provides new research directions.
Collapse
Affiliation(s)
- Beatriz Regina Lima Aguiar
- Health Science Graduate Program, School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Elaine Barros Ferreira
- Health Science Graduate Program, School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
- Nursing Department, School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | | | | | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Paula Elaine Diniz Reis
- Nursing Department, School of Health Sciences, University of Brasilia, Brasília, DF, Brazil.
- School of Health Sciences, Campus Darcy Ribeiro, Asa Norte, University of Brasilia, 70910-900, Brasília, DF, Brazil.
| |
Collapse
|
2
|
Crompton D, Koffler D, Fekrmandi F, Lehrer EJ, Sheehan JP, Trifiletti DM. Preoperative stereotactic radiosurgery as neoadjuvant therapy for resectable brain tumors. J Neurooncol 2023; 165:21-28. [PMID: 37889441 DOI: 10.1007/s11060-023-04466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE Stereotactic radiosurgery (SRS) is a method of delivering conformal radiation, which allows minimal radiation damage to surrounding healthy tissues. Adjuvant radiation therapy has been shown to improve local control in a variety of intracranial neoplasms, such as brain metastases, gliomas, and benign tumors (i.e., meningioma, vestibular schwannoma, etc.). For brain metastases, adjuvant SRS specifically has demonstrated positive oncologic outcomes as well as preserving cognitive function when compared to conventional whole brain radiation therapy. However, as compared with neoadjuvant SRS, larger post-operative volumes and greater target volume uncertainty may come with an increased risk of local failure and treatment-related complications, such as radiation necrosis. In addition to its role in brain metastases, neoadjuvant SRS for high grade gliomas may enable dose escalation and increase immunogenic effects and serve a purpose in benign tumors for which one cannot achieve a gross total resection (GTR). Finally, although neoadjuvant SRS has historically been delivered with photon therapy, there are high LET radiation modalities such as carbon-ion therapy which may allow radiation damage to tissue and should be further studied if done in the neoadjuvant setting. In this review we discuss the evolving role of neoadjuvant radiosurgery in the treatment for brain metastases, gliomas, and benign etiologies. We also offer perspective on the evolving role of high LET radiation such as carbon-ion therapy. METHODS PubMed was systemically reviewed using the search terms "neoadjuvant radiosurgery", "brain metastasis", and "glioma". ' Clinicaltrials.gov ' was also reviewed to include ongoing phase III trials. RESULTS This comprehensive review describes the evolving role for neoadjuvant SRS in the treatment for brain metastases, gliomas, and benign etiologies. We also discuss the potential role for high LET radiation in this setting such as carbon-ion radiotherapy. CONCLUSION Early clinical data is very promising for neoadjuvant SRS in the setting of brain metastases. There are three ongoing phase III trials that will be more definitive in evaluating the potential benefits. While there is less data available for neoadjuvant SRS for gliomas, there remains a potential role, particularly to enable dose escalation and increase immunogenic effects.
Collapse
Affiliation(s)
- David Crompton
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Daniel Koffler
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Fatemeh Fekrmandi
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Eric J Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, USA
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, USA
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
3
|
Tinganelli W, Luoni F, Durante M. What can space radiation protection learn from radiation oncology? LIFE SCIENCES IN SPACE RESEARCH 2021; 30:82-95. [PMID: 34281668 DOI: 10.1016/j.lssr.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Protection from cosmic radiation of crews of long-term space missions is now becoming an urgent requirement to allow a safe colonization of the moon and Mars. Epidemiology provides little help to quantify the risk, because the astronaut group is small and as yet mostly involved in low-Earth orbit mission, whilst the usual cohorts used for radiation protection on Earth (e.g. atomic bomb survivors) were exposed to a radiation quality substantially different from the energetic charged particle field found in space. However, there are over 260,000 patients treated with accelerated protons or heavier ions for different types of cancer, and this cohort may be useful for quantifying the effects of space-like radiation in humans. Space radiation protection and particle therapy research also share the same tools and devices, such as accelerators and detectors, as well as several research topics, from nuclear fragmentation cross sections to the radiobiology of densely ionizing radiation. The transfer of the information from the cancer radiotherapy field to space is manifestly complicated, yet the two field should strengthen their relationship and exchange methods and data.
Collapse
Affiliation(s)
- Walter Tinganelli
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | - Francesca Luoni
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany.
| |
Collapse
|
4
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
5
|
Li X, Zhang W, Wang X, Chen X, Pan H, Ruan Y, Khaledi N, Wei T, He X, Zhuo W, Shao C, Pan Y, Shi L, Fu S, Wang X. Charged particle radiobiology beamline using tandem accelerator-based MeV protons and carbon ions: a pilot study on the track-end radiation quality, variable biological effectiveness and Bayesian beam dosimetry. Phys Med Biol 2019; 64:165004. [PMID: 31096198 DOI: 10.1088/1361-6560/ab21fa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For in vitro cell irradiation using tandem accelerator-based MeV protons and carbon ions, by TOPAS simulation, a pilot study of performance evaluation is presented on a collimation beamline for 3 MeV protons and 10 MeV carbon ions from a 2 × 3 MV tandem accelerator. Based on the elements and source parameters, a collimated beam of 2.8 MeV protons or 2.5 MeV carbon ions, with 5.175 mm or 5.166 mm full width tenth maximum (FWTM), respectively, can be delivered to the target cell dish. TOPAS simulations and/or deterministic algorithms present a Bragg curve of linear energy transfer (LET) (10-70 keV μm-1) along a 138 μm range of the proton beam, and a declining LET of the carbon beam (900-100 keV μm-1) within 4 μm range. Based on the biophysical models for relative biological effectiveness (RBE) of protons, TOPAS RBE scorers presents a set of depth-variation curves of the proton RBE (for V79 and DU145 cells), linearly related to the Bragg curve of the proton LET. Based on the microdosimetric-kinetic (MK) theory, in the 4 μm range for a monolayer cell thickness, the mean RBEα (V79 cells) of the carbon ion beam is estimated as 3.612 (late S phase) and 1.737 (G 1/S phase) for the mean LET of 492 keV μm-1. For practical irradiations, a tunable proton RBE can be acquired by changing the thickness of the cell dish. For the low-energy high-fluence (rate) beams, indirect beam measurements are proposed to detect the proton-beam induced scattering/recoil protons from a beam-intercepting Mylar film, and the carbon-beam induced backscattered electrons from a gold-deposited Havar-foil beam window. Statistical dosimetry for the indirect measurement is established, using a Bayesian model based on the preset number of detection counts, by which the mean value of the whole-dish dose can be prescribed and the uncertainty introduced in the survival data can be corrected.
Collapse
Affiliation(s)
- Xiang Li
- Institute of Modern Physics, Fudan University, Shanghai 200433, People's Republic of China. Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, People's Republic of China. Co-first authors having equal contribution to this work
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Brothwell MRS, West CM, Dunning AM, Burnet NG, Barnett GC. Radiogenomics in the Era of Advanced Radiotherapy. Clin Oncol (R Coll Radiol) 2019; 31:319-325. [PMID: 30914148 DOI: 10.1016/j.clon.2019.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
Most radiogenomics studies investigate how genetic variation can help to explain the differences in early and late radiotherapy toxicity between individuals. The field of radiogenomics in photon beam therapy has grown rapidly in recent years, carving out a unique translational discipline, which has progressed from candidate gene studies to larger scale genome-wide association studies, meta-analyses and now prospective validation studies. Genotyping is increasingly sophisticated and affordable, and whole-genome sequencing may soon become readily available as a diagnostic tool in the clinic. The ultimate aim of radiogenomics research is to tailor treatment to the individual with a test based on a combination of treatment, clinical and genetic factors. This personalisation would allow the greatest tumour control while minimising acute and long-term toxicity. Here we discuss the evolution of the field of radiogenomics with reference to the most recent developments and challenges.
Collapse
Affiliation(s)
- M R S Brothwell
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - C M West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - A M Dunning
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
| | - N G Burnet
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - G C Barnett
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|