1
|
Yuan H, Wang X, Du S, Li M, Zhu E, Zhou J, Dong Y, Wang S, Shan L, Liu Q, Wang B. NELL2, a novel osteoinductive factor, regulates osteoblast differentiation and bone homeostasis through fibronectin 1/integrin-mediated FAK/AKT signaling. Bone Res 2025; 13:46. [PMID: 40210857 PMCID: PMC11986068 DOI: 10.1038/s41413-025-00420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025] Open
Abstract
Neural EGFL-like 2 (NELL2) is a secreted protein known for its regulatory functions in the nervous and reproductive systems, yet its role in bone biology remains unexplored. In this study, we observed that NELL2 was diminished in the bone of aged and ovariectomized (OVX) mice, as well as in the serum of osteopenia and osteoporosis patients. In vitro loss-of-function and gain-of-function studies revealed that NELL2 facilitated osteoblast differentiation and impeded adipocyte differentiation from stromal progenitor cells. In vivo studies further demonstrated that the deletion of NELL2 in preosteoblasts resulted in decreased cancellous bone mass in mice. Mechanistically, NELL2 interacted with the FNI-type domain located at the C-terminus of Fibronectin 1 (Fn1). Moreover, we found that NELL2 activated the focal adhesion kinase (FAK)/AKT signaling pathway through Fn1/integrin β1 (ITGB1), leading to the promotion of osteogenesis and the inhibition of adipogenesis. Notably, administration of NELL2-AAV was found to ameliorate bone loss in OVX mice. These findings underscore the significant role of NELL2 in osteoblast differentiation and bone homeostasis, suggesting its potential as a therapeutic target for managing osteoporosis.
Collapse
Affiliation(s)
- Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Xinyu Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Shuanglin Du
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Mengyue Li
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yuan Dong
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Shuang Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Liying Shan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Qian Liu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
2
|
Ding L, Colman ER, Wang Y, Ramachandran M, Maloney SK, Chen N, Yin J, Chen L, Lier EV, Blache D, Wang M. Novel pathways linked to the expression of temperament in Merino sheep: a genome-wide association study. Animal 2024; 18:101279. [PMID: 39396416 DOI: 10.1016/j.animal.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 10/15/2024] Open
Abstract
Animal temperament refers to the inherent behavioural and emotional characteristics of an animal, influencing how it interacts with its environment. The selection of sheep for temperament can change the temperament traits of the selected line and improve the welfare and production (reproduction, growth, immunity) of those animals. To understand the genetics that underly variation in temperament in sheep, and how selection on temperament can affect other production traits, a genome-wide association study was carried out. Merino sheep from lines selected for traits of calm and nervous temperament, and a commercial population, on which the temperament traits had never been assessed, were used. Blood samples from the three populations were genotyped using an Illumina GGP Ovine 50 K Genotyping BeadChip. The calm and nervous populations in the selected lines presented as distinct genetic populations, and 2 729 of the 45 761 single nucleotide polymorphisms (SNPs) had significantly different proportions between the two lines. Of those 2 729 SNPs, 2 084 were also associated with temperament traits in the commercial population. A genomic annotation identified 81 candidate genes for temperament, nearly half of which are associated with disorders of social behaviour in humans. Five of those 81 candidate genes are related to production traits in sheep. Two genes were associated with personality disorders in humans and with production traits in sheep. We identified significant enrichment in genes involved in nervous system processes such as the regulation of systemic arterial blood pressure, ventricular myocyte action, multicellular organismal signalling, ion transmembrane transport, and calcium ion binding, suggesting that temperament is underpinned by variation in multiple biological systems. Our results contribute to understanding of the genetic basis of animal temperament which could be applied to the genetic evaluation of temperament in sheep and other farm animals.
Collapse
Affiliation(s)
- L Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth 6009, WA, Australia
| | - E R Colman
- Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay
| | - Y Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - M Ramachandran
- School of Human Sciences, The University of Western Australia, Perth 6009, WA, Australia
| | - S K Maloney
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Human Sciences, The University of Western Australia, Perth 6009, WA, Australia
| | - N Chen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - J Yin
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - L Chen
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China; Department of Cardiology, Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - E V Lier
- Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay
| | - D Blache
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth 6009, WA, Australia
| | - M Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
3
|
Cheng Y, Zhai Y, Yuan Y, Wang Q, Li S, Sun H. The Contributions of Thrombospondin-1 to Epilepsy Formation. Neurosci Bull 2024; 40:658-672. [PMID: 38528256 PMCID: PMC11127911 DOI: 10.1007/s12264-024-01194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/27/2024] [Indexed: 03/27/2024] Open
Abstract
Epilepsy is a neural network disorder caused by uncontrolled neuronal hyperexcitability induced by an imbalance between excitatory and inhibitory networks. Abnormal synaptogenesis plays a vital role in the formation of overexcited networks. Recent evidence has confirmed that thrombospondin-1 (TSP-1), mainly secreted by astrocytes, is a critical cytokine that regulates synaptogenesis during epileptogenesis. Furthermore, numerous studies have reported that TSP-1 is also involved in other processes, such as angiogenesis, neuroinflammation, and regulation of Ca2+ homeostasis, which are closely associated with the occurrence and development of epilepsy. In this review, we summarize the potential contributions of TSP-1 to epilepsy development.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
4
|
Luigi-Sierra MG, Guan D, López-Béjar M, Casas E, Olvera-Maneu S, Gardela J, Palomo MJ, Osuagwuh UI, Ohaneje UL, Mármol-Sánchez E, Amills M. A protein-coding gene expression atlas from the brain of pregnant and non-pregnant goats. Front Genet 2023; 14:1114749. [PMID: 37519888 PMCID: PMC10382233 DOI: 10.3389/fgene.2023.1114749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Background: The brain is an extraordinarily complex organ with multiple anatomical structures involved in highly specialized functions related with behavior and physiological homeostasis. Our goal was to build an atlas of protein-coding gene expression in the goat brain by sequencing the transcriptomes of 12 brain regions in seven female Murciano-Granadina goats, from which three of them were 1-month pregnant. Results: Between 14,889 (cerebellar hemisphere) and 15,592 (pineal gland) protein-coding genes were expressed in goat brain regions, and most of them displayed ubiquitous or broad patterns of expression across tissues. Principal component analysis and hierarchical clustering based on the patterns of mRNA expression revealed that samples from certain brain regions tend to group according to their position in the anterior-posterior axis of the neural tube, i.e., hindbrain (pons and medulla oblongata), midbrain (rostral colliculus) and forebrain (frontal neocortex, olfactory bulb, hypothalamus, and hippocampus). Exceptions to this observation were cerebellum and glandular tissues (pineal gland and hypophysis), which showed highly divergent mRNA expression profiles. Differential expression analysis between pregnant and non-pregnant goats revealed moderate changes of mRNA expression in the frontal neocortex, hippocampus, adenohypophysis and pons, and very dramatic changes in the olfactory bulb. Many genes showing differential expression in this organ are related to olfactory function and behavior in humans. Conclusion: With the exception of cerebellum and glandular tissues, there is a relationship between the cellular origin of sampled regions along the anterior-posterior axis of the neural tube and their mRNA expression patterns in the goat adult brain. Gestation induces substantial changes in the mRNA expression of the olfactory bulb, a finding consistent with the key role of this anatomical structure on the development of maternal behavior.
Collapse
Affiliation(s)
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Encarna Casas
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sergi Olvera-Maneu
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jaume Gardela
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Jesús Palomo
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Uchebuchi Ike Osuagwuh
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Uchechi Linda Ohaneje
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
5
|
Ha CM, Kim DH, Lee TH, Kim HR, Choi J, Kim Y, Kang D, Park JW, Ojeda SR, Jeong JK, Lee BJ. Transcriptional Regulatory Role of NELL2 in Preproenkephalin Gene Expression. Mol Cells 2022; 45:537-549. [PMID: 35950455 PMCID: PMC9385569 DOI: 10.14348/molcells.2022.2051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 12/23/2022] Open
Abstract
Preproenkephalin (PPE) is a precursor molecule for multiple endogenous opioid peptides Leu-enkephalin (ENK) and Met-ENK, which are involved in a wide variety of modulatory functions in the nervous system. Despite the functional importance of ENK in the brain, the effect of brain-derived factor(s) on PPE expression is unknown. We report the dual effect of neural epidermal growth factor (EGF)-likelike 2 (NELL2) on PPE gene expression. In cultured NIH3T3 cells, transfection of NELL2 expression vectors induced an inhibition of PPE transcription intracellularly, in parallel with downregulation of protein kinase C signaling pathways and extracellular signal-regulated kinase. Interestingly, these phenomena were reversed when synthetic NELL2 was administered extracellularly. The in vivo disruption of NELL2 synthesis resulted in an increase in PPE mRNA level in the rat brain, suggesting that the inhibitory action of intracellular NELL2 predominates the activation effect of extracellular NELL2 on PPE gene expression in the brain. Biochemical and molecular studies with mutant NELL2 structures further demonstrated the critical role of EGF-like repeat domains in NELL2 for regulation of PPE transcription. These are the first results to reveal the spatio-specific role of NELL2 in the homeostatic regulation of PPE gene expression.
Collapse
Affiliation(s)
- Chang Man Ha
- Brain Research Core Facilities and Global Relation Center of Research Strategy Office, Korea Brain Research Institute, Daegu 41068, Korea
| | - Dong Hee Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Tae Hwan Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Han Rae Kim
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Jungil Choi
- Bioenvironmental Science & Technology Division, Korea Institute of Toxicology, Jinju 52834, Korea
| | - Yoonju Kim
- Brain Research Core Facilities and Global Relation Center of Research Strategy Office, Korea Brain Research Institute, Daegu 41068, Korea
| | - Dasol Kang
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Sergio R. Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| |
Collapse
|
6
|
Prognostic signature of lung adenocarcinoma based on stem cell-related genes. Sci Rep 2021; 11:1687. [PMID: 33462260 PMCID: PMC7814011 DOI: 10.1038/s41598-020-80453-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/16/2020] [Indexed: 01/05/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is characterized by high infiltration and rapid growth. The function of the stem cell population is to control and maintain cell regeneration. Therefore, it is necessary to study the prognostic value of stem cell-related genes in LUAD. Signature genes were screened out from 166 stem cell-related genes according to the least absolute shrinkage operator (LASSO) and subsequently multivariate Cox regression analysis, and then established risk model. Immune infiltration and nomogram model were used to evaluate the clinical efficacy of signature. A signature consisting of 10 genes was used to dichotomize the LUAD patients into two groups (cutoff, 1.314), and then validated in GSE20319 and GSE42127. There was a significant correlation between signature and clinical characteristics. Patients with high-risk had a shorter overall survival. Furthermore, significant differences were found in multiple immune cells between the high-risk group and low-risk group. A high correlation was also reflected between signature and immune infiltration. What’s more, the signature could effectively predict the efficacy of chemotherapy in patients with LUAD, and a nomogram based on signature might accurately predict the prognosis of patients with LUAD. The signature-based of stem cell-related genes might be contributed to predicting prognosis of patients with LUAD.
Collapse
|
7
|
Sobol M, Thuresson AC, Palmberg N, Soussi Zander C. Proximal Deletion 12q with a New Insight to Growth Retardation. Mol Syndromol 2020. [DOI: 10.1159/000507410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
Weng Y, Luo X, Hou L. Deletion at 12q12 increases the risk of developmental delay and intellectual disability. Ann Hum Genet 2018; 82:482-487. [PMID: 30155906 PMCID: PMC6220791 DOI: 10.1111/ahg.12279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/30/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
Single-nucleotide polymorphism (SNP) arrays have been widely used to identify novel genomic imbalances. Many of these genomic imbalances have been confirmed to interact with developmental delays, intellectual disabilities (IDs), and congenital defects. Here, we identify a Chinese girl with a 3.18-Mb deletion at 12q12 (human genome build 19: 43,418,911-46,601,627) who showed postnatal growth delay, low-set ears, small hands and feet, widely spaced nipples, and blue sclerae. Deletions at 12q12 are extremely rare chromosomal imbalances; only four cases involving a deletion of this type have previously been reported. In these five sporadic cases, all of the patients exhibited developmental issues accompanied by different degrees of ID. A review of DECIPHER patient data revealed an additional six cases involving genomic deletion at 12q12. Many of the patients in these cases exhibited developmental delay and ID. When these patients were included, 91% and 73% of individuals with a deletion in this chromosomal region presented with developmental retardation and ID, respectively. Database searches indicated that this copy number variant (CNV) has not been found in normal humans. Therefore, we suggest that a CNV in this region is a risk factor for developmental retardation and ID.
Collapse
Affiliation(s)
- Ying Weng
- Department of PaediatricsTongji Hospital, Tongji Medical School, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaoping Luo
- Department of PaediatricsTongji Hospital, Tongji Medical School, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ling Hou
- Department of PaediatricsTongji Hospital, Tongji Medical School, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|