1
|
Smith MT. The key characteristics concept. CURRENT OPINION IN TOXICOLOGY 2025; 41:100515. [PMID: 40270588 PMCID: PMC12017793 DOI: 10.1016/j.cotox.2024.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
In evaluating whether a chemical can cause cancer or another adverse outcome, three lines of evidence are typically considered: epidemiology, animal bioassays and mechanistic evidence. The key characteristics (KCs) form the basis of a uniform approach for searching, organizing, and evaluating mechanistic evidence to support hazard identification. KCs are the established properties of the toxicants themselves and are generated from our understanding of mechanisms of toxicity. KCs have been published for carcinogens, endocrine disruptors and reproductive, liver immune and cardiovascular toxicants. We noted that several KCs were common to different types of toxicants, whereas others were highly specific. Hence, there may be overlapping umbrella KCs for potentially hazardous bioactive chemicals that could be used in predictive toxicology. There are, however, also clearly unique KCs for chemicals that primarily target a specific organ and these unique KCs could be especially important to predicting target organ toxicity. It is possible that in silico approaches, in vitro tests, and in vivo biomarkers could be developed, which predict the "umbrella" and "unique" KCs of hazardous chemicals. However, given the significance of human evidence, the development of a set of biomarkers that could be used to measure the KCs in molecular epidemiology studies is also important.
Collapse
Affiliation(s)
- Martyn T Smith
- School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
DeMarini DM, Gwinn W, Watkins E, Reisfeld B, Chiu WA, Zeise L, Barupal D, Bhatti P, Cross K, Dogliotti E, Fritz JM, Germolec D, Andersen MHG, Guyton KZ, Jinot J, Phillips DH, Reddel RR, Rothman N, van den Berg M, Vermeulen RC, Vineis P, Wang A, Whelan M, Ghantous A, Korenjak M, Zavadil J, Herceg Z, Perdomo S, Dossus L, Chittiboyina S, Cuomo D, Kaldor J, Pasqual E, Rigutto G, Wedekind R, Facchin C, El Ghissassi F, de Conti A, Schubauer-Berigan MK, Madia F. IARC Workshop on the Key Characteristics of Carcinogens: Assessment of End Points for Evaluating Mechanistic Evidence of Carcinogenic Hazards. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:25001. [PMID: 39899356 PMCID: PMC11790013 DOI: 10.1289/ehp15389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/10/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The 10 key characteristics (KCs) of carcinogens form the basis of a framework to identify, organize, and evaluate mechanistic evidence relevant to carcinogenic hazard identification. The 10 KCs are related to mechanisms by which carcinogens cause cancer. The International Agency for Research on Cancer (IARC) Monographs programme has successfully applied the KCs framework for the mechanistic evaluation of different types of exposures, including chemicals, metals, and complex exposures, such as environmental, occupational, or dietary exposures. The use of this framework has significantly enhanced the identification and organization of relevant mechanistic data, minimized bias in evaluations, and enriched the knowledge base regarding the mechanisms of known and suspected carcinogens. OBJECTIVES We sought to report the main outcomes of an IARC Scientific Workshop convened by the IARC to establish appropriate, transparent, and uniform application of the KCs in future IARC Monographs evaluations. METHODS A group of experts from different disciplines reviewed the IARC Monographs experience with the KCs of carcinogens, discussing three main themes: a) the interpretation of end points forming the evidence base for the KCs, b) the incorporation of data from novel assays on the KCs, and c) the integration of the mechanistic evidence as part of cancer hazard identification. The workshop participants assessed the relevance and the informativeness of multiple KCs-associated end points for the evaluation of mechanistic evidence in studies of exposed humans and experimental systems. DISCUSSION Consensus was reached on how to enhance the use of in silico, molecular, and cellular high-output and high-throughput data. In addition, approaches to integrate evidence across the KCs and opportunities to improve methodologies of mechanistic evaluation of cancer hazards were explored. The findings described herein and in a forthcoming IARC technical report will support future working groups of experts in reporting and interpreting results under the KCs framework within the IARC Monographs or in other contexts. https://doi.org/10.1289/EHP15389.
Collapse
Affiliation(s)
- David M. DeMarini
- US Environmental Protection Agency (EPA; Retired), Research Triangle Park, North Carolina, USA
| | - William Gwinn
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Emily Watkins
- Department of Life Sciences, University of Roehampton, London, UK
| | - Brad Reisfeld
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Weihsueh A. Chiu
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California EPA, Sacramento, California, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Parveen Bhatti
- BC Cancer Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Dori Germolec
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Kathryn Z. Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, District of Columbia, USA
| | | | - David H. Phillips
- Department of Analytical, Environmental & Forensic Sciences, King’s College London, London, UK
| | - Roger R. Reddel
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, Maryland, USA
| | - Martin van den Berg
- Department of Population Health, Utrecht University, Utrecht, the Netherlands
| | - Roel C.H. Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Paolo Vineis
- School of Public Health, Imperial College, London, UK
| | - Amy Wang
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Maurice Whelan
- European Commission, Joint Research Centre, Ispra, Italy
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Laure Dossus
- Nutrition and Metabolism Branch, IARC, Lyon, France
| | | | | | - John Kaldor
- IARC Monographs Programme, IARC, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Silva M, Capps S, London JK. Community-Engaged Research and the Use of Open Access ToxVal/ToxRef In Vivo Databases and New Approach Methodologies (NAM) to Address Human Health Risks From Environmental Contaminants. Birth Defects Res 2024; 116:e2395. [PMID: 39264239 PMCID: PMC11407745 DOI: 10.1002/bdr2.2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/19/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND The paper analyzes opportunities for integrating Open access resources (Abstract Sifter, US EPA and NTP Toxicity Value and Toxicity Reference [ToxVal/ToxRefDB]) and New Approach Methodologies (NAM) integration into Community Engaged Research (CEnR). METHODS CompTox Chemicals Dashboard and Integrated Chemical Environment with in vivo ToxVal/ToxRef and NAMs (in vitro) databases are presented in three case studies to show how these resources could be used in Pilot Projects involving Community Engaged Research (CEnR) from the University of California, Davis, Environmental Health Sciences Center. RESULTS Case #1 developed a novel assay methodology for testing pesticide toxicity. Case #2 involved detection of water contaminants from wildfire ash and Case #3 involved contaminants on Tribal Lands. Abstract Sifter/ToxVal/ToxRefDB regulatory data and NAMs could be used to screen/prioritize risks from exposure to metals, PAHs and PFAS from wildfire ash leached into water and to investigate activities of environmental toxins (e.g., pesticides) on Tribal lands. Open access NAMs and computational tools can apply to detection of sensitive biological activities in potential or known adverse outcome pathways to predict points of departure (POD) for comparison with regulatory values for hazard identification. Open access Systematic Empirical Evaluation of Models or biomonitoring exposures are available for human subpopulations and can be used to determine bioactivity (POD) to exposure ratio to facilitate mitigation. CONCLUSIONS These resources help prioritize chemical toxicity and facilitate regulatory decisions and health protective policies that can aid stakeholders in deciding on needed research. Insights into exposure risks can aid environmental justice and health equity advocates.
Collapse
Affiliation(s)
- Marilyn Silva
- Co-Chair Community Stakeholders' Advisory Committee, University of California (UC Davis), Environmental Health Sciences Center (EHSC), Davis, California, USA
| | - Shosha Capps
- Co-Director Community Engagement Core, UC Davis EHSC, Davis, California, USA
| | - Jonathan K London
- Department of Human Ecology and Faculty Director Community Engagement Core, UC Davis EHSC, Sacramento, California, USA
| |
Collapse
|
4
|
Mack CM, Tsui-Bowen A, Smith AR, Jensen KF, Kodavanti PRS, Moser VC, Mundy WR, Shafer TJ, Herr DW. Identification of neural-relevant toxcast high-throughput assay intended gene targets: Applicability to neurotoxicity and neurotoxicant putative molecular initiating events. Neurotoxicology 2024; 103:256-265. [PMID: 38977203 DOI: 10.1016/j.neuro.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The US EPA's Toxicity Forecaster (ToxCast) is a suite of high-throughput in vitro assays to screen environmental toxicants and predict potential toxicity of uncharacterized chemicals. This work examines the relevance of ToxCast assay intended gene targets to putative molecular initiating events (MIEs) of neurotoxicants. This effort is needed as there is growing interest in the regulatory and scientific communities about developing new approach methodologies (NAMs) to screen large numbers of chemicals for neurotoxicity and developmental neurotoxicity. Assay gene function (GeneCards, NCBI-PUBMED) was used to categorize gene target neural relevance (1 = neural, 2 = neural development, 3 = general cellular process, 3 A = cellular process critical during neural development, 4 = unlikely significance). Of 481 unique gene targets, 80 = category 1 (16.6 %); 16 = category 2 (3.3 %); 303 = category 3 (63.0 %); 97 = category 3 A (20.2 %); 82 = category 4 (17.0 %). A representative list of neurotoxicants (548) was researched (ex. PUBMED, PubChem) for neurotoxicity associated MIEs/Key Events (KEs). MIEs were identified for 375 compounds, whereas only KEs for 173. ToxCast gene targets associated with MIEs were primarily neurotransmitter (ex. dopaminergic, GABA)receptors and ion channels (calcium, sodium, potassium). Conversely, numerous MIEs associated with neurotoxicity were absent. Oxidative stress (OS) mechanisms were 79.1 % of KEs. In summary, 40 % of ToxCast assay gene targets are relevant to neurotoxicity mechanisms. Additional receptor and ion channel subtypes and increased OS pathway coverage are identified for potential future assay inclusion to provide more complete coverage of neural and developmental neural targets in assessing neurotoxicity.
Collapse
Affiliation(s)
- Cina M Mack
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | - Alicia R Smith
- Oak Ridge Institute for Science Education, Oak Ridge, TN 37830, USA.
| | - Karl F Jensen
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Prasada Rao S Kodavanti
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Virginia C Moser
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - William R Mundy
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - David W Herr
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
5
|
Rusyn I, Wright FA. Ten years of using key characteristics of human carcinogens to organize and evaluate mechanistic evidence in IARC Monographs on the identification of carcinogenic hazards to humans: Patterns and associations. Toxicol Sci 2024; 198:141-154. [PMID: 38141214 PMCID: PMC10901152 DOI: 10.1093/toxsci/kfad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023] Open
Abstract
Systematic review and evaluation of mechanistic evidence using the Key Characteristics approach was proposed by the International Agency for Research on Cancer (IARC) in 2012 and used by the IARC Monographs Working Groups since 2015. Key Characteristics are 10 features of agents known to cause cancer in humans. From 2015 to 2022, a total of 19 Monographs (73 agents combined) used Key Characteristics for cancer hazard classification. We hypothesized that a retrospective analysis of applications of the Key Characteristics approach to cancer hazard classification using heterogenous mechanistic data on diverse agents would be informative for systematic reviews in decision-making. We extracted information on the conclusions, data types, and the role mechanistic data played in the cancer hazard classification from each Monograph. Statistical analyses identified patterns in the use of Key Characteristics, as well as trends and correlations among Key Characteristics, data types, and ultimate decisions. Despite gaps in data for many agents and Key Characteristics, several significant results emerged. Mechanistic data from in vivo animal, in vitro animal, and in vitro human studies were most impactful in concluding that an agent could cause cancer via a Key Characteristic. To exclude the involvement of a Key Characteristic, data from large-scale systematic in vitro testing programs such as ToxCast, were most informative. Overall, increased availability of systemized data streams, such as human in vitro data, would provide the basis for more confident and informed conclusions about both positive and negative associations and inform expert judgments on cancer hazard.
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Veterinary Pharmacology and Physiology, Texas A&M University, College Station, Texas 77843, USA
| | - Fred A Wright
- Department of Statistics, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27606, USA
- Department of Biological Sciences, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27606, USA
| |
Collapse
|
6
|
Xu X, Lin X, Ma W, Huo M, Tian X, Wang H, Huang L. Biodegradation strategies of veterinary medicines in the environment: Enzymatic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169598. [PMID: 38157911 DOI: 10.1016/j.scitotenv.2023.169598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One Health closely integrates healthy farming, human medicine, and environmental ecology. Due to the ecotoxicity and risk of transmission of drug resistance, veterinary medicines (VMs) are regarded as emerging environmental pollutants. To reduce or mitigate the environmental risk of VMs, developing friendly, safe, and effective removal technologies is an important means of environmental remediation for VMs. Many previous studies have proved that biodegradation has significant advantages in removing VMs, and biodegradation based on enzyme catalysis presents higher operability and specificity. This review focused on biodegradation strategies of environmental pollutants and reviewed the enzymatic degradation of VMs including antimicrobial drugs, insecticides, and disinfectants. We reviewed the sources and catalytic mechanisms of peroxidase, laccase, and organophosphorus hydrolases, and summarized the latest research status of immobilization methods and bioengineering techniques in improving the performance of degrading enzymes. The mechanism of enzymatic degradation for VMs was elucidated in the current research. Suggestions and prospects for researching and developing enzymatic degradation of VMs were also put forward. This review will offer new ideas for the biodegradation of VMs and have a guide significance for the risk mitigation and detoxification of VMs in the environment.
Collapse
Affiliation(s)
- Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xvdong Lin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Hanyu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
7
|
Gundacker C, Audouze K, Widhalm R, Granitzer S, Forsthuber M, Jornod F, Wielsøe M, Long M, Halldórsson TI, Uhl M, Bonefeld-Jørgensen EC. Reduced Birth Weight and Exposure to Per- and Polyfluoroalkyl Substances: A Review of Possible Underlying Mechanisms Using the AOP-HelpFinder. TOXICS 2022; 10:toxics10110684. [PMID: 36422892 PMCID: PMC9699222 DOI: 10.3390/toxics10110684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
Abstract
Prenatal exposure to per- and polyfluorinated substances (PFAS) may impair fetal growth. Our knowledge of the underlying mechanisms is incomplete. We used the Adverse Outcome Pathway (AOP)-helpFinder tool to search PubMed for studies published until March 2021 that examined PFAS exposure in relation to birth weight, oxidative stress, hormones/hormone receptors, or growth signaling pathways. Of these 1880 articles, 106 experimental studies remained after abstract screening. One clear finding is that PFAS are associated with oxidative stress in in vivo animal studies and in vitro studies. It appears that PFAS-induced reactive-oxygen species (ROS) generation triggers increased peroxisome proliferator-activated receptor (PPAR)γ expression and activation of growth signaling pathways, leading to hyperdifferentiation of pre-adipocytes. Fewer proliferating pre-adipocytes result in lower adipose tissue weight and in this way may reduce birth weight. PFAS may also impair fetal growth through endocrine effects. Estrogenic effects have been noted in in vivo and in vitro studies. Overall, data suggest thyroid-damaging effects of PFAS affecting thyroid hormones, thyroid hormone gene expression, and histology that are associated in animal studies with decreased body and organ weight. The effects of PFAS on the complex relationships between oxidative stress, endocrine system function, adipogenesis, and fetal growth should be further explored.
Collapse
Affiliation(s)
- Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40160-56503
| | - Karine Audouze
- Unit T3S, Université Paris Cité, Inserm U1124, 75006 Paris, France
| | - Raimund Widhalm
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Sebastian Granitzer
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Forsthuber
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Florence Jornod
- Unit T3S, Université Paris Cité, Inserm U1124, 75006 Paris, France
| | - Maria Wielsøe
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Manhai Long
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Thórhallur Ingi Halldórsson
- Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavík, Iceland
- Department of Epidemiology Research, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Maria Uhl
- Environment Agency Austria, 1090 Vienna, Austria
| | - Eva Cecilie Bonefeld-Jørgensen
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
- Greenland Center for Health Research, Greenland University, Nuuk 3905, Greenland
| |
Collapse
|
8
|
Fleming J, Marvel SW, Supak S, Motsinger-Reif AA, Reif DM. ToxPi*GIS Toolkit: creating, viewing, and sharing integrative visualizations for geospatial data using ArcGIS. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:900-907. [PMID: 35474345 PMCID: PMC9039976 DOI: 10.1038/s41370-022-00433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Presenting a comprehensive picture of geographic data comprising multiple factors is an inherently integrative undertaking. Visualizing such data in an interactive form is essential for public sharing and geographic information systems (GIS) analysis. The Toxicological Prioritization Index (ToxPi) framework offers a visual analytic integrating data that is compatible with geographic data. ArcGIS is a predominant geospatial software available for presenting and communicating geographic data, yet to our knowledge there is no methodology for integrating ToxPi profiles into ArcGIS maps. OBJECTIVE We introduce an actively developed suite of software, the ToxPi*GIS Toolkit, for creating, viewing, sharing, and analyzing interactive ToxPi profiles in ArcGIS to allow for new GIS analysis and an avenue for providing geospatial results to the public. METHODS The ToxPi*GIS Toolkit is a collection of methods for creating interactive feature layers that contain ToxPi profiles. It currently includes an ArcGIS Toolbox (ToxPiToolbox.tbx) for drawing location-specific ToxPi profiles in a single feature layer, a collection of modular Python scripts that create predesigned layer files containing ToxPi feature layers from the command line, and a collection of Python routines for useful data manipulation and preprocessing. We present workflows documenting ToxPi feature layer creation, sharing, and embedding for both novice and advanced users looking for additional customizability. RESULTS Map visualizations created with the ToxPi*GIS Toolkit can be made freely available on public URLs, allowing users without ArcGIS Pro access or expertise to view and interact with them. Novice users with ArcGIS Pro access can create de novo custom maps, and advanced users can exploit additional customization options. The ArcGIS Toolbox provides a simple means for generating ToxPi feature layers. We illustrate its usage with current COVID-19 data to compare drivers of pandemic vulnerability in counties across the United States. SIGNIFICANCE The integration of ToxPi profiles with ArcGIS provides new avenues for geospatial analysis, visualization, and public sharing of multi-factor data. This allows for comparison of data across a region, which can support decisions that help address issues such as disease prevention, environmental health, natural disaster prevention, chemical risk, and many others. Development of new features, which will advance the interests of the scientific community in many fields, is ongoing for the ToxPi*GIS Toolkit, which can be accessed from www.toxpi.org .
Collapse
Affiliation(s)
- Jonathon Fleming
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Skylar W Marvel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Stacy Supak
- Center for Geospatial Analytics, College of Natural Resources, North Carolina State University, Raleigh, NC, USA
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - David M Reif
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
9
|
House JS, Grimm FA, Klaren WD, Dalzell A, Kuchi S, Zhang SD, Lenz K, Boogaard PJ, Ketelslegers HB, Gant TW, Rusyn I, Wright FA. Grouping of UVCB substances with dose-response transcriptomics data from human cell-based assays. ALTEX 2022; 39:388–404. [PMID: 35288757 PMCID: PMC9344966 DOI: 10.14573/altex.2107051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
The application of in vitro biological assays as new approach methodologies (NAMs) to support grouping of UVCB (unknown or variable composition, complex reaction products, and biological materials) substances has recently been demonstrated. In addition to cell-based phenotyping as NAMs, in vitro transcriptomic profiling is used to gain deeper mechanistic understanding of biological responses to chemicals and to support grouping and read-across. However, the value of gene expression profiling for characterizing complex substances like UVCBs has not been explored. Using 141 petroleum substance extracts, we performed dose-response transcriptomic profiling in human induced pluripotent stem cell (iPSC)-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, as well as cell lines MCF7 and A375. The goal was to determine whether transcriptomic data can be used to group these UVCBs and to further characterize the molecular basis for in vitro biological responses. We found distinct transcriptional responses for petroleum substances by manufacturing class. Pathway enrichment informed interpretation of effects of substances and UVCB petroleum-class. Transcriptional activity was strongly correlated with concentration of polycyclic aromatic compounds (PAC), especially in iPSC-derived hepatocytes. Supervised analysis using transcriptomics, alone or in combination with bioactivity data collected on these same substances/cells, suggest that transcriptomics data provide useful mechanistic information, but only modest additional value for grouping. Overall, these results further demonstrate the value of NAMs for grouping of UVCBs, identify informative cell lines, and provide data that could be used for justifying selection of substances for further testing that may be required for registration.
Collapse
Affiliation(s)
- John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, RTP, NC, USA
| | - Fabian A Grimm
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - William D Klaren
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.,current address: ToxStrategies, Inc., Asheville, NC, USA
| | - Abigail Dalzell
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Harwell Science Campus, Oxon, UK
| | - Srikeerthana Kuchi
- Northern Ireland Centre for Stratified Medicine, Ulster University, L/Derry, Northern Ireland, UK.,current address: MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Ulster University, L/Derry, Northern Ireland, UK
| | - Klaus Lenz
- SYNCOM Forschungs und Entwicklungsberatung GmbH, Ganderkesee, Germany
| | | | | | - Timothy W Gant
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Harwell Science Campus, Oxon, UK
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
10
|
Reisfeld B, de Conti A, El Ghissassi F, Benbrahim-Tallaa L, Gwinn W, Grosse Y, Schubauer-Berigan M. kc-hits: a tool to aid in the evaluation and classification of chemical carcinogens. Bioinformatics 2022; 38:2961-2962. [PMID: 35561175 PMCID: PMC9306747 DOI: 10.1093/bioinformatics/btac189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The evaluation of chemicals for their carcinogenic hazard requires the analysis of a wide range of data and the characterization of these results relative to the key characteristics of carcinogens. The workflow used historically requires many manual steps that are labor-intensive and can introduce errors, bias and inconsistencies. RESULTS The automation of parts of the evaluation workflow using the kc-hits software has led to significant improvements in process efficiency, as well as more consistent and comprehensive results. AVAILABILITY AND IMPLEMENTATION https://gitlab.com/i1650/kc-hits.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Brad Reisfeld
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer, World Health Organization, Lyon 69372 CEDEX 08, France
| | - Aline de Conti
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer, World Health Organization, Lyon 69372 CEDEX 08, France
| | - Fatiha El Ghissassi
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer, World Health Organization, Lyon 69372 CEDEX 08, France
| | - Lamia Benbrahim-Tallaa
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer, World Health Organization, Lyon 69372 CEDEX 08, France
| | - William Gwinn
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer, World Health Organization, Lyon 69372 CEDEX 08, France
| | - Yann Grosse
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer, World Health Organization, Lyon 69372 CEDEX 08, France
| | - Mary Schubauer-Berigan
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer, World Health Organization, Lyon 69372 CEDEX 08, France
| |
Collapse
|
11
|
Khan A, Feulefack J, Sergi CM. Pre-conceptional and prenatal exposure to pesticides and pediatric neuroblastoma. A meta-analysis of nine studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103790. [PMID: 34954124 DOI: 10.1016/j.etap.2021.103790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Neuroblastoma is primarily an embryonal tumor of infancy. Recently, some toxicological agents used as pesticides have been associated with an increased incidence of this tumor. We intended to determine the potential association between prenatal exposure to pesticides and the incidence of neuroblastoma in children. Studies targeting the link between neuroblastoma and pesticides were searched in PUBMED, SCOPUS, and Google Scholar from January 1, 1960, through December 2020. We performed a PRISMA-based systematic review and meta-analysis. In addition, we took into consideration the IARC evaluation on pesticides issued in recent monographs. Prenatal pesticide exposure is associated with an increased risk of neuroblastoma with an OR of 1.6 (1.1-2.3; p = 0.013), while the OR is 1.0 (0.8-1.3; p = 0.723) for pesticide exposure after birth. There is a significant association between prenatal pesticide exposure and neuroblastoma. We emphasize the IARC conclusions evaluating the carcinogenicity of diazinon, glyphosate, malathion, parathion, and tetrachlorvinphos.
Collapse
Affiliation(s)
- Aiza Khan
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
| | - Joseph Feulefack
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
| | - Consolato M Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Stollery Children's Hospital, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada; Anatomic Pathology, Children's Hospital of Eastern Ontario, University of Ottawa, ON, Canada; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, China.
| |
Collapse
|
12
|
Felter SP, Bhat VS, Botham PA, Bussard DA, Casey W, Hayes AW, Hilton GM, Magurany KA, Sauer UG, Ohanian EV. Assessing chemical carcinogenicity: hazard identification, classification, and risk assessment. Insight from a Toxicology Forum state-of-the-science workshop. Crit Rev Toxicol 2022; 51:653-694. [DOI: 10.1080/10408444.2021.2003295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - David A. Bussard
- U.S. Environmental Protection Agency, Office of the Science Advisor, Policy and Engagement, Washington, DC, USA
| | - Warren Casey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - A. Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | - Gina M. Hilton
- PETA Science Consortium International e.V., Stuttgart, Germany
| | | | | | - Edward V. Ohanian
- United States Environmental Protection Agency, Office of Water, Washington, DC, USA
| |
Collapse
|
13
|
OUP accepted manuscript. Mutagenesis 2022; 37:191-202. [DOI: 10.1093/mutage/geac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/09/2022] [Indexed: 11/14/2022] Open
|
14
|
Khan A, Feulefack J, Sergi CM. Exposure to pesticides and pediatric Wilms' tumor. A meta-analysis on pre-conception and pregnancy parental exposure with an IARC/WHO commentary. Hum Exp Toxicol 2022; 41:9603271221136211. [PMID: 36289056 DOI: 10.1177/09603271221136211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
BACKGROUND There are hereditary types of nephroblastoma or Wilms' tumor associated with exposure of the germ cells of either parent to harmful environmental factors. Some studies have examined the exposure of compounds used pesticides and herbicides as a risk factor for Wilms' tumor. METHODS A systematic review and meta-analysis were carried out on case-control studies to establish the potential link between exposure to these organic molecules and Wilms' tumor occurrence in children rigorously. We examined the monographs on some organo-phosphate insecticides and herbicides issued by the International Association for the Research on Cancer (IARC) under the auspices of the World Health Organization (WHO). PUBMED, SCOPUS, and Google Scholar studies (1960-2021) were identified and systematically reviewed following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Subgroup analyses were conducted after stratification for occupational versus residential exposure and before birth (prenatal) vs. after birth (postnatal) exposure. In addition, we revised the monographs on chemical compounds issued recently by the IARC/WHO. RESULTS Our findings seem to consolidate that parental pesticide exposure during the preconception or pregnancy period is correlated with an increased occurrence risk for Wilms' tumor. We confirm the validity of the WHO essays on certain organophosphate herbicides and insecticides, which support these compounds, may be highly relevant in future cancer prevention policies. CONCLUSION Parental exposure to pesticides, particularly in household settings, is poorly emphasized in our society. There is a strong association between these organophosphate compounds and pediatric cancer. Public health agencies may need to take stronger action than in the past.
Collapse
Affiliation(s)
- A Khan
- Department of Laboratory Medicine and Pathology, 12357University of Alberta Hospital, Edmonton, AB, Canada
| | - J Feulefack
- Department of Laboratory Medicine and Pathology, 12357University of Alberta Hospital, Edmonton, AB, Canada
| | - C M Sergi
- Department of Laboratory Medicine and Pathology, 12357University of Alberta Hospital, Edmonton, AB, Canada
- Department of Pediatrics, Stollery Children's Hospital, University of Alberta Hospital, Edmonton, AB, Canada
- Division of Anatomic Pathology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
16
|
Feulefack J, Khan A, Forastiere F, Sergi CM. Parental Pesticide Exposure and Childhood Brain Cancer: A Systematic Review and Meta-Analysis Confirming the IARC/WHO Monographs on Some Organophosphate Insecticides and Herbicides. CHILDREN (BASEL, SWITZERLAND) 2021; 8:1096. [PMID: 34943292 PMCID: PMC8700205 DOI: 10.3390/children8121096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Brain tumors are the second most common neoplasm in the pediatric age. Pesticides may play an etiologic role, but literature results are conflicting. This review provides a systematic overview, meta-analysis, and IARC/WHO consideration of data on parental exposure to pesticides and childhood brain tumors. METHODS We searched PubMed, SCOPUS, and Google Scholar for literature (1 January 1966-31 December 2020) that assessed childhood brain tumors and parental exposure to pesticides. We undertook a meta-analysis addressing prenatal exposure, exposure after birth, occupational exposure, and residential exposure. A total of 130 case-control investigations involving 43,598 individuals (18,198 cases and 25,400 controls) were included. RESULTS Prenatal exposure is associated with childhood brain tumors (odds ratio, OR = 1.32; 95% CI: 1.17-1.49; I2 = 41.1%). The same occurs after birth exposure (OR = 1.22; 95% CI: 1.03-1.45, I2 = 72.3%) and residential exposure to pesticides (OR = 1.31; 95% CI: 1.11-1.54, I2 = 67.2%). Parental occupational exposure is only marginally associated with CBT (OR = 1.17, 95% CI: 0.99-1.38, I2 = 67.0%). CONCLUSIONS There is an association between CBT and parental pesticides exposure before childbirth, after birth, and residential exposure. It is in line with the IARC Monograph evaluating the carcinogenicity of diazinon, glyphosate, malathion, parathion, and tetrachlorvinphos.
Collapse
Affiliation(s)
- Joseph Feulefack
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China;
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Aiza Khan
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Francesco Forastiere
- Department of Epidemiology, Regional Health Service of Lazio, 00147 Rome, Italy;
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London SW7 2AZ, UK
| | - Consolato M. Sergi
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China;
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Stollery Children’s Hospital, Edmonton, AB T6G 2R3, Canada
- Anatomic Pathology Division, Department of Lab. Medicine and Pathology, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
17
|
Li T, Tong W, Roberts R, Liu Z, Thakkar S. DeepCarc: Deep Learning-Powered Carcinogenicity Prediction Using Model-Level Representation. Front Artif Intell 2021; 4:757780. [PMID: 34870186 PMCID: PMC8636933 DOI: 10.3389/frai.2021.757780] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Carcinogenicity testing plays an essential role in identifying carcinogens in environmental chemistry and drug development. However, it is a time-consuming and label-intensive process to evaluate the carcinogenic potency with conventional 2-years rodent animal studies. Thus, there is an urgent need for alternative approaches to providing reliable and robust assessments on carcinogenicity. In this study, we proposed a DeepCarc model to predict carcinogenicity for small molecules using deep learning-based model-level representations. The DeepCarc Model was developed using a data set of 692 compounds and evaluated on a test set containing 171 compounds in the National Center for Toxicological Research liver cancer database (NCTRlcdb). As a result, the proposed DeepCarc model yielded a Matthews correlation coefficient (MCC) of 0.432 for the test set, outperforming four advanced deep learning (DL) powered quantitative structure-activity relationship (QSAR) models with an average improvement rate of 37%. Furthermore, the DeepCarc model was also employed to screen the carcinogenicity potential of the compounds from both DrugBank and Tox21. Altogether, the proposed DeepCarc model could serve as an early detection tool (https://github.com/TingLi2016/DeepCarc) for carcinogenicity assessment.
Collapse
Affiliation(s)
- Ting Li
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States,University of Arkansas at Little Rock and University of Arkansas for Medical Sciences Joint Bioinformatics Program, Little Rock, AR, United States
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Ruth Roberts
- ApconiX Ltd., Alderley Edge, United Kingdom,Department of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Zhichao Liu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States,*Correspondence: Zhichao Liu, ; Shraddha Thakkar,
| | - Shraddha Thakkar
- Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States,*Correspondence: Zhichao Liu, ; Shraddha Thakkar,
| |
Collapse
|
18
|
Pham N, Miller MD, Marty M. Using High-Throughput Screening to Evaluate Perturbations Potentially Linked to Neurobehavioral Outcomes: A Case Study Using Publicly Available Tools on FDA Batch-Certified Synthetic Food Dyes. Chem Res Toxicol 2021; 34:2319-2330. [PMID: 34705446 DOI: 10.1021/acs.chemrestox.1c00205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is growing evidence from human and animal studies indicating an association between exposure to synthetic food dyes and adverse neurobehavioral outcomes in children. However, data gaps persist for potential mechanisms by which the synthetic food dyes could elicit neurobehavioral impacts. We developed an approach to evaluate seven US FDA-batch-certified food dyes using publicly available high-throughput screening (HTS) data from the US EPA's Toxicity Forecaster to assess potential underlying molecular mechanisms that may be linked to neurological pathway perturbations. The dyes were screened through 270 assays identified based on whether they had a neurological-related gene target and/or were mapped to neurodevelopmental processes or neurobehavioral outcomes, and were conducted in brain tissue, targeted specific hormone receptors, or targeted oxidative stress and inflammation. Some results provided support for neurological impacts found in human and animal studies, while other results showed a lack of correlation with in vivo findings. The azo dyes had a range of activity in assays mapped to G-protein-coupled receptors and were active in assays targeting dopaminergic, serotonergic, and opioid receptors. Assays mapped to nuclear receptors (androgen, estrogen, and thyroid hormone) also exhibited activity with the food dyes. Other molecular targets included the aryl hydrocarbon receptor, acetylcholinesterase, and monoamine oxidase. The Toxicological Prioritization Index tool was used to visualize the results of the Novascreen assays. Our results highlight certain limitations of HTS assays but provide insight into potential underlying mechanisms of neurobehavioral effects observed in in vivo animal toxicology studies and human clinical studies.
Collapse
Affiliation(s)
- Nathalie Pham
- California Environmental Protection Agency (CalEPA) Office of Environmental Health Hazard Assessment (OEHHA), Sacramento, California 95814, United States
| | - Mark D Miller
- CalEPA OEHHA, Oakland, California 94612, United States
| | - Melanie Marty
- California Environmental Protection Agency (CalEPA) Office of Environmental Health Hazard Assessment (OEHHA), Sacramento, California 95814, United States
| |
Collapse
|
19
|
Barupal DK, Schubauer-Berigan MK, Korenjak M, Zavadil J, Guyton KZ. Prioritizing cancer hazard assessments for IARC Monographs using an integrated approach of database fusion and text mining. ENVIRONMENT INTERNATIONAL 2021; 156:106624. [PMID: 33984576 PMCID: PMC8380673 DOI: 10.1016/j.envint.2021.106624] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/22/2021] [Accepted: 04/30/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Systematic evaluation of literature data on the cancer hazards of human exposures is an essential process underlying cancer prevention strategies. The scope and volume of evidence for suspected carcinogens can range from very few to thousands of publications, requiring a complex, systematically planned, and critical procedure to nominate, prioritize and evaluate carcinogenic agents. To aid in this process, database fusion, cheminformatics and text mining techniques can be combined into an integrated approach to inform agent prioritization, selection, and grouping. RESULTS We have applied these techniques to agents recommended for the IARC Monographs evaluations during 2020-2024. An integration of PubMed filters to cover cancer epidemiology, key characteristics of carcinogens, chemical lists from 34 databases relevant for cancer research, chemical structure grouping and a literature data-based clustering was applied in an innovative approach to 119 agents recommended by an advisory group for future IARC Monographs evaluations. The approach also facilitated a rational grouping of these agents and aids in understanding the volume and complexity of relevant information, as well as important gaps in coverage of the available studies on cancer etiology and carcinogenesis. CONCLUSION A new data-science approach has been applied to diverse agents recommended for cancer hazard assessments, and its applications for the IARC Monographs are demonstrated. The prioritization approach has been made available at www.cancer.idsl.me site for ranking cancer agents.
Collapse
Affiliation(s)
- Dinesh Kumar Barupal
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mt Sinai, NY, USA.
| | - Mary K Schubauer-Berigan
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer, Lyon, France
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Kathryn Z Guyton
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
20
|
Tice RR, Bassan A, Amberg A, Anger LT, Beal MA, Bellion P, Benigni R, Birmingham J, Brigo A, Bringezu F, Ceriani L, Crooks I, Cross K, Elespuru R, Faulkner DM, Fortin MC, Fowler P, Frericks M, Gerets HHJ, Jahnke GD, Jones DR, Kruhlak NL, Lo Piparo E, Lopez-Belmonte J, Luniwal A, Luu A, Madia F, Manganelli S, Manickam B, Mestres J, Mihalchik-Burhans AL, Neilson L, Pandiri A, Pavan M, Rider CV, Rooney JP, Trejo-Martin A, Watanabe-Sailor KH, White AT, Woolley D, Myatt GJ. In Silico Approaches In Carcinogenicity Hazard Assessment: Current Status and Future Needs. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20. [PMID: 35368437 DOI: 10.1016/j.comtox.2021.100191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Historically, identifying carcinogens has relied primarily on tumor studies in rodents, which require enormous resources in both money and time. In silico models have been developed for predicting rodent carcinogens but have not yet found general regulatory acceptance, in part due to the lack of a generally accepted protocol for performing such an assessment as well as limitations in predictive performance and scope. There remains a need for additional, improved in silico carcinogenicity models, especially ones that are more human-relevant, for use in research and regulatory decision-making. As part of an international effort to develop in silico toxicological protocols, a consortium of toxicologists, computational scientists, and regulatory scientists across several industries and governmental agencies evaluated the extent to which in silico models exist for each of the recently defined 10 key characteristics (KCs) of carcinogens. This position paper summarizes the current status of in silico tools for the assessment of each KC and identifies the data gaps that need to be addressed before a comprehensive in silico carcinogenicity protocol can be developed for regulatory use.
Collapse
Affiliation(s)
- Raymond R Tice
- RTice Consulting, Hillsborough, North Carolina, 27278, USA
| | | | - Alexander Amberg
- Sanofi Preclinical Safety, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Lennart T Anger
- Genentech, Inc., South San Francisco, California, 94080, USA
| | - Marc A Beal
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | | | | | - Jeffrey Birmingham
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | - Alessandro Brigo
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation, Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | | - Lidia Ceriani
- Humane Society International, 1000 Brussels, Belgium
| | - Ian Crooks
- British American Tobacco (Investments) Ltd, GR&D Centre, Southampton, SO15 8TL, United Kingdom
| | | | - Rosalie Elespuru
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, 20993, USA
| | - David M Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marie C Fortin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08855, USA
| | - Paul Fowler
- FSTox Consulting (Genetic Toxicology), Northamptonshire, United Kingdom
| | | | | | - Gloria D Jahnke
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Naomi L Kruhlak
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland, 20993, USA
| | - Elena Lo Piparo
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Juan Lopez-Belmonte
- Cuts Ice Ltd Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Amarjit Luniwal
- North American Science Associates (NAMSA) Inc., Minneapolis, Minnesota, 55426, USA
| | - Alice Luu
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Serena Manganelli
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | | | - Jordi Mestres
- IMIM Institut Hospital Del Mar d'Investigacions Mèdiques and Universitat Pompeu Fabra, Doctor Aiguader 88, Parc de Recerca Biomèdica, 08003 Barcelona, Spain; and Chemotargets SL, Baldiri Reixac 4, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | | | - Louise Neilson
- Broughton Nicotine Services, Oak Tree House, Earby, Lancashire, BB18 6JZ United Kingdom
| | - Arun Pandiri
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - John P Rooney
- Integrated Laboratory Systems, LLC., Morrisville, North Carolina, 27560, USA
| | | | - Karen H Watanabe-Sailor
- School of Mathematical and Natural Sciences, Arizona State University, West Campus, Glendale, Arizona, 85306, USA
| | - Angela T White
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | | | | |
Collapse
|
21
|
Borghoff SJ, Fitch SE, Black MB, McMullen PD, Andersen ME, Chappell GA. A systematic approach to evaluate plausible modes of actions for mouse lung tumors in mice exposed to 4-methylimidozole. Regul Toxicol Pharmacol 2021; 124:104977. [PMID: 34174380 DOI: 10.1016/j.yrtph.2021.104977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 12/27/2022]
Abstract
The National Toxicology Program (NTP) reported that chronic dietary exposure to 4-methylimidazole (4-MeI) increased the incidence of lung adenomas/carcinomas beyond the normally high spontaneous rate in B6C3F1 mice. To examine plausible modes of action (MoAs) for mouse lung tumors (MLTs) upon exposure to high levels of 4-MeI, and their relevance in assessing human risk, a systematic approach was used to identify and evaluate mechanistic data (in vitro and in vivo) in the primary and secondary literature, along with high-throughput screening assay data. Study quality, relevance, and activity of mechanistic data identified across the evidence-base were organized according to key characteristics of carcinogens (KCCs) to identify potential key events in known or novel MLT MoAs. Integration of these evidence streams provided confirmation that 4-MeI lacks genotoxic and cytotoxic activity with some evidence to support a lack of mitogenic activity. Further evaluation of contextual and chemical-specific characteristics of 4-MeI was consequently undertaken. Due to lack of genotoxicity, along with transcriptomic and histopathological lung changes up to 28 and 90 days of exposure, the collective evidence suggests MLTs observed following exposure to high levels of 4-MeI develop at a late stage in the mouse chronic bioassay, albeit the exact MoA remains unclear.
Collapse
|
22
|
Madia F, Pillo G, Worth A, Corvi R, Prieto P. Integration of data across toxicity endpoints for improved safety assessment of chemicals: the example of carcinogenicity assessment. Arch Toxicol 2021; 95:1971-1993. [PMID: 33830278 PMCID: PMC8166685 DOI: 10.1007/s00204-021-03035-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
In view of the need to enhance the assessment of consumer products called for in the EU Chemicals Strategy for Sustainability, we developed a methodology for evaluating hazard by combining information across different systemic toxicity endpoints and integrating the information with new approach methodologies. This integrates mechanistic information with a view to avoiding redundant in vivo studies, minimising reliance on apical endpoint tests and ultimately devising efficient testing strategies. Here, we present the application of our methodology to carcinogenicity assessment, mapping the available information from toxicity test methods across endpoints to the key characteristics of carcinogens. Test methods are deconstructed to allow the information they provide to be organised in a systematic way, enabling the description of the toxicity mechanisms leading to the adverse outcome. This integrated approach provides a flexible and resource-efficient means of fully exploiting test methods for which test guidelines are available to fulfil regulatory requirements for systemic toxicity assessment as well as identifying where new methods can be integrated.
Collapse
Affiliation(s)
- Federica Madia
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy.
| | - Gelsomina Pillo
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Pilar Prieto
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
| |
Collapse
|
23
|
Verma S, Singh D, Chatterjee S. Malathion biodegradation by a psychrotolerant bacteria Ochrobactrum sp. M1D and metabolic pathway analysis. Lett Appl Microbiol 2021; 73:326-335. [PMID: 34060111 DOI: 10.1111/lam.13517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 01/12/2023]
Abstract
An organophosphorus pesticide malathion biodegradation was investigated by using the bacteria Ochrobactrum sp. M1D isolated from a soil sample of peach orchards in Palampur, District Kangra, Himachal Pradesh (India). The bacterium was able to utilize malathion as the sole source of carbon and energy. The isolated bacterium was found psychrotolerant and could degrade 100% of 100 mg l-1 malathion in minimal salt medium at 20°C, pH 7·0 within 12 days with no major significant metabolites left at the end of the study. Through GCMS analysis, methyl phosphate, diethyl maleate, and diethyl 2-mercaptosuccinate were detected and identified as the major pathway metabolites. Based on the GCMS profile, three probable degradation pathways were interpreted. The present study is the first report of malathion biodegradation at both the psychrophilic and mesophilic conditions by any psychrotolerant strain and also through multiple degradation pathways. In the future, the strain can be explored to bio-remediate the malathion contaminated soil in the cold climatic region and to utilize the enzymatic systems for advanced biotechnology applications.
Collapse
Affiliation(s)
- S Verma
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Temporary Academic Block, Kangra District, Shahpur, Himachal Pradesh, India
| | - D Singh
- Molecular and Microbial Genetics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - S Chatterjee
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Temporary Academic Block, Kangra District, Shahpur, Himachal Pradesh, India
| |
Collapse
|
24
|
Thompson CM, Gentry R, Fitch S, Lu K, Clewell HJ. An updated mode of action and human relevance framework evaluation for Formaldehyde-Related nasal tumors. Crit Rev Toxicol 2021; 50:919-952. [PMID: 33599198 DOI: 10.1080/10408444.2020.1854679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Formaldehyde is a reactive aldehyde naturally present in all plant and animal tissues and a critical component of the one-carbon metabolism pathway. It is also a high production volume chemical used in the manufacture of numerous products. Formaldehyde is also one of the most well-studied chemicals with respect to environmental fate, biology, and toxicology-including carcinogenic potential, and mode of action (MOA). In 2006, a published MOA for formaldehyde-induced nasal tumors in rats concluded that nasal tumors were most likely driven by cytotoxicity and regenerative cell proliferation, with possible contributions from direct genotoxicity. In the past 15 years, new research has better informed the MOA with the publication of in vivo genotoxicity assays, toxicogenomic analyses, and development of ultra-sensitive methods to measure endogenous and exogenous formaldehyde-induced DNA adducts. Herein, we review and update the MOA for nasal tumors, with particular emphasis on the numerous studies published since 2006. These new studies further underscore the involvement of cytotoxicity and regenerative cell proliferation, and further inform the genotoxic potential of inhaled formaldehyde. The data lend additional support for the use of mechanistic data for the derivation of toxicity criteria and/or scientifically supported approaches for low-dose extrapolation for the risk assessment of formaldehyde.
Collapse
Affiliation(s)
| | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
25
|
Singh N, Hsieh CYJ. Exploring Potential Carcinogenic Activity of Per- and Polyfluorinated Alkyl Substances Utilizing High-Throughput Toxicity Screening Data. Int J Toxicol 2021; 40:355-366. [PMID: 33944624 DOI: 10.1177/10915818211010490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are ubiquitous, persistent, and toxic chemicals that pose public health risks. Recent carcinogenicity concerns have arisen based on epidemiological studies, animal tumor findings, and mechanistic data. Thousands of PFAS exist; however, current understanding of their toxicity is informed by studies of a select few, namely, perfluorooctanoic acid and perfluorooctanesulfonic acid. Hence, the computational, high-throughput screening tool, the US EPA CompTox Chemical Dashboard's ToxCast, was utilized to explore the carcinogenicity potential of PFAS. Twenty-three major PFAS that had sufficient in vitro ToxCast data and covered a range of structural subclasses were analyzed with the visual analytics software ToxPi, yielding a qualitative and quantitative assessment of PFAS activity in realms closely linked with carcinogenicity. A comprehensive literature search was also conducted to check the consistency of analyses with other mechanistic data streams. The PFAS were found to induce a vast range of biological perturbations, in line with several of the International Agency for Research on Cancer-defined key carcinogen characteristics. Patterns observed varied by length of fluorine-bonded chains and/or functional group within and between each key characteristic, suggesting some structure-based variability in activity. In general, the major conclusions drawn from the analysis, that is, the most notable activities being modulation of receptor-mediated effects and induction of oxidative stress, were supported by literature findings. The study helps enhance understanding of the mechanistic pathways that underlie the potential carcinogenicity of various PFAS and hence could assist in hazard identification and risk assessment for this emerging and relevant class of environmental toxicants.
Collapse
Affiliation(s)
- Nalin Singh
- Office of Environmental Health Hazard Assessment, 7020California Environmental Protection Agency, Sacramento, CA, USA.,University of California, Davis, CA, USA
| | - Ching Yi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, 7020California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
26
|
Li F, Yu Y, Guo M, Lin Y, Jiang Y, Qu M, Sun X, Li Z, Zhai Y, Tan Z. Integrated analysis of physiological, transcriptomics and metabolomics provides insights into detoxication disruption of PFOA exposure in Mytilus edulis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112081. [PMID: 33677383 DOI: 10.1016/j.ecoenv.2021.112081] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 05/14/2023]
Abstract
Perfluorooctanoic acid (PFOA), a persistent environmental contaminant, resists environmental degradation and bioaccumulates in food chains. Lots of literatures have proved that PFOA exposure could disrupt detoxifying function in a variety of organisms, however, it still remained poorly known about this in mollusk. Here, we examined physiological, transcriptomic, and metabolomic responses to PFOA in Mytilus edulis, a model organism frequently used in studies of aquatic pollution. We aimed to characterize PFOA-induced stress responses and detoxification mechanisms. PFOA exposure significantly altered antioxidant enzyme activity levels and the abundances of lipid peroxidation products. In addition, transcriptomic analysis indicated that several genes associated with oxidative stress and detoxication were differentially expressed after PFOA exposure. In combination, transcriptomic and metabolomic analyses showed that PFOA exposure disturbed several metabolic processes in M. edulis, including the lipid metabolism, amino acid metabolism, and carbohydrate metabolism etc. Molecular examination and enzymes assay of PFOA-exposed M. edulis after a 7-day depuration period still did not recover to control levels. The Pathway enrichment analysis proved that several pathways related to detoxification, such as c-Jun N-terminal kinase (JNK) and p38-dependent mitogen-activated protein kinase (MAPK) pathway, Peroxisome proliferator-activated receptor γ (PPARγ) pathway etc, were obviously affected. The present work verifies firstly PFOA disruption to molluscan detoxification and identifies the key pathways to understand the molecular mechanisms thereof. This study provides new insights into the detoxication disruption invoked in response to PFOA exposure in M. edulis.
Collapse
Affiliation(s)
- Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Yongxing Yu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Yao Lin
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Yanhua Jiang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Meng Qu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Xiaojie Sun
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Zhaoxin Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
| |
Collapse
|
27
|
Tarapore P, Ouyang B. Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073794. [PMID: 33916482 PMCID: PMC8038605 DOI: 10.3390/ijerph18073794] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/09/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are manmade synthetic chemicals which have been in existence for over 70 years. Though they are currently being phased out, their persistence in the environment is widespread. There is increasing evidence linking PFAS exposure to health effects, an issue of concern since PFAS such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) bioaccumulate in humans, with a half-life of years. Many epidemiological studies suggest that, worldwide, semen quality has decreased over the past several decades. One of the most worrying effects of PFOS and PFOA is their associations with lower testosterone levels, similar to clinical observations in infertile men. This review thus focuses on PFOS/PFOA-associated effects on male reproductive health. The sources of PFAS in drinking water are listed. The current epidemiological studies linking increased exposure to PFAS with lowered testosterone and semen quality, and evidence from rodent studies supporting their function as endocrine disruptors on the reproductive system, exhibiting non-monotonic dose responses, are noted. Finally, their mechanisms of action and possible toxic effects on the Leydig, Sertoli, and germ cells are discussed. Future research efforts must consider utilizing better human model systems for exposure, using more accurate PFAS exposure susceptibility windows, and improvements in statistical modeling of data to account for the endocrine disruptor properties of PFAS.
Collapse
Affiliation(s)
- Pheruza Tarapore
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
- Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Cincinnati Cancer Center, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: or ; Tel.: +1-513-558-5148
| | - Bin Ouyang
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
- Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
28
|
Investigating Molecular Mechanisms of Immunotoxicity and the Utility of ToxCast for Immunotoxicity Screening of Chemicals Added to Food. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073332. [PMID: 33804855 PMCID: PMC8036665 DOI: 10.3390/ijerph18073332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/07/2023]
Abstract
The development of high-throughput screening methodologies may decrease the need for laboratory animals for toxicity testing. Here, we investigate the potential of assessing immunotoxicity with high-throughput screening data from the U.S. Environmental Protection Agency ToxCast program. As case studies, we analyzed the most common chemicals added to food as well as per- and polyfluoroalkyl substances (PFAS) shown to migrate to food from packaging materials or processing equipment. The antioxidant preservative tert-butylhydroquinone (TBHQ) showed activity both in ToxCast assays and in classical immunological assays, suggesting that it may affect the immune response in people. From the PFAS group, we identified eight substances that can migrate from food contact materials and have ToxCast data. In epidemiological and toxicological studies, PFAS suppress the immune system and decrease the response to vaccination. However, most PFAS show weak or no activity in immune-related ToxCast assays. This lack of concordance between toxicological and high-throughput data for common PFAS indicates the current limitations of in vitro screening for analyzing immunotoxicity. High-throughput in vitro assays show promise for providing mechanistic data relevant for immune risk assessment. In contrast, the lack of immune-specific activity in the existing high-throughput assays cannot validate the safety of a chemical for the immune system.
Collapse
|
29
|
Chappell GA, Wikoff DS, Thompson CM. Assessment of Mechanistic Data for Hexavalent Chromium-Induced Rodent Intestinal Cancer Using the Key Characteristics of Carcinogens. Toxicol Sci 2021; 180:38-50. [PMID: 33404626 PMCID: PMC7916733 DOI: 10.1093/toxsci/kfaa187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oral exposure to hexavalent chromium (Cr[VI]) induces intestinal tumors in mice. Mutagenic and nonmutagenic modes of action (MOAs) have been accepted by different regulatory bodies globally, the latter involving cytotoxicity-induced regenerative cell proliferation. However, concerns persist that all possible MOAs have not been fully considered. To address the potential for alternative MOAs, mechanistic data not represented in the existing two MOAs were evaluated. Relevant data were identified and organized by key characteristics of carcinogens (KCCs); literature related to epigenetics, immunosuppression, receptor-mediated effects, and immortalization were reviewed to identify potential key events associated with an alternative MOA. Over 200 references were screened for these four KCCs and further prioritized based on relevance to the research objective (ie, in vivo, oral exposure, gastrointestinal tissue). Minimal data were available specific to the intestine for these KCCs, and there was no evidence of any underlying mechanisms or key events that are not already represented in the two proposed MOAs. For example, while epigenetic dysregulation of DNA repair genes has been demonstrated, epigenetic effects were not measured in intestinal tissue, and it has been shown that Cr(VI) does not cause DNA damage in intestinal tissue. High-throughput screening data related to the KCCs were also evaluated, with activity generally limited to the two recognized MOAs. Collectively, no plausible alternative MOAs (or key events) were identified in addition to those previously proposed for Cr(VI) small intestine tumors.
Collapse
|
30
|
Chappell GA, Heintz MM, Borghoff SJ, Doepker CL, Wikoff DS. Lack of potential carcinogenicity for steviol glycosides - Systematic evaluation and integration of mechanistic data into the totality of evidence. Food Chem Toxicol 2021; 150:112045. [PMID: 33587976 DOI: 10.1016/j.fct.2021.112045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
Steviol glycosides are present in the leaves of the Stevia rebaudiana plant, have a sweet taste, and have been used as a sweetener for centuries. To build on previous authoritative safety assessments of steviol glycosides, a systematic assessment of mechanistic data related to key characteristics of carcinogens (KCCs) was conducted. Over 900 KCC-relevant endpoints from peer-reviewed literature and high-throughput screening data (ToxCast/Tox21) were identified across individual steviol glycosides and derivatives, metabolites, and whole leaf extracts. Most data (both in vivo and in vitro, including human cells), showed inactivity. Studies were weighted according to quality and relevance. Although data were available for eight of the ten KCC, genotoxicity, oxidative stress, inflammation, and cell proliferation/cell death represent the KCCs with the most data. The data for these KCC primarily show beneficial activity (anti-inflammatory, antioxidant, and anti-proliferative). Following integration across all data, and accounting for study quality and relevance, the totality of the evidence demonstrated an overall lack of genotoxic and carcinogenic activity for steviol glycosides. This is in agreement with previous regulatory decisions, and is consistent with the lack of tumor response in two-year rodent cancer bioassays. The findings support prior conclusions that steviol glycosides are unlikely to be carcinogenic in humans.
Collapse
|
31
|
Jaeschke H, Murray FJ, Monnot AD, Jacobson-Kram D, Cohen SM, Hardisty JF, Atillasoy E, Hermanowski-Vosatka A, Kuffner E, Wikoff D, Chappell GA, Bandara SB, Deore M, Pitchaiyan SK, Eichenbaum G. Assessment of the biochemical pathways for acetaminophen toxicity: Implications for its carcinogenic hazard potential. Regul Toxicol Pharmacol 2021; 120:104859. [PMID: 33388367 DOI: 10.1016/j.yrtph.2020.104859] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
In 2019 California's Office of Environmental Health Hazard Assessment (OEHHA) initiated a review of the carcinogenic hazard potential of acetaminophen. In parallel with this review, herein we evaluated the mechanistic data related to the steps and timing of cellular events following therapeutic recommended (≤4 g/day) and higher doses of acetaminophen that may cause hepatotoxicity to evaluate whether these changes indicate that acetaminophen is a carcinogenic hazard. At therapeutic recommended doses, acetaminophen forms limited amounts of N-acetyl-p-benzoquinone-imine (NAPQI) without adverse cellular effects. Following overdoses of acetaminophen, there is potential for more extensive formation of NAPQI and depletion of glutathione, which may result in mitochondrial dysfunction and DNA damage, but only at doses that result in cell death - thus making it implausible for acetaminophen to induce the kind of stable, genetic damage in the nucleus indicative of a genotoxic or carcinogenic hazard in humans. The collective data demonstrate a lack of a plausible mechanism related to carcinogenicity and are consistent with rodent cancer bioassays, epidemiological results reviewed in companion manuscripts in this issue, as well as conclusions of multiple international health authorities.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- University of Kansas Medical Center, Department of Pharmacology, Toxicology & Therapeutics, Kansas City, KS, USA
| | | | | | | | - Samuel M Cohen
- University of Nebraska Medical Center, Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology, Omaha, NE, USA
| | - Jerry F Hardisty
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, USA
| | | | | | - Edwin Kuffner
- Johnson & Johnson Consumer Health, Fort Washington, PA, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Luijten M, Corvi R, Mehta J, Corvaro M, Delrue N, Felter S, Haas B, Hewitt NJ, Hilton G, Holmes T, Jacobs MN, Jacobs A, Lamplmair F, Lewis D, Madia F, Manou I, Melching-Kollmuss S, Schorsch F, Schütte K, Sewell F, Strupp C, van der Laan JW, Wolf DC, Wolterink G, Woutersen R, Zvonar Z, Heusinkveld H, Braakhuis H. A comprehensive view on mechanistic approaches for cancer risk assessment of non-genotoxic agrochemicals. Regul Toxicol Pharmacol 2020; 118:104789. [PMID: 33035627 DOI: 10.1016/j.yrtph.2020.104789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/14/2020] [Accepted: 10/04/2020] [Indexed: 11/28/2022]
Abstract
Currently the only methods for non-genotoxic carcinogenic hazard assessment accepted by most regulatory authorities are lifetime carcinogenicity studies. However, these involve the use of large numbers of animals and the relevance of their predictive power and results has been scientifically challenged. With increased availability of innovative test methods and enhanced understanding of carcinogenic processes, it is believed that tumour formation can now be better predicted using mechanistic information. A workshop organised by the European Partnership on Alternative Approaches to Animal Testing brought together experts to discuss an alternative, mechanism-based approach for cancer risk assessment of agrochemicals. Data from a toolbox of test methods for detecting modes of action (MOAs) underlying non-genotoxic carcinogenicity are combined with information from subchronic toxicity studies in a weight-of-evidence approach to identify carcinogenic potential of a test substance. The workshop included interactive sessions to discuss the approach using case studies. These showed that fine-tuning is needed, to build confidence in the proposed approach, to ensure scientific correctness, and to address different regulatory needs. This novel approach was considered realistic, and its regulatory acceptance and implementation can be facilitated in the coming years through continued dialogue between all stakeholders and building confidence in alternative approaches.
Collapse
Affiliation(s)
- Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands.
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Nathalie Delrue
- Organisation for Economic Cooperation and Development (OECD), Paris, France
| | | | - Bodo Haas
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | | | - Gina Hilton
- PETA International Science Consortium Ltd, London, UK
| | | | - Miriam N Jacobs
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England, UK
| | | | - Franz Lamplmair
- European Commission, DG Internal Market, Industry, Entrepreneurship and SMEs, Brussels, Belgium
| | | | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Irene Manou
- EPAA Industry Secretariat, Brussels, Belgium
| | | | | | | | - Fiona Sewell
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| | | | | | - Douglas C Wolf
- Syngenta Crop Protection, LLC, Greensboro, North Carolina, USA
| | - Gerrit Wolterink
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Bilthoven, the Netherlands
| | - Ruud Woutersen
- TNO Innovation for Life, Zeist; Wageningen University and Research, Wageningen, the Netherlands
| | | | - Harm Heusinkveld
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| |
Collapse
|
33
|
Bell S, Abedini J, Ceger P, Chang X, Cook B, Karmaus AL, Lea I, Mansouri K, Phillips J, McAfee E, Rai R, Rooney J, Sprankle C, Tandon A, Allen D, Casey W, Kleinstreuer N. An integrated chemical environment with tools for chemical safety testing. Toxicol In Vitro 2020; 67:104916. [PMID: 32553663 PMCID: PMC7393692 DOI: 10.1016/j.tiv.2020.104916] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 12/27/2022]
Abstract
Moving toward species-relevant chemical safety assessments and away from animal testing requires access to reliable data to develop and build confidence in new approaches. The Integrated Chemical Environment (ICE) provides tools and curated data centered around chemical safety assessment. This article describes updates to ICE, including improved accessibility and interpretability of in vitro data via mechanistic target mapping and enhanced interactive tools for in vitro to in vivo extrapolation (IVIVE). Mapping of in vitro assay targets to toxicity endpoints of regulatory importance uses literature-based mode-of-action information and controlled terminology from existing knowledge organization systems to support data interoperability with external resources. The most recent ICE update includes Tox21 high-throughput screening data curated using analytical chemistry data and assay-specific parameters to eliminate potential artifacts or unreliable activity. Also included are physicochemical/ADME parameters for over 800,000 chemicals predicted by quantitative structure-activity relationship models. These parameters are used by the new ICE IVIVE tool in combination with the U.S. Environmental Protection Agency's httk R package to estimate in vivo exposures corresponding to in vitro bioactivity concentrations from stored or user-defined assay data. These new ICE features allow users to explore the applications of an expanded data space and facilitate building confidence in non-animal approaches.
Collapse
Affiliation(s)
- Shannon Bell
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - Jaleh Abedini
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - Patricia Ceger
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - Xiaoqing Chang
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - Bethany Cook
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - Agnes L Karmaus
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - Isabel Lea
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - Kamel Mansouri
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Jason Phillips
- Sciome LLC, 2 Davis Dr., Research Triangle Park, NC 27709, USA.
| | - Eric McAfee
- Sciome LLC, 2 Davis Dr., Research Triangle Park, NC 27709, USA.
| | - Ruhi Rai
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - John Rooney
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - Catherine Sprankle
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - Arpit Tandon
- Sciome LLC, 2 Davis Dr., Research Triangle Park, NC 27709, USA.
| | - David Allen
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - Warren Casey
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
34
|
Chen Z, Liu Y, Wright FA, Chiu WA, Rusyn I. Rapid hazard characterization of environmental chemicals using a compendium of human cell lines from different organs. ALTEX 2020; 37:623-638. [PMID: 32521033 PMCID: PMC7941183 DOI: 10.14573/altex.2002291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
The lack of adequate toxicity data for the vast majority of chemicals in the environment has spurred the development of new approach methodologies (NAMs). This study aimed to develop a practical high-throughput in vitro model for rapidly evaluating potential hazards of chemicals using a small number of human cells. Forty-two compounds were tested using human induced pluripotent stem cell (iPSC)-derived cells (hepatocytes, neurons, cardiomyocytes and endothelial cells), and a primary endothelial cell line. Both functional and cytotoxicity endpoints were evaluated using high-content imaging. Concentration-response was used to derive points-of-departure (POD). PODs were integrated with ToxPi and used as surrogate NAM-based PODs for risk characterization. We found chemical class-specific similarity among the chemicals tested; metal salts exhibited the highest overall bioactivity. We also observed cell type-specific patterns among classes of chemicals, indicating the ability of the proposed in vitro model to recognize effects on different cell types. Compared to available NAM datasets, such as ToxCast/Tox21 and chemical structure-based descriptors, we found that the data from the five-cell-type model was as good or even better in assigning compounds to chemical classes. Additionally, the PODs from this model performed well as a conservative surrogate for regulatory in vivo PODs and were less likely to underestimate in vivo potency and potential risk compared to other NAM-based PODs. In summary, we demonstrate the potential of this in vitro screening model to inform rapid risk-based decision-making through ranking, clustering, and assessment of both hazard and risks of diverse environmental chemicals.
Collapse
Affiliation(s)
- Zunwei Chen
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Yizhong Liu
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Fred A. Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
35
|
Lack of potential carcinogenicity for acesulfame potassium - Systematic evaluation and integration of mechanistic data into the totality of the evidence. Food Chem Toxicol 2020; 141:111375. [PMID: 32360221 DOI: 10.1016/j.fct.2020.111375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 01/19/2023]
Abstract
The safety of low- and no-calorie sweeteners remains a topic of general interest. Substantial evidence exists demonstrating a lack of carcinogenicity of the no-calorie sweetener acesulfame potassium (Ace K). The objective of this evaluation was to conduct a systematic assessment of available mechanistic data using a framework that quantitatively integrates proposed key characteristics of carcinogens (KCCs) into the totality of the evidence. Over 800 KCC-relevant endpoints from a variety of in vitro and in vivo assays were assessed for quality, relevance, and activity, and integrated to determine the overall strength of the evidence for plausibility that Ace K acts through the KCC. Overall, there was a lack of activity across the KCCs (overall integrated score <0 and no "strong" categorization for evidence of activity) in which data were identified. Together with the absence of treatment-related tumor effects in rodent bioassays, these results support the conclusion that Ace K is unlikely to induce a carcinogenic response. This assessment employed a weight of the evidence analysis that includes the consideration of factors such as reliability, strength of the model system, activity, and dose in a complex and heterogeneous dataset, and the ultimate integration of multiple data streams in the cancer hazard evaluation.
Collapse
|
36
|
Temkin AM, Hocevar BA, Andrews DQ, Naidenko OV, Kamendulis LM. Application of the Key Characteristics of Carcinogens to Per and Polyfluoroalkyl Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1668. [PMID: 32143379 PMCID: PMC7084585 DOI: 10.3390/ijerph17051668] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a large class of environmentally persistent chemicals used in industrial and consumer products. Human exposure to PFAS is extensive, and PFAS contamination has been reported in drinking water and food supplies as well as in the serum of nearly all people. The most well-studied member of the PFAS class, perfluorooctanoic acid (PFOA), induces tumors in animal bioassays and has been associated with elevated risk of cancer in human populations. GenX, one of the PFOA replacement chemicals, induces tumors in animal bioassays as well. Using the Key Characteristics of Carcinogens framework for cancer hazard identification, we considered the existing epidemiological, toxicological and mechanistic data for 26 different PFAS. We found strong evidence that multiple PFAS induce oxidative stress, are immunosuppressive, and modulate receptor-mediated effects. We also found suggestive evidence indicating that some PFAS can induce epigenetic alterations and influence cell proliferation. Experimental data indicate that PFAS are not genotoxic and generally do not undergo metabolic activation. Data are currently insufficient to assess whether any PFAS promote chronic inflammation, cellular immortalization or alter DNA repair. While more research is needed to address data gaps, evidence exists that several PFAS exhibit one or more of the key characteristics of carcinogens.
Collapse
Affiliation(s)
- Alexis M. Temkin
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Barbara A. Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| | - David Q. Andrews
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Olga V. Naidenko
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Lisa M. Kamendulis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| |
Collapse
|
37
|
Bhandari S, Lewis PGT, Craft E, Marvel SW, Reif DM, Chiu WA. HGBEnviroScreen: Enabling Community Action through Data Integration in the Houston-Galveston-Brazoria Region. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1130. [PMID: 32053902 PMCID: PMC7068489 DOI: 10.3390/ijerph17041130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/28/2022]
Abstract
The Houston-Galveston-Brazoria (HGB) region faces numerous environmental and public health challenges from both natural disasters and industrial activity, but the historically disadvantaged communities most often impacted by such risks have limited ability to access and utilize big data for advocacy efforts. We developed HGBEnviroScreen to identify and prioritize regions of heightened vulnerability, in part to assist communities in understanding risk factors and developing environmental justice action plans. While similar in objectives to existing environmental justice tools, HGBEnviroScreen is unique in its ability to integrate and visualize national and local data to address regional concerns. For the 1090 census tracts in the HGB region, we accrued data into five domains: (i) social vulnerability, (ii) baseline health, (iii) environmental exposures and risks, (iv) environmental sources, and (v) flooding. We then integrated and visualized these data using the Toxicological Prioritization Index (ToxPi). We found that the highest vulnerability census tracts have multifactorial risk factors, with common drivers being flooding, social vulnerability, and proximity to environmental sources. Thus, HGBEnviroScreen is not only helping identify communities of greatest overall vulnerability but is also providing insights into which domains would most benefit from improved planning, policy, and action in order to reduce future vulnerability.
Collapse
Affiliation(s)
- Sharmila Bhandari
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845, USA;
| | - P. Grace Tee Lewis
- Environmental Defense Fund, 301 Congress Ave #1300, Austin, TX 78701, USA; (P.G.T.L.); (E.C.)
| | - Elena Craft
- Environmental Defense Fund, 301 Congress Ave #1300, Austin, TX 78701, USA; (P.G.T.L.); (E.C.)
| | - Skylar W. Marvel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; (S.W.M.); (D.M.R.)
| | - David M. Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; (S.W.M.); (D.M.R.)
| | - Weihsueh A. Chiu
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845, USA;
| |
Collapse
|
38
|
Wikoff D, Chappell G, Fitch S, Doepker C, Borghoff S. Lack of potential carcinogenicity for aspartame – Systematic evaluation and integration of mechanistic data into the totality of the evidence. Food Chem Toxicol 2020; 135:110866. [DOI: 10.1016/j.fct.2019.110866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022]
|
39
|
Atwood ST, Lunn RM, Garner SC, Jahnke GD. New Perspectives for Cancer Hazard Evaluation by the Report on Carcinogens: A Case Study Using Read-Across Methods in the Evaluation of Haloacetic Acids Found as Water Disinfection By-Products. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:125003. [PMID: 31854200 PMCID: PMC6957284 DOI: 10.1289/ehp5672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Due to the large number of chemicals not yet tested for carcinogenicity but to which people are exposed, the limited number of human and animal cancer studies conducted each year, and the frequent need for a timely response, mechanistic data are playing an increasingly important role in carcinogen hazard identification. OBJECTIVES To provide a targeted approach to identify relevant mechanistic data in our cancer evaluation of haloacetic acids (HAAs), we used several approaches including systematic review, the 10 key characteristics of carcinogens (KCs), and read-across methods. Our objective in this commentary is to discuss the strengths, limitations, and challenges of these approaches in a cancer hazard assessment. METHODS A cancer hazard assessment for 13 HAAs found as water disinfection by-products was conducted. Literature searches for mechanistic studies focused on the KCs and individual HAAs. Studies were screened for relevance and categorized by KCs and other relevant data, including chemical properties, toxicokinetics, and biological effects other than KCs. Mechanistic data were organized using the KCs, and strength of evidence was evaluated; this information informed potential modes of action (MOAs) and read-across-like approaches. Three read-across options were considered: evaluating HAAs as a class, as subclass(es), or as individual HAAs (analog approach). DISCUSSION Because of data limitations and uncertainties, listing as a class or subclass(es) was ruled out, and an analog approach was used. Two brominated HAAs were identified as target (untested) chemicals based on their metabolism and similarity to source (tested) chemicals. In addition, four HAAs with animal cancer data had sufficient evidence for potential listing in the Report on Carcinogens (RoC). This is the first time that the KCs and other relevant data, in combination with read-across principles, were used to support a recommendation to list chemicals in the RoC that did not have animal cancer data. https://doi.org/10.1289/EHP5672.
Collapse
Affiliation(s)
- Stanley T Atwood
- Contractor in Support of National Institute of Environmental Health Sciences (NIEHS) Report on Carcinogens, Integrated Laboratory Systems, Inc. (ILS), Research Triangle Park, North Carolina, USA
| | - Ruth M Lunn
- Office of the Report on Carcinogens, Division of the National Toxicology Program, NIEHS, Research Triangle Park, North Carolina, USA
| | - Sanford C Garner
- Contractor in Support of National Institute of Environmental Health Sciences (NIEHS) Report on Carcinogens, Integrated Laboratory Systems, Inc. (ILS), Research Triangle Park, North Carolina, USA
| | - Gloria D Jahnke
- Office of the Report on Carcinogens, Division of the National Toxicology Program, NIEHS, Research Triangle Park, North Carolina, USA
| |
Collapse
|
40
|
Chappell GA, Borghoff SJ, Pham LL, Doepker CL, Wikoff DS. Lack of potential carcinogenicity for sucralose - Systematic evaluation and integration of mechanistic data into the totality of the evidence. Food Chem Toxicol 2019; 135:110898. [PMID: 31654706 DOI: 10.1016/j.fct.2019.110898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Sucralose is widely used as a sugar substitute. Many studies and authoritative reviews have concluded that sucralose is non-carcinogenic, based primarily on animal cancer bioassays and genotoxicity data. To add to the body of knowledge on the potential carcinogenicity of sucralose, a systematic assessment of mechanistic data was conducted. This entailed using a framework developed for the quantitative integration of data related to the proposed key characteristics of carcinogens (KCCs). Data from peer-reviewed literature and the ToxCast/Tox21 database were evaluated using an algorithm that weights data for quality and relevance. The resulting integration demonstrated an overall lack of activity for sucralose across the KCCs, with no "strong" activity observed for any KCC. Almost all data collected demonstrated inactivity, including those conducted in human models. The overall lack of activity in mechanistic data is consistent with findings from animal cancer bioassays. The few instances of activity across the KCC were generally accompanied by limitations in study design in the context of either quality and/or dose and model relevance, highlighted upon integration of the totality of the evidence. The findings from this comprehensive and integrative evaluation of mechanistic data support prior conclusions that sucralose is unlikely to be carcinogenic in humans.
Collapse
Affiliation(s)
| | | | - L L Pham
- ToxStrategies, Inc., Asheville, NC, USA
| | | | | |
Collapse
|
41
|
Watford S, Edwards S, Angrish M, Judson RS, Paul Friedman K. Progress in data interoperability to support computational toxicology and chemical safety evaluation. Toxicol Appl Pharmacol 2019; 380:114707. [PMID: 31404555 PMCID: PMC7705611 DOI: 10.1016/j.taap.2019.114707] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
New approach methodologies (NAMs) in chemical safety evaluation are being explored to address the current public health implications of human environmental exposures to chemicals with limited or no data for assessment. For over a decade since a push toward "Toxicity Testing in the 21st Century," the field has focused on massive data generation efforts to inform computational approaches for preliminary hazard identification, adverse outcome pathways that link molecular initiating events and key events to apical outcomes, and high-throughput approaches to risk-based ratios of bioactivity and exposure to inform relative priority and safety assessment. Projects like the interagency Tox21 program and the US EPA ToxCast program have generated dose-response information on thousands of chemicals, identified and aggregated information from legacy systems, and created tools for access and analysis. The resulting information has been used to develop computational models as viable options for regulatory applications. This progress has introduced challenges in data management that are new, but not unique, to toxicology. Some of the key questions require critical thinking and solutions to promote semantic interoperability, including: (1) identification of bioactivity information from NAMs that might be related to a biological process; (2) identification of legacy hazard information that might be related to a key event or apical outcomes of interest; and, (3) integration of these NAM and traditional data for computational modeling and prediction of complex apical outcomes such as carcinogenesis. This work reviews a number of toxicology-related efforts specifically related to bioactivity and toxicological data interoperability based on the goals established by Findable, Accessible, Interoperable, and Reusable (FAIR) Data Principles. These efforts are essential to enable better integration of NAM and traditional toxicology information to support data-driven toxicology applications.
Collapse
Affiliation(s)
- Sean Watford
- Booz Allen Hamilton, Rockville, MD 20852, USA; National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Stephen Edwards
- Research Triangle Institute International, Research Triangle Park, NC 27709, USA
| | - Michelle Angrish
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Richard S Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
42
|
Kumar SS, Ghosh P, Malyan SK, Sharma J, Kumar V. A comprehensive review on enzymatic degradation of the organophosphate pesticide malathion in the environment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:288-329. [PMID: 31566482 DOI: 10.1080/10590501.2019.1654809] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A comprehensive review of available bioremediation technologies for the pesticide malathion is presented. This review article describes the usage and consequences of malathion in the environment, along with a critical discussion on modes of metabolism of malathion as a sole source of carbon, phosphorus, and sulfur for bacteria, and fungi along with the biochemical and molecular aspects involved in its biodegradation. Additionally, the recent approaches of genetic engineering are discussed for the manipulation of important enzymes and microorganisms for enhanced malathion degradation along with the challenges that lie ahead.
Collapse
Affiliation(s)
- Smita S Kumar
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Pooja Ghosh
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Sandeep K Malyan
- Institute of Soil, Water, and Environmental Sciences, Agricultural Research Organization (ARO), Volcani Research Centre, Bet Dagan, Israel
| | - Jyoti Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Vivek Kumar
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
43
|
Hubbard TD, Hsieh JH, Rider CV, Sipes NS, Sedykh A, Collins BJ, Auerbach SS, Xia M, Huang R, Walker NJ, DeVito MJ. Using Tox21 High-Throughput Screening Assays for the Evaluation of Botanical and Dietary Supplements. APPLIED IN VITRO TOXICOLOGY 2019; 5:10-25. [PMID: 30944845 PMCID: PMC6442399 DOI: 10.1089/aivt.2018.0020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Introduction: Recent nationwide surveys found that natural products, including botanical dietary supplements, are used by ∼18% of adults. In many cases, there is a paucity of toxicological data available for these substances to allow for confident evaluations of product safety. The National Toxicology Program (NTP) has received numerous nominations from the public and federal agencies to study the toxicological effects of botanical dietary supplements. The NTP sought to evaluate the utility of in vitro quantitative high-throughput screening (qHTS) assays for toxicological assessment of botanical and dietary supplements. Materials and Methods: In brief, concentration-response assessments of 90 test substances, including 13 distinct botanical species, and individual purported active constituents were evaluated using a subset of the Tox21 qHTS testing panel. The screen included 20 different endpoints that covered a broad range of biologically relevant signaling pathways to detect test article effects upon endocrine activity, nuclear receptor signaling, stress response signaling, genotoxicity, and cell death signaling. Results and Discussion: Botanical dietary supplement extracts induced measurable and diverse activity. Elevated biological activity profiles were observed following treatments with individual chemical constituents relative to their associated botanical extract. The overall distribution of activity was comparable to activities exhibited by compounds present in the Tox21 10K chemical library. Conclusion: Botanical supplements did not exhibit minimal or idiosyncratic activities that would preclude the use of qHTS platforms as a feasible method to screen this class of compounds. However, there are still many considerations and further development required when attempting to use in vitro qHTS methods to characterize the safety profile of botanical/dietary supplements.
Collapse
Affiliation(s)
- Troy D. Hubbard
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | - Cynthia V. Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Nisha S. Sipes
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | - Bradley J. Collins
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Scott S. Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Nigel J. Walker
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Michael J. DeVito
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
44
|
Grimm FA, House JS, Wilson MR, Sirenko O, Iwata Y, Wright FA, Ball N, Rusyn I. Multi-dimensional in vitro bioactivity profiling for grouping of glycol ethers. Regul Toxicol Pharmacol 2019; 101:91-102. [PMID: 30471335 PMCID: PMC6333527 DOI: 10.1016/j.yrtph.2018.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023]
Abstract
High-content screening data derived from physiologically-relevant in vitro models promise to improve confidence in data-integrative groupings for read-across in human health safety assessments. The biological data-based read-across concept is especially applicable to bioactive chemicals with defined mechanisms of toxicity; however, the challenge of data-derived groupings for chemicals that are associated with little or no bioactivity has not been explored. In this study, we apply a suite of organotypic and population-based in vitro models for comprehensive bioactivity profiling of twenty E-Series and P-Series glycol ethers, solvents with a broad variation in toxicity ranging from relatively non-toxic to reproductive and hematopoetic system toxicants. Both E-Series and P-Series glycol ethers elicited cytotoxicity only at high concentrations (mM range) in induced pluripotent stem cell-derived hepatocytes and cardiomyocytes. Population-variability assessment comprised a study of cytotoxicity in 94 human lymphoblast cell lines from 9 populations and revealed differences in inter-individual variability across glycol ethers, but did not indicate population-specific effects. Data derived from various phenotypic and transcriptomic assays revealed consistent bioactivity trends between both cardiomyocytes and hepatocytes, indicating a more universal, rather than cell-type specific mode-of-action for the tested glycol ethers in vitro. In vitro bioactivity-based similarity assessment using Toxicological Priority Index (ToxPi) showed that glycol ethers group according to their alcohol chain length, longer chains were associated with increased bioactivity. While overall in vitro bioactivity profiles did not correlate with in vivo toxicity data on glycol ethers, in vitro bioactivity of E-series glycol ethers were indicative of and correlated with in vivo irritation scores.
Collapse
Affiliation(s)
- Fabian A Grimm
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Melinda R Wilson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | | | - Yasuhiro Iwata
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Nicholas Ball
- Toxicology and Environmental Research and Consulting (TERC), Environment, Health and Safety (EH&S), The Dow Chemical Company, Horgen, Zurich, 8810, Switzerland
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
45
|
Iyer S, Pham N, Marty M, Sandy M, Solomon G, Zeise L. An Integrated Approach Using Publicly Available Resources for Identifying and Characterizing Chemicals of Potential Toxicity Concern: Proof-of-Concept With Chemicals That Affect Cancer Pathways. Toxicol Sci 2019; 169:14-24. [DOI: 10.1093/toxsci/kfz017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Shoba Iyer
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency’s (CalEPA’s), Oakland, California
| | - Nathalie Pham
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency’s (CalEPA’s), Sacramento, California
| | - Melanie Marty
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency’s (CalEPA’s), Sacramento, California
| | - Martha Sandy
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency’s (CalEPA’s), Oakland, California
| | - Gina Solomon
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency’s (CalEPA’s), Oakland, California
| |
Collapse
|
46
|
Wikoff DS, Rager JE, Chappell GA, Fitch S, Haws L, Borghoff SJ. A Framework for Systematic Evaluation and Quantitative Integration of Mechanistic Data in Assessments of Potential Human Carcinogens. Toxicol Sci 2018; 167:322-335. [DOI: 10.1093/toxsci/kfy279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
47
|
Guyton KZ, Rusyn I, Chiu WA, Corpet DE, van den Berg M, Ross MK, Christiani DC, Beland FA, Smith MT. Re: 'Application of the key characteristics of carcinogens in cancer hazard evaluation': response to Goodman, Lynch and Rhomberg. Carcinogenesis 2018; 39:1091-1093. [PMID: 29982359 PMCID: PMC6067125 DOI: 10.1093/carcin/bgy082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Kathryn Z Guyton
- Monographs Programme, International Agency for Research on Cancer, Lyon, France
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Denis E Corpet
- ENVT, INRA TOXALIM (Research Center in Food Toxicology), Université de Toulouse, Toulouse, France
| | - Martin van den Berg
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
48
|
Guyton KZ, Rusyn I, Chiu WA, Corpet DE, van den Berg M, Ross MK, Christiani DC, Beland FA, Smith MT. Application of the key characteristics of carcinogens in cancer hazard identification. Carcinogenesis 2018; 39:614-622. [PMID: 29562322 PMCID: PMC5888955 DOI: 10.1093/carcin/bgy031] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
Smith et al. (Env. Health Perspect. 124: 713, 2016) identified 10 key characteristics (KCs), one or more of which are commonly exhibited by established human carcinogens. The KCs reflect the properties of a cancer-causing agent, such as 'is genotoxic,' 'is immunosuppressive' or 'modulates receptor-mediated effects,' and are distinct from the hallmarks of cancer, which are the properties of tumors. To assess feasibility and limitations of applying the KCs to diverse agents, methods and results of mechanistic data evaluations were compiled from eight recent IARC Monograph meetings. A systematic search, screening and evaluation procedure identified a broad literature encompassing multiple KCs for most (12/16) IARC Group 1 or 2A carcinogens identified in these meetings. Five carcinogens are genotoxic and induce oxidative stress, of which pentachlorophenol, hydrazine and malathion also showed additional KCs. Four others, including welding fumes, are immunosuppressive. The overall evaluation was upgraded to Group 2A based on mechanistic data for only two agents, tetrabromobisphenol A and tetrachloroazobenzene. Both carcinogens modulate receptor-mediated effects in combination with other KCs. Fewer studies were identified for Group 2B or 3 agents, with the vast majority (17/18) showing only one or no KCs. Thus, an objective approach to identify and evaluate mechanistic studies pertinent to cancer revealed strong evidence for multiple KCs for most Group 1 or 2A carcinogens but also identified opportunities for improvement. Further development and mapping of toxicological and biomarker endpoints and pathways relevant to the KCs can advance the systematic search and evaluation of mechanistic data in carcinogen hazard identification.
Collapse
Affiliation(s)
- Kathryn Z Guyton
- Monographs Programme, International Agency for Research on Cancer, Lyon, France
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Denis E Corpet
- ENVT, INRA TOXALIM (Research Center in Food Toxicology), Université de Toulouse, Toulouse, France
| | - Martin van den Berg
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - David C Christiani
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
49
|
Thomas RS, Paules RS, Simeonov A, Fitzpatrick SC, Crofton KM, Casey WM, Mendrick DL. The US Federal Tox21 Program: A strategic and operational plan for continued leadership. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018. [PMID: 29529324 DOI: 10.14573/altex.1803011] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The traditional approaches to toxicity testing have posed multiple challenges for evaluating the safety of commercial chemicals, pesticides, food additives/contaminants, and medical products.The challenges include number of chemicals that need to be tested, time and resource intensive nature of traditional toxicity tests, and unexpected adverse effects that occur in pharmaceutical clinical trials despite the extensive toxicological testing.Over a decade ago, the U.S. Environmental Protection Agency (EPA), National Toxicology Program (NTP), National Center for Advancing Translational Sciences (NCATS), and the Food and Drug Administration (FDA) formed a federal consortium for "Toxicology in the 21st Century" (Tox21) with a focus on developing and evaluating in vitro high-throughput screening (HTS) methods for hazard identification and providing mechanistic insights.The Tox21 consortium generated data on thousands of pharmaceuticals and datapoor chemicals, developed better understanding of the limits and applications of in vitro methods, and enabled incorporation of HTS data into regulatory decisions. To more broadly address the challenges in toxicology, Tox21 has developed a new strategic and operational plan that expands the focus of its research activities. The new focus areas include developing an expanded portfolio of alternative test systems, addressing technical limitations of in vitrotest systems, curating legacy in vivo toxicity testing data, establishing scientific confidence in the in vitrotest systems, and refining alternative methods for characterizing pharmacokinetics and in vitro assay disposition.The new Tox21 strategic and operational plan addresses key challenges to advance toxicology testing and will benefit both the organizations involved and the toxicology community.
Collapse
Affiliation(s)
- Russell S Thomas
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC,USA
| | - Richard S Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Durham, NC, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | | | - Kevin M Crofton
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC,USA
| | - Warren M Casey
- National Toxicology Program, Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA
| | - Donna L Mendrick
- National Center for Toxicological Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
50
|
Marvel SW, To K, Grimm FA, Wright FA, Rusyn I, Reif DM. ToxPi Graphical User Interface 2.0: Dynamic exploration, visualization, and sharing of integrated data models. BMC Bioinformatics 2018; 19:80. [PMID: 29506467 PMCID: PMC5838926 DOI: 10.1186/s12859-018-2089-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background Drawing integrated conclusions from diverse source data requires synthesis across multiple types of information. The ToxPi (Toxicological Prioritization Index) is an analytical framework that was developed to enable integration of multiple sources of evidence by transforming data into integrated, visual profiles. Methodological improvements have advanced ToxPi and expanded its applicability, necessitating a new, consolidated software platform to provide functionality, while preserving flexibility for future updates. Results We detail the implementation of a new graphical user interface for ToxPi (Toxicological Prioritization Index) that provides interactive visualization, analysis, reporting, and portability. The interface is deployed as a stand-alone, platform-independent Java application, with a modular design to accommodate inclusion of future analytics. The new ToxPi interface introduces several features, from flexible data import formats (including legacy formats that permit backward compatibility) to similarity-based clustering to options for high-resolution graphical output. Conclusions We present the new ToxPi interface for dynamic exploration, visualization, and sharing of integrated data models. The ToxPi interface is freely-available as a single compressed download that includes the main Java executable, all libraries, example data files, and a complete user manual from http://toxpi.org.
Collapse
Affiliation(s)
- Skylar W Marvel
- Bioinformatics Research Center, Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Box 7566, 1 Lampe Drive, Raleigh, NC, 27695, USA
| | - Kimberly To
- Bioinformatics Research Center, Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Box 7566, 1 Lampe Drive, Raleigh, NC, 27695, USA
| | - Fabian A Grimm
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Fred A Wright
- Bioinformatics Research Center, Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Box 7566, 1 Lampe Drive, Raleigh, NC, 27695, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - David M Reif
- Bioinformatics Research Center, Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Box 7566, 1 Lampe Drive, Raleigh, NC, 27695, USA.
| |
Collapse
|