1
|
Menshikh K, Banicevic I, Obradovic B, Rimondini L. Biomechanical Aspects in Bone Tumor Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:217-229. [PMID: 37830183 PMCID: PMC11001506 DOI: 10.1089/ten.teb.2023.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
In the past decades, anticancer drug development brought the field of tumor engineering to a new level by the need of robust test systems. Simulating tumor microenvironment in vitro remains a challenge, and osteosarcoma-the most common primary bone cancer-is no exception. The growing evidence points to the inevitable connection between biomechanical stimuli and tumor chemosensitivity and aggressiveness, thus making this component of the microenvironment a mandatory requirement to the developed models. In this review, we addressed the question: is the "in vivo - in vitro" gap in osteosarcoma engineering bridged from the perspective of biomechanical stimuli? The most notable biomechanical cues in the tumor cell microenvironment are observed and compared in the contexts of in vivo conditions and engineered three-dimensional in vitro models. Impact statement The importance of biomechanical stimuli in three-dimensional in vitro models for drug testing is becoming more pronounced nowadays. This review might assist in understanding the key players of the biophysical environment of primary bone cancer and the current state of bone tumor engineering from this perspective.
Collapse
Affiliation(s)
- Ksenia Menshikh
- Center for Translational Research on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy
| | - Ivana Banicevic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Bojana Obradovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Lia Rimondini
- Center for Translational Research on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
2
|
Qin H, Du L, Luo Z, He Z, Wang Q, Chen S, Zhu YL. The therapeutic effects of low-intensity pulsed ultrasound in musculoskeletal soft tissue injuries: Focusing on the molecular mechanism. Front Bioeng Biotechnol 2022; 10:1080430. [PMID: 36588943 PMCID: PMC9800839 DOI: 10.3389/fbioe.2022.1080430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Musculoskeletal soft tissue injuries are very common and usually occur during both sporting and everyday activities. The intervention of adjuvant therapies to promote tissue regeneration is of great importance to improving people's quality of life and extending their productive lives. Though many studies have focused on the positive results and effectiveness of the LIPUS on soft tissue, the molecular mechanisms standing behind LIPUS effects are much less explored and reported, especially the intracellular signaling pathways. We incorporated all research on LIPUS in soft tissue diseases since 2005 and summarized studies that uncovered the intracellular molecular mechanism. This review will also provide the latest evidence-based research progress in this field and suggest research directions for future experiments.
Collapse
Affiliation(s)
- Haocheng Qin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Du
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhong He
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Wang
- Department of Orthopedics, Kunshan Hospital of Chinese Medicine, Suzhou, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Lian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Gargalionis AN, Papavassiliou KA, Basdra EK, Papavassiliou AG. mTOR Signaling Components in Tumor Mechanobiology. Int J Mol Sci 2022; 23:1825. [PMID: 35163745 PMCID: PMC8837098 DOI: 10.3390/ijms23031825] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a central signaling hub that integrates networks of nutrient availability, cellular metabolism, and autophagy in eukaryotic cells. mTOR kinase, along with its upstream regulators and downstream substrates, is upregulated in most human malignancies. At the same time, mechanical forces from the tumor microenvironment and mechanotransduction promote cancer cells' proliferation, motility, and invasion. mTOR signaling pathway has been recently found on the crossroads of mechanoresponsive-induced signaling cascades to regulate cell growth, invasion, and metastasis in cancer cells. In this review, we examine the emerging association of mTOR signaling components with certain protein tools of tumor mechanobiology. Thereby, we highlight novel mechanisms of mechanotransduction, which regulate tumor progression and invasion, as well as mechanisms related to the therapeutic efficacy of antitumor drugs.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
- Department of Biopathology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Kostas A. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| |
Collapse
|
4
|
Zuo D, Tan B, Jia G, Wu D, Yu L, Jia L. A treatment combined prussian blue nanoparticles with low-intensity pulsed ultrasound alleviates cartilage damage in knee osteoarthritis by initiating PI3K/Akt/mTOR pathway. Am J Transl Res 2021; 13:3987-4006. [PMID: 34149994 PMCID: PMC8205753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Reactive oxidative stress (ROS) related apoptosis in chondrocytes and extracellular matrix (ECM) degradation play crucial roles in the process of osteoarthritis. Prussian blue nanoparticles are known to scavenge ROS in cellular. Low-intensity pulsed ultrasound has been used as a non-invasive modality for the is widely used in clinical rehabilitation management of OA. In this study, we aim to investigate the effects of PBNPs/LIPUS combined treatment on knee osteoarthritis (KOA) and to determine whether phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway mediates this process. Use LPS to process primary cells of knee joint cartilage to establish a cartilage knee arthritis model. After treated with LIPUS and PBNPs, cell viability was rated by CCK-8 and ROS levels were assessed by DCFH-DA. Articular pathological changes were observed by naked eyes, H&E, and Safranin O staining, then monitored by cartilage lesion grades and Mankin's score. Cellular ROS, apoptosis rate, and TUNEL staining of chondrocytes were fairly decreased in the PBNPs group and the LIPUS group but drastically down-regulated in the PBNPs/LIPUS combination treatment group when compared with the LPS group. Western blot results showed that the cleaved caspase-3, Bax, IL-1β, MMP3 and MMP13 in the PBNPs and LIPUS groups slightly decreased, and Bcl2 increased slightly, while in the combination treatment group, the former was significantly decreased, and Bcl2 was Significantly increased. The PBNPs/LIPUS combination treatment reduced cellular ROS, apoptosis, and matrix metalloproteinases (MMPs), as a consequence, alleviated articular cartilage damage in KOA. Moreover, the PBNPs/LIPUS combination treatment suppressed the JNK/c-Jun signal pathway.
Collapse
Affiliation(s)
- Deyu Zuo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University People's Republic of China
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University People's Republic of China
| | - Gongwei Jia
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University People's Republic of China
| | - Dandong Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University People's Republic of China
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University People's Republic of China
| | - Lang Jia
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University People's Republic of China
| |
Collapse
|
5
|
Targeting Mechanotransduction in Osteosarcoma: A Comparative Oncology Perspective. Int J Mol Sci 2020; 21:ijms21207595. [PMID: 33066583 PMCID: PMC7589883 DOI: 10.3390/ijms21207595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Mechanotransduction is the process in which cells can convert extracellular mechanical stimuli into biochemical changes within a cell. While this a normal process for physiological development and function in many organ systems, tumour cells can exploit this process to promote tumour progression. Here we summarise the current state of knowledge of mechanotransduction in osteosarcoma (OSA), the most common primary bone tumour, referencing both human and canine models and other similar mesenchymal malignancies (e.g., Ewing sarcoma). Specifically, we discuss the mechanical properties of OSA cells, the pathways that these cells utilise to respond to external mechanical cues, and mechanotransduction-targeting strategies tested in OSA so far. We point out gaps in the literature and propose avenues to address them. Understanding how the physical microenvironment influences cell signalling and behaviour will lead to the improved design of strategies to target the mechanical vulnerabilities of OSA cells.
Collapse
|
6
|
Li S, Bai H, Chen X, Gong S, Xiao J, Li D, Li L, Jiang Y, Li T, Qin X, Yang H, Wu C, You F, Liu Y. Soft Substrate Promotes Osteosarcoma Cell Self-Renewal, Differentiation, and Drug Resistance Through miR-29b and Its Target Protein Spin 1. ACS Biomater Sci Eng 2020; 6:5588-5598. [DOI: 10.1021/acsbiomaterials.0c00816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Hongxia Bai
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Xiangyan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Shengnan Gong
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Jinman Xiao
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Dan Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Li Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P. R. China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P. R. China
| |
Collapse
|
7
|
Xia P, Wang X, Qu Y, Lin Q, Cheng K, Gao M, Ren S, Zhang T, Li X. TGF-β1-induced chondrogenesis of bone marrow mesenchymal stem cells is promoted by low-intensity pulsed ultrasound through the integrin-mTOR signaling pathway. Stem Cell Res Ther 2017; 8:281. [PMID: 29237506 PMCID: PMC5729425 DOI: 10.1186/s13287-017-0733-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
Background Low-intensity pulsed ultrasound (LIPUS) is a mechanical stimulus that plays a key role in regulating the differentiation of bone marrow mesenchymal stem cells (BMSCs). However, the way in which it affects the chondrogenic differentiation of BMSCs remains unknown. In this study, we aimed to investigate whether LIPUS is able to influence TGF-β1-induced chondrogenesis of BMSCs through the integrin-mechanistic target of the Rapamycin (mTOR) signaling pathway. Methods BMSCs were isolated from rat bone marrow and cultured in either standard or TGF-β1-treated culture medium. BMSCs were then subjected to LIPUS at a frequency of 3 MHz and a duty cycle of 20%, and integrin and mTOR inhibitors added in order to analyze their influence on cell differentiation. BMSCs were phenotypically analyzed by flow cytometry and the degree of chondrogenesis evaluated through toluidine blue staining, immunofluorescence, and immunocytochemistry. Furthermore, expression of COL2, aggrecan, SOX9, and COL1 was assessed by qRT-PCR and western blot analysis. Results We found that LIPUS promoted TGF-β1-induced chondrogenesis of BMSCs, represented by increased expression of COL2, aggrecan and SOX9 genes, and decreased expression of COL1. Notably, these effects were prevented following addition of integrin and mTOR inhibitors. Conclusions Taken together, these results indicate that mechanical stimulation combined with LIPUS promotes TGF-β1-induced chondrogenesis of BMSCs through the integrin-mTOR signaling pathway.
Collapse
Affiliation(s)
- Peng Xia
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaoju Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yanping Qu
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Qiang Lin
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Kai Cheng
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Mingxia Gao
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Shasha Ren
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Tingting Zhang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xueping Li
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
8
|
Adamopoulos C, Gargalionis AN, Piperi C, Papavassiliou AG. Recent Advances in Mechanobiology of Osteosarcoma. J Cell Biochem 2016; 118:232-236. [PMID: 27463370 DOI: 10.1002/jcb.25660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Christos Adamopoulos
- Department of Biological Chemistry; Medical School; National and Kapodistrian University of Athens; Athens 11527 Greece
| | - Antonios N. Gargalionis
- Department of Biological Chemistry; Medical School; National and Kapodistrian University of Athens; Athens 11527 Greece
| | - Christina Piperi
- Department of Biological Chemistry; Medical School; National and Kapodistrian University of Athens; Athens 11527 Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry; Medical School; National and Kapodistrian University of Athens; Athens 11527 Greece
| |
Collapse
|
9
|
Hu K, Dai HB, Qiu ZL. mTOR signaling in osteosarcoma: Oncogenesis and therapeutic aspects (Review). Oncol Rep 2016; 36:1219-25. [PMID: 27430283 DOI: 10.3892/or.2016.4922] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 03/16/2016] [Indexed: 11/05/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that belongs to the phosphoinositide-3-kinase (PI3K)-related kinase family. Oncogenic activation of mTOR signaling significantly contributes to the progression of different types of cancers including osteosarcoma (OS; the most common primary malignant tumor of bone). In the present study, we review the association of the mTOR signaling pathway with OS, and the possible effective treatment strategies by targeting this pathway. In the metastatic behavior of OS, one of the most common actionable aberrations was found in the PI3K/Akt/mTOR pathway. Upon phosphorylation, activated mTOR contributes to OS cellular transformation and poor cancer prognosis via downstream effectors such as S6K1, 4EBP1 and eIF4E, which are overexpressed in OS. Targeting the mTOR complex is a significant approach in cancer therapeutic research, and of course, rapamycin is the primary inhibitor of mTOR. Various other chemotherapeutic molecules have also shown potential activity against mTOR. As mTOR is a new promising oncological target and blockade of the mTOR pathway with selective inhibitors has significant potential in OS therapeutic research, the development of the optimal dose, regimen and a rationale for the use of mTOR inhibitors in combination with other anticancer agents may provide a successful treatment strategy for OS.
Collapse
Affiliation(s)
- Kai Hu
- Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Hai-Bo Dai
- Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Zhi-Long Qiu
- Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| |
Collapse
|
10
|
Adamopoulos C, Gargalionis AN, Basdra EK, Papavassiliou AG. Deciphering signaling networks in osteosarcoma pathobiology. Exp Biol Med (Maywood) 2016; 241:1296-1305. [PMID: 27190271 PMCID: PMC4950271 DOI: 10.1177/1535370216648806] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is the most frequent type of primary bone tumors among children and adolescents. During the past years, little progress has been made regarding prognosis of osteosarcoma patients, especially for those with metastatic disease. Genomic instability and gene alterations are common, but current data do not reveal a consistent and repeatable pattern of osteosarcoma development, thus paralleling the tumor's high heterogeneity. Critical signal transduction pathways have been implicated in osteosarcoma pathobiology and are being evaluated as therapeutic targets, including receptor activator for nuclear factor-κB (RANK), Wnt, Notch, phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin, and mechanotransduction pathways. Herein, we recapitulate and discuss recent advances in the context of molecular mechanisms and signaling networks that contribute to osteosarcoma progression and metastasis, towards patient-tailored and novel-targeted treatments.
Collapse
Affiliation(s)
- Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
11
|
Cai SD, Chen JS, Xi ZW, Zhang LJ, Niu ML, Gao ZY. MicroRNA‑144 inhibits migration and proliferation in rectal cancer by downregulating ROCK‑1. Mol Med Rep 2015; 12:7396-402. [PMID: 26458302 PMCID: PMC4626141 DOI: 10.3892/mmr.2015.4391] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 09/10/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer of the colon and rectum are two distinct entities, which require different treatment strategies and separate treatment. MicroRNAs (miRNAs) act as critical regulators of genes involved in several biological processes. Aberrant alterations of miRNAs have been found in several types of cancer, including colon cancer and rectal cancer. Extensive catalogues of downregulated miRNAs have been identified for colon cancer, whereas only limited data are available for rectal cancer. An example of miRNA profiling in a previous study found that miRNA (miR)‑144 showed aberrant expression and appeared to be rectal cancer‑specific, its expression not being reported in colon cancer. In the present study, the role of miR‑144 in rectal cancer was investigated. SW837 and SW1463 cell lines were selected as rectal cell carcinoma cells. Using reverse transcription-quantitative polymerase chain reaction, western blot, BrdU, cell migration and cell viability assays, it was found that the expression levels of miR‑144 were significantly reduced in the SW837 and SW1463 cell lines, and the overexpression of miR‑144 suppressed rectal cancer cell viability, migration and proliferation. In addition, Rho‑associated coiled‑coil containing protein kinase 1 (ROCK1) was identified as a target of miR‑144 in the rectal cancer cells. The supplementation of ROCK1 markedly restored the cell migration and proliferation, which was inhibited by miR‑144. Together, the data of the present study demonstrated that miR‑144 acts as a tumor suppressor by targeting ROCK1, and indicates the potential of miR‑144 as a novel biomarker and target in the treatment of rectal cancer.
Collapse
Affiliation(s)
- Shang-Dang Cai
- Anorectal Branch, Henan Province Hospital of TCM, Zhengzhou, Henan 450002, P.R. China
| | - Jian-She Chen
- Center for Reproductive Medicine, Henan Province Hospital of TCM, Zhengzhou, Henan 450002, P.R. China
| | - Zuo-Wu Xi
- Anorectal Branch, Henan Province Hospital of TCM, Zhengzhou, Henan 450002, P.R. China
| | - Long-Jiang Zhang
- Anorectal Branch, Henan Province Hospital of TCM, Zhengzhou, Henan 450002, P.R. China
| | - Ming-Liao Niu
- Anorectal Branch, Henan Province Hospital of TCM, Zhengzhou, Henan 450002, P.R. China
| | - Zong-Yue Gao
- Anorectal Branch, Henan Province Hospital of TCM, Zhengzhou, Henan 450002, P.R. China
| |
Collapse
|
12
|
Spyropoulou A, Karamesinis K, Basdra EK. Mechanotransduction pathways in bone pathobiology. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1700-8. [PMID: 26004394 DOI: 10.1016/j.bbadis.2015.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
The skeleton is subject to dynamic changes throughout life and bone remodeling is essential for maintenance of bone functionality. The cell populations which predominantly participate in bone and cartilage remodeling, namely osteocytes, osteoblasts, osteoclasts and chondrocytes sense and respond to external mechanical signals and via a series of molecular cascades control bone metabolism and turnover rate. The aforementioned process, known as mechanotransduction, is the underlying mechanism that controls bone homeostasis and function. A wide array of cross-talking signaling pathways has been found to play an important role in the preservation of bone and cartilage tissue health. Moreover, alterations in bone mechanotransduction pathways, due to genetic, hormonal and biomechanical factors, are considered responsible for the pathogenesis of bone and cartilage diseases. Extensive research has been conducted and demonstrated that aberrations in mechanotransduction pathways result in disease-like effects, however only few signaling pathways have actually been engaged in the development of bone disease. The aim of the present review is to present these signaling molecules and cascades that have been found to be mechano-responsive and implicated in bone disease development, as revealed by research in the last five years. In addition, the role of these molecules as prognostic or diagnostic disease markers and their potential as therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Anastasia Spyropoulou
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos Karamesinis
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, University of Athens Medical School, 11527 Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, University of Athens Medical School, 11527 Athens, Greece.
| |
Collapse
|