1
|
Davenport BN, Williams A, Regnault TRH, Jones HN, Wilson RL. Placenta hIGF1 nanoparticle treatment in guinea pigs mitigates FGR-associated fetal sex-dependent effects on liver metabolism-related signaling pathways. Am J Physiol Endocrinol Metab 2025; 328:E395-E409. [PMID: 39907801 DOI: 10.1152/ajpendo.00440.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
Fetal development in an adverse in utero environment significantly increases the risk of developing metabolic diseases in later life, including dyslipidemia, nonalcoholic fatty liver diseases, and diabetes. The aim of this study was to determine whether improving the in utero fetal growth environment with a placental nanoparticle gene therapy would ameliorate fetal growth restriction (FGR)-associated dysregulation of fetal hepatic lipid and glucose metabolism-related signaling pathways. Using the guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, placenta efficiency and fetal weight were significantly improved following three administrations of a nonviral polymer-based nanoparticle gene therapy to the placenta from mid-pregnancy (gestational day 35) until gestational day 52. The nanoparticle gene therapy transiently increased expression of human insulin-like growth factor 1 (hIGF1) in placenta trophoblast. Fetal liver tissue was collected near-term at gestational day 60. Fetal sex-specific differences in liver gene and protein expression of profibrosis and glucose metabolism-related factors were demonstrated in sham-treated FGR fetuses but not observed in FGR fetuses who received placental hIGF1 nanoparticle treatment. Increased plasma bilirubin, an indirect measure of hepatic activity, was also demonstrated with placental hIGF1 nanoparticle treatment. We speculate that the changes in liver gene and protein expression and increased liver activity that result in similar expression profiles to appropriately growing control fetuses might confer protection against increased susceptibility to aberrant liver physiology in later life. Overall, this work opens avenues for future research assessing the translational prospect of mitigating FGR-induced metabolic derangements.NEW & NOTEWORTHY A placenta-specific nonviral polymer-based nanoparticle gene therapy that improves placenta nutrient transport and near-term fetal weight ameliorates growth restriction-associated changes to fetal liver activity, and cholesterol and glucose/nutrient homeostasis genes/proteins that might confer protection against increased susceptibility to aberrant liver physiology in later life. This knowledge may have implications toward removing predispositions that increase the risk of metabolic diseases, including diabetes, dyslipidemia, and nonalcoholic fatty liver disease in later life.
Collapse
Affiliation(s)
- Baylea N Davenport
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Alyssa Williams
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Timothy R H Regnault
- Departments of Obstetrics and Gynaecology, Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Rebecca L Wilson
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
2
|
HuangFu R, Li H, Luo Y, He F, Huan C, Ahmed Z, Zhang B, Lei C, Yi K. Illuminating Genetic Diversity and Selection Signatures in Matou Goats through Whole-Genome Sequencing Analysis. Genes (Basel) 2024; 15:909. [PMID: 39062688 PMCID: PMC11275394 DOI: 10.3390/genes15070909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Matou goats, native to Hunan and Hubei provinces in China, are renowned for their exceptional meat and skin quality. However, a comprehensive whole-genome-based exploration of the genetic architecture of this breed is scant in the literature. (2) Methods: To address this substantial gap, we used whole-genome sequences of 20 Matou goats and compared them with published genomic data of 133 goats of different breeds across China. This comprehensive investigation sought to assess genetic diversity, population structure, and the presence of genomic selection signals. (3) Results: The whole genome of Matou goat populations yielded a substantial catalog of over 19 million single nucleotide polymorphisms (SNPs), primarily distributed within intergenic and intron regions. The phylogenetic tree analysis revealed distinct clades corresponding to each goat population within the dataset. Notably, this analysis positioned Matou goats in a closer genetic affinity with Guizhou White goats, compared to other recognized goat breeds. This observation was corroborated by principal component analysis (PCA) and admixture analysis. Remarkably, Matou goats exhibited diminished genetic diversity and a notable degree of inbreeding, signifying a reduced effective population size. Moreover, the study employed five selective sweep detection methods (including PI, CLR, PI-Ratio, Fst, and XP-EHH) to screen top signal genes associated with critical biological functions, encompassing cardiomyocytes, immunity, coat color, and meat quality. (4) Conclusions: In conclusion, this study significantly advances our understanding of the current genetic landscape and evolutionary dynamics of Matou goats. These findings underscore the importance of concerted efforts in resource conservation and genetic enhancement for this invaluable breed.
Collapse
Affiliation(s)
- Ruiyao HuangFu
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712000, China;
| | - Haobang Li
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Yang Luo
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Fang He
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Cheng Huan
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712000, China;
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| |
Collapse
|
3
|
Lee KG, Hong BK, Lee S, Lee N, Kim SW, Kim D, Kim WU. Nuclear receptor coactivator 6 is a critical regulator of NLRP3 inflammasome activation and gouty arthritis. Cell Mol Immunol 2024; 21:227-244. [PMID: 38195836 PMCID: PMC10902316 DOI: 10.1038/s41423-023-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Transcriptional coactivators regulate the rate of gene expression in the nucleus. Nuclear receptor coactivator 6 (NCOA6), a coactivator, has been implicated in embryonic development, metabolism, and cancer pathogenesis, but its role in innate immunity and inflammatory diseases remains unclear. Here, we demonstrated that NCOA6 was expressed in monocytes and macrophages and that its level was increased under proinflammatory conditions. Unexpectedly, nuclear NCOA6 was found to translocate to the cytoplasm in activated monocytes and then become incorporated into the inflammasome with NLRP3 and ASC, forming cytoplasmic specks. Mechanistically, NCOA6 associated with the ATP hydrolysis motifs in the NACHT domain of NLRP3, promoting the oligomerization of NLRP3 and ASC and thereby instigating the production of IL-1β and active caspase-1. Of note, Ncoa6 deficiency markedly inhibited NLRP3 hyperactivation caused by the Nlrp3R258W gain-of-function mutation in macrophages. Genetic ablation of Ncoa6 substantially attenuated the severity of two NLRP3-dependent diseases, folic-induced acute tubular necrosis and crystal-induced arthritis, in mice. Consistent with these findings, NCOA6 was highly expressed in macrophages derived from gout patients, and NCOA6-positive macrophages were significantly enriched in gout macrophages according to the transcriptome profiling results. Conclusively, NCOA6 is a critical regulator of NLRP3 inflammasome activation and is therefore a promising target for NLRP3-dependent diseases, including gout.
Collapse
Affiliation(s)
- Kang-Gu Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Bong-Ki Hong
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Saseong Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Naeun Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seung-Whan Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Bio-Medical Institute of Technology, University of Ulsan, Seoul, 05505, Republic of Korea
| | - Donghyun Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
4
|
Chowdhury MAR, An J, Jeong S. The Pleiotropic Face of CREB Family Transcription Factors. Mol Cells 2023; 46:399-413. [PMID: 37013623 PMCID: PMC10336275 DOI: 10.14348/molcells.2023.2193] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 04/05/2023] Open
Abstract
cAMP responsive element-binding protein (CREB) is one of the most intensively studied phosphorylation-dependent transcription factors that provide evolutionarily conserved mechanisms of differential gene expression in vertebrates and invertebrates. Many cellular protein kinases that function downstream of distinct cell surface receptors are responsible for the activation of CREB. Upon functional dimerization of the activated CREB to cis-acting cAMP responsive elements within the promoters of target genes, it facilitates signal-dependent gene expression. From the discovery of CREB, which is ubiquitously expressed, it has been proven to be involved in a variety of cellular processes that include cell proliferation, adaptation, survival, differentiation, and physiology, through the control of target gene expression. In this review, we highlight the essential roles of CREB proteins in the nervous system, the immune system, cancer development, hepatic physiology, and cardiovascular function and further discuss a wide range of CREB-associated diseases and molecular mechanisms underlying the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Md. Arifur Rahman Chowdhury
- Division of Life Sciences (Molecular Biology Major), Department of Bioactive Material Sciences, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Jungeun An
- Division of Life Sciences (Life Sciences Major), Jeonbuk National University, Jeonju 54896, Korea
| | - Sangyun Jeong
- Division of Life Sciences (Molecular Biology Major), Department of Bioactive Material Sciences, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
5
|
Jeong JH, Lee HL, Park HJ, Yoon YE, Shin J, Jeong MY, Park SH, Kim DH, Han SW, Kang CG, Hong KJ, Lee SJ. Effects of tomato ketchup and tomato paste extract on hepatic lipid accumulation and adipogenesis. Food Sci Biotechnol 2023; 32:1111-1122. [PMID: 37215254 PMCID: PMC10195947 DOI: 10.1007/s10068-023-01244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 02/09/2023] Open
Abstract
Tomatoes include high levels of lycopene, which is a potent antioxidative, hypolipidemic, and antidiabetic phytochemical. The intake of lycopene is associated with a reduced risk of insulin resistance and metabolic syndrome. The aim of this study was to investigate whether tomato ketchup and tomato paste, major dietary sources for tomato and lycopene, could regulate hepatic lipid metabolism and adipogenesis. To investigate the regulatory effects of tomato ketchup and tomato paste, we prepared a tomato ketchup extract (TKE) and a tomato paste extract (TPE) in 80% (v/v) ethyl acetate for the experiment. TKE and TPE reduced lipid accumulation and key markers for gluconeogenesis and induced a higher rate of fatty acid oxidation in HepG2 hepatocytes. In 3T3-L1 adipocytes, TKE and TPE increased adipogenesis and intracellular triglyceride accumulation, and stimulated glucose uptake. Peroxisome proliferator-activated receptor alpha and gamma expression levels were increased by TKE and TPE treatment. A single oral dose of tomato ketchup and tomato paste (9.28 g/kg) significantly improved glucose and insulin tolerance in mice. These findings suggest that lycopene-containing tomato ketchup and tomato paste may have beneficial regulatory effects in terms of energy metabolism in hepatocytes and adipocytes, and thus may improve blood glucose metabolism.
Collapse
Affiliation(s)
- Ji Hyun Jeong
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Ha Lim Lee
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Hyun Ji Park
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Ye Eun Yoon
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Jaeeun Shin
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Mi-Young Jeong
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Sung Hoon Park
- Department of Food & Nutrition, College of Life Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Da-hye Kim
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Seung-Woo Han
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Choon-Gil Kang
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Ki-Ju Hong
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Sung-Joon Lee
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
- Department of Food Bioscience & Technology, College of Life Sciences & Biotechnology, Korea University, Seoul, South Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four Institute of Precision Public Health, Korea University, Seoul, South Korea
| |
Collapse
|