1
|
Gupta N, Yadav AK, Verma PK, Srivastava M, Sahasrabuddhe AA, Dube A. Differential Immune Responses of Th1 Stimulatory Chimeric Antigens of Leishmania donovani in BALB/c Mice. ACS Infect Dis 2024; 10:4246-4257. [PMID: 39575598 DOI: 10.1021/acsinfecdis.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Visceral leishmaniasis (VL) is the third most severe infectious parasitic disease and is caused by the protozoan parasite Leishmania. To control the spread of the disease in endemic areas where the asymptomatic patients act as reservoirs as well as in nonendemic areas, an effective vaccine is indispensable. In this direction, we have developed three chimeric proteins by the combination of three already known Th1 stimulatory leishmanial antigens, i.e., enolase, aldolase, and triose phosphate isomerase (TPI). The newly developed chimeric proteins, i.e., enolase-aldolase, TPI-enolase, and aldolase-TPI along with BCG as an adjuvant were assessed and compared, examining humoral and cellular adaptive immune responses elicited in BALB/c mice. The three chimeric antigens exhibited differential immune responses shown by differences in Th1 and Th2 cytokine production in ex vivo stimulated splenocytes of immunized mice. It was observed that all three chimeric proteins are more immunogenic than their component proteins. However, while comparing the immune response of the three chimeric proteins, aldolase-TPI exhibited a better immunogenic (Th1-type) response, as evidenced by the highest IFN-γ production, a high IgG2a antibody isotype switching, a high % population of CD8+ and CD4+ T-cells, and a significantly high expression of iNOS2. Thus, the results suggest the potential of these chimeric antigens as strong immunogens that can be harnessed in vaccine development against VL.
Collapse
Affiliation(s)
- Niharika Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alok Kumar Yadav
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| | - Pramod Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| | - Mrigank Srivastava
- Molecular Immunology and Parasitology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| | - Amogh Anant Sahasrabuddhe
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| | - Anuradha Dube
- Molecular Immunology and Parasitology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| |
Collapse
|
2
|
Saini I, Joshi J, Kaur S. Leishmania vaccine development: A comprehensive review. Cell Immunol 2024; 399-400:104826. [PMID: 38669897 DOI: 10.1016/j.cellimm.2024.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Infectious diseases like leishmaniasis, malaria, HIV, tuberculosis, leprosy and filariasis are responsible for an immense burden on public health systems. Among these, leishmaniasis is under the category I diseases as it is selected by WHO (World Health Organization) on the ground of diversity and complexity. High cost, resistance and toxic effects of Leishmania traditional drugs entail identification and development of therapeutic alternative. Since the natural infection elicits robust immunity, consistence efforts are going on to develop a successful vaccine. Clinical trials have been conducted on vaccines like Leish-F1, F2, and F3 formulated using specific Leishmania antigen epitopes. Current strategies utilize individual or combined antigens from the parasite or its insect vector's salivary gland extract, with or without adjuvant formulation for enhanced efficacy. Promising animal data supports multiple vaccine candidates (Lmcen-/-, LmexCen-/-), with some already in or heading for clinical trials. The crucial challenge in Leishmania vaccine development is to translate the research knowledge into affordable and accessible control tools that refines the outcome for those who are susceptible to infection. This review focuses on recent findings in Leishmania vaccines and highlights difficulties facing vaccine development and implementation.
Collapse
Affiliation(s)
- Isha Saini
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Jyoti Joshi
- Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Mouhoub E, Domenech P, Ndao M, Reed MB. The Diverse Applications of Recombinant BCG-Based Vaccines to Target Infectious Diseases Other Than Tuberculosis: An Overview. Front Microbiol 2021; 12:757858. [PMID: 34745066 PMCID: PMC8566895 DOI: 10.3389/fmicb.2021.757858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Live attenuated Bacillus Calmette-Guérin (BCG) is the world's most widely used vaccine which is mainly administered for its protection against tuberculosis (TB), particularly in young children. However, since its initial use over 100years ago, it has also proven to offer a level of protection against various other pathogens, as a consequence of its non-specific immune enhancing effects. Thus, over the past few decades, recombinant BCG (rBCG) technology has been used as a vector to create rBCG vaccines expressing heterologous antigens that elicit immunity against a range of bacterial, viral, and parasitic diseases. Our goal with this mini-review is to provide an up-to-date survey of the various techniques, approaches, and applications of rBCG-based vaccines for targeting infectious diseases other than TB.
Collapse
Affiliation(s)
- Esma Mouhoub
- The Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- The Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- The McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Pilar Domenech
- The Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- The McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Momar Ndao
- The Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- The Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- The McGill International TB Centre, McGill University, Montreal, QC, Canada
- The Department of Medicine, McGill University, Montreal, QC, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Michael B. Reed
- The Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- The Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- The McGill International TB Centre, McGill University, Montreal, QC, Canada
- The Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Goyal DK, Keshav P, Kaur S. Immune induction by adjuvanted Leishmania donovani vaccines against the visceral leishmaniasis in BALB/c mice. Immunobiology 2021; 226:152057. [PMID: 33545508 DOI: 10.1016/j.imbio.2021.152057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/09/2020] [Accepted: 01/11/2021] [Indexed: 01/06/2023]
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease caused by Leishmania donovani or Leishmania infantum. Currently, the patients are treated with chemotherapeutic drugs; however, their toxicity limits their use. It would be desirable to develop a vaccine against this infection. In this study, we assessed the efficacy of different vaccine formulations at variable time points. Heat-killed (HK) antigen of Leishmania donovani was adjuvanted with two adjuvants (AddaVax and Montanide ISA 201) and three immunizations at a gap of 2 weeks (wk) were given to BALB/c mice. After 2 weeks of the last booster, mice were given challenge infection and sacrificed before challenge and after 4wk, 8wk, and 12 wk post-challenge. Significant protective immunity was observed in all the immunized animals and it was indicated by the notable rise in delayed-type hypersensitivity (DTH) response, remarkably declined parasite burden, a significant increase in the levels of interferon-gamma (IFN-γ), interleukin-12, interleukin-17 (Th1 cytokines), and IgG2a in contrast to infected control mice. Montanide ISA 201 with HK antigen provided maximum protection followed by AddaVax with HK and then HK alone. These findings elaborate on the importance of the tested adjuvants in the vaccine formulations against murine visceral leishmaniasis.
Collapse
Affiliation(s)
- Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Poonam Keshav
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|