1
|
Ryu SE, Bae J, Shim T, Kim WC, Kim K, Moon C. Conserved pattern-based classification of human odorant receptor multigene family. Sci Rep 2024; 14:27271. [PMID: 39516664 PMCID: PMC11549229 DOI: 10.1038/s41598-024-79183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Conserved protein-coding sequences are critical for maintaining protein function across species. Odorant receptors (ORs), a large poorly understood multigene family responsible for odor detection, lack comprehensive classification methods that reflect their functional diversity. In this study, we propose a new approach called conserved motif-based classification (CMC) for classifying ORs based on amino acid sequence similarities within conserved motifs. Specifically, we focused on three well-conserved motifs: MAYDRYVAIC in TM3, KAFSTCASH in TM6, and PMLNPFIY in TM7. Using an unsupervised clustering technique, we classified human ORs (hORs) into two main clusters with six sub-clusters. CMC partly reflects previously identified subfamilies, revealing altered residue positions among the sub-clusters. These altered positions interacted with specific residues within or adjacent to the transmembrane domain, suggesting functional implications. Furthermore, we found that the CMC correlated with both ligand responses and ectopic expression patterns, highlighting its relevance to OR function. This conserved motif-based classification will help in understanding the functions and features that are not understood by classification based solely on entire amino acid sequence similarity.
Collapse
Affiliation(s)
- Sang Eun Ryu
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu, 41062, Republic of Korea
| | - Jisub Bae
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-Ro, Yuseong-Gu, Daejeon, 34126, Republic of Korea
| | - Tammy Shim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Won-Cheol Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kwangsu Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Cheil Moon
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
2
|
Park J, Choi W, Dar AR, Butcher RA, Kim K. Neuropeptide Signaling Regulates Pheromone-Mediated Gene Expression of a Chemoreceptor Gene in C. elegans. Mol Cells 2019; 42:28-35. [PMID: 30453729 PMCID: PMC6354054 DOI: 10.14348/molcells.2018.0380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/27/2022] Open
Abstract
Animals need to be able to alter their developmental and behavioral programs in response to changing environmental conditions. This developmental and behavioral plasticity is mainly mediated by changes in gene expression. The knowledge of the mechanisms by which environmental signals are transduced and integrated to modulate changes in sensory gene expression is limited. Exposure to ascaroside pheromone has been reported to alter the expression of a subset of putative G protein-coupled chemosensory receptor genes in the ASI chemosensory neurons of C. elegans (Kim et al., 2009; Nolan et al., 2002; Peckol et al., 1999). Here we show that ascaroside pheromone reversibly represses expression of the str-3 chemoreceptor gene in the ASI neurons. Repression of str-3 expression can be initiated only at the L1 stage, but expression is restored upon removal of ascarosides at any developmental stage. Pheromone receptors including SRBC-64/66 and SRG-36/37 are required for str-3 repression. Moreover, pheromone-mediated str-3 repression is mediated by FLP-18 neuropeptide signaling via the NPR-1 neuropeptide receptor. These results suggest that environmental signals regulate chemosensory gene expression together with internal neuropeptide signals which, in turn, modulate behavior.
Collapse
Affiliation(s)
- Jisoo Park
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Woochan Choi
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Abdul Rouf Dar
- Department of Chemistry, University of Florida, Gainesville, FL 32611,
USA
| | - Rebecca A. Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611,
USA
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| |
Collapse
|