1
|
Jin Y, Qi G, Feng M, Yu D. The path via pathway-based approaches towards safety assessment: A concise review. Toxicol Appl Pharmacol 2022; 452:116195. [PMID: 35977605 DOI: 10.1016/j.taap.2022.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
For decades, chemical safety assessment has been proposed to shift from animal testing to in vitro testing systems in response to the call for the 3R. In Europe, the answer was to combine various information sources in integrated testing strategies (ITS); In the US, it was in 2007 when the landmark report by the National Research Council put forward a vision of in vitro toxicity testing paradigm. Since then, efforts to develop pathway-based assessment framework have been on the track. In 2010, systems biology brought out a conceptual framework called adverse outcome pathway (AOP), which took one step further from toxicity pathway to regulatory toxicology. Computational modeling, high-throughput screening, high-content omics have all been approached to facilitate this progress. This paper briefly reviewed the achievement of pathway-based chemical assessment since 2007, discussed potential pitfalls and challenges that mechanism-driven chemical assessment may undergo, and presented future perspectives of safety assessment that is to be based on computational system biology.
Collapse
Affiliation(s)
- Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Guangshuai Qi
- School of Public Health, Qingdao University, Qingdao, China
| | - Meiyao Feng
- Department of Environmental Health, Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China..
| |
Collapse
|
2
|
Dent MP, Vaillancourt E, Thomas RS, Carmichael PL, Ouedraogo G, Kojima H, Barroso J, Ansell J, Barton-Maclaren TS, Bennekou SH, Boekelheide K, Ezendam J, Field J, Fitzpatrick S, Hatao M, Kreiling R, Lorencini M, Mahony C, Montemayor B, Mazaro-Costa R, Oliveira J, Rogiers V, Smegal D, Taalman R, Tokura Y, Verma R, Willett C, Yang C. Paving the way for application of next generation risk assessment to safety decision-making for cosmetic ingredients. Regul Toxicol Pharmacol 2021; 125:105026. [PMID: 34389358 PMCID: PMC8547713 DOI: 10.1016/j.yrtph.2021.105026] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022]
Abstract
Next generation risk assessment (NGRA) is an exposure-led, hypothesis-driven approach that has the potential to support animal-free safety decision-making. However, significant effort is needed to develop and test the in vitro and in silico (computational) approaches that underpin NGRA to enable confident application in a regulatory context. A workshop was held in Montreal in 2019 to discuss where effort needs to be focussed and to agree on the steps needed to ensure safety decisions made on cosmetic ingredients are robust and protective. Workshop participants explored whether NGRA for cosmetic ingredients can be protective of human health, and reviewed examples of NGRA for cosmetic ingredients. From the limited examples available, it is clear that NGRA is still in its infancy, and further case studies are needed to determine whether safety decisions are sufficiently protective and not overly conservative. Seven areas were identified to help progress application of NGRA, including further investments in case studies that elaborate on scenarios frequently encountered by industry and regulators, including those where a ‘high risk’ conclusion would be expected. These will provide confidence that the tools and approaches can reliably discern differing levels of risk. Furthermore, frameworks to guide performance and reporting should be developed.
Collapse
Affiliation(s)
- M P Dent
- Unilever Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, MK44 1LQ, UK.
| | - E Vaillancourt
- Health Canada, Healthy Environments and Consumer Safety Branch, 269 Laurier Ave. W., Ottawa, ON K1A 0K9, Canada.
| | - R S Thomas
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research, Triangle Park, NC, 27711, USA.
| | - P L Carmichael
- Unilever Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, MK44 1LQ, UK.
| | - G Ouedraogo
- l'Oréal, Research and Development, Paris, France.
| | - H Kojima
- National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, 158-8501, Tokyo, Japan.
| | - J Barroso
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy.
| | - J Ansell
- US Personal Care Products Council (PCPC), 1620 L St. NW, Suite 1200, Washington, D.C, 20036, USA.
| | - T S Barton-Maclaren
- Health Canada, Healthy Environments and Consumer Safety Branch, 269 Laurier Ave. W., Ottawa, ON K1A 0K9, Canada.
| | - S H Bennekou
- National Food Institute, Technical University of Denmark (DTU), Copenhagen, Denmark.
| | - K Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| | - J Ezendam
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - J Field
- Health Canada, Healthy Environments and Consumer Safety Branch, 269 Laurier Ave. W., Ottawa, ON K1A 0K9, Canada.
| | - S Fitzpatrick
- US Food and Drug Administration (US FDA), Center for Food Safety and Applied Nutrition (CFSAN), 5001 Campus Drive, College Park, MD, 20740, USA.
| | - M Hatao
- Japan Cosmetic Industry Association (JCIA), Metro City Kamiyacho 6F, 5-1-5, Toranomon, Minato-ku, Tokyo, 105-0001 Japan.
| | - R Kreiling
- Clariant Produkte (Deutschland) GmbH, Am Unisyspark 1, 65843, Sulzbach, Germany.
| | - M Lorencini
- Grupo Boticário, Research & Development, São José dos Pinhais, Brazil.
| | - C Mahony
- Procter & Gamble Technical Centres Ltd, Reading, RG2 0RX, UK.
| | - B Montemayor
- Cosmetics Alliance Canada, 420 Britannia Road East Suite 102, Mississauga, ON L4Z 3L5, Canada.
| | - R Mazaro-Costa
- Departament of Pharmacology, Universidade Federal de Goiás, Goiânia, GO, 74.690-900, Brazil.
| | - J Oliveira
- Brazilian Health Regulatory Agency (ANVISA), Gerência de Produtos de Higiene, Perfumes, Cosméticos e Saneantes, Setor de Indústria e Abastecimento (SIA), Trecho 5, Área Especial 57, CEP 71205-050, Brasília, DF, Brazil.
| | - V Rogiers
- Vrije Universiteit Brussel, Brussels, Belgium.
| | - D Smegal
- US Food and Drug Administration (US FDA), Center for Food Safety and Applied Nutrition (CFSAN), 5001 Campus Drive, College Park, MD, 20740, USA.
| | - R Taalman
- Cosmetics Europe, Avenue Herrmann-Debroux 40, 1160 Auderghem, Belgium.
| | - Y Tokura
- Allergic Disease Research Center, Chutoen General Medical Center, Kakegawa, Japan.
| | - R Verma
- US Food and Drug Administration (US FDA), Center for Food Safety and Applied Nutrition (CFSAN), 5001 Campus Drive, College Park, MD, 20740, USA.
| | - C Willett
- Humane Society International, Washington, DC, USA.
| | - C Yang
- Taiwan Cosmetic Industry Association (TWCIA), 8F No. 136, Bo'ai Rd., Zhongzheng Dist., Taipei City, 100, Taiwan, ROC.
| |
Collapse
|
3
|
Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 2019; 94:1-58. [DOI: 10.1007/s00204-019-02613-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
|
4
|
Hexabromocyclododecane (HBCD): A case study applying tiered testing for human health risk assessment. Food Chem Toxicol 2019; 131:110581. [DOI: 10.1016/j.fct.2019.110581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
|
5
|
Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.comtox.2018.06.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Campana O, Wlodkowic D. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:932-946. [PMID: 29284083 DOI: 10.1021/acs.est.7b03370] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biological and environmental sciences are, more than ever, becoming highly dependent on technological and multidisciplinary approaches that warrant advanced analytical capabilities. Microfluidic lab-on-a-chip technologies are perhaps one the most groundbreaking offshoots of bioengineering, enabling design of an entirely new generation of bioanalytical instrumentation. They represent a unique approach to combine microscale engineering and physics with specific biological questions, providing technological advances that allow for fundamentally new capabilities in the spatiotemporal analysis of molecules, cells, tissues, and even small metazoan organisms. While these miniaturized analytical technologies experience an explosive growth worldwide, with a substantial promise of a direct impact on biosciences, it seems that lab-on-a-chip systems have so far escaped the attention of aquatic ecotoxicologists. In this Critical Review, potential applications of the currently existing and emerging chip-based technologies for aquatic ecotoxicology and water quality monitoring are highlighted. We also offer suggestions on how aquatic ecotoxicology can benefit from adoption of microfluidic lab-on-a-chip devices for accelerated bioanalysis.
Collapse
Affiliation(s)
- Olivia Campana
- Instituto de Ciencias Marinas de Andalucía, CSIC , Puerto Real, 11519, Spain
| | - Donald Wlodkowic
- School of Science, RMIT University , Melbourne, Victoria 3083, Australia
| |
Collapse
|
7
|
Melnikov F, Hsieh JH, Sipes NS, Anastas PT. Channel Interactions and Robust Inference for Ratiometric β-lactamase Assay Data: a Tox21 Library Analysis. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2018; 6:3233-3241. [PMID: 32461840 PMCID: PMC7252516 DOI: 10.1021/acssuschemeng.7b03394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ratiometric β-lactamase (BLA) reporters are widely used to study transcriptional responses in a high-throughput screening (HTS) format. Typically, a ratio readout (background/target fluorescence) is used for toxicity assessment and structure-activity modeling efforts from BLA HTS data. This ratio readout may be confounded by channel-specific artifacts. To maximize the utility of BLA HTS data, we analyzed the relationship between individual channels and ratio readouts after fitting 10,000 chemical titration series screened in seven BLA stress-response assays from the Tox21 initiative. Similar to previous observations, we found that activity classifications based on BLA ratio readout alone are confounded by interference patterns for up to 85% (50 % on average) of active chemicals. Most Tox21 analyses adjust for this issue by evaluating target and ratio readout direction. In addition, we found that the potency and efficacy estimates derived from the ratio readouts may not represent the target channel effects and thus complicates chemical activity comparison. From these analyses we recommend a simpler approach using a direct evaluation of the target and background channels as well as the respective noise levels when using BLA data for toxicity assessment. This approach eliminates the channel interference issues and allows for straightforward chemical assessment and comparisons.
Collapse
Affiliation(s)
- Fjodor Melnikov
- School of Forestry and Environmental Studies, Yale University, New Haven, CT 06520, United States
| | - Jui-Hua Hsieh
- Kelly Government Solutions, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States
| | - Nisha S Sipes
- National Toxicology Program / National Institute of Environmental Health Sciences (NIEHS), 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States
| | - Paul T Anastas
- School of Forestry and Environmental Studies, Yale University, New Haven, CT 06520, United States
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
8
|
The Constraints, Construction, and Verification of a Strain-Specific Physiologically Based Pharmacokinetic Rat Model. J Pharm Sci 2017; 106:2826-2838. [PMID: 28495566 DOI: 10.1016/j.xphs.2017.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 11/20/2022]
Abstract
The use of in vitro-in vivo extrapolation (IVIVE) techniques, mechanistically incorporated within physiologically based pharmacokinetic (PBPK) models, can harness in vitro drug data and enhance understanding of in vivo pharmacokinetics. This study's objective was to develop a user-friendly rat (250 g, male Sprague-Dawley) IVIVE-linked PBPK model. A 13-compartment PBPK model including mechanistic absorption models was developed, with required system data (anatomical, physiological, and relevant IVIVE scaling factors) collated from literature and analyzed. Overall, 178 system parameter values for the model are provided. This study also highlights gaps in available system data required for strain-specific rat PBPK model development. The model's functionality and performance were assessed using previous literature-sourced in vitro properties for diazepam, metoprolol, and midazolam. The results of simulations were compared against observed pharmacokinetic rat data. Predicted and observed concentration profiles in 10 tissues for diazepam after a single intravenous (i.v.) dose making use of either observed i.v. clearance (CLiv) or in vitro hepatocyte intrinsic clearance (CLint) for simulations generally led to good predictions in various tissue compartments. Overall, all i.v. plasma concentration profiles were successfully predicted. However, there were challenges in predicting oral plasma concentration profiles for metoprolol and midazolam, and the potential reasons and according solutions are discussed.
Collapse
|
9
|
Noyes PD, Garcia GR, Tanguay RL. ZEBRAFISH AS AN IN VIVO MODEL FOR SUSTAINABLE CHEMICAL DESIGN. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2016; 18:6410-6430. [PMID: 28461781 PMCID: PMC5408959 DOI: 10.1039/c6gc02061e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Heightened public awareness about the many thousands of chemicals in use and present as persistent contaminants in the environment has increased the demand for safer chemicals and more rigorous toxicity testing. There is a growing recognition that the use of traditional test models and empirical approaches is impractical for screening for toxicity the many thousands of chemicals in the environment and the hundreds of new chemistries introduced each year. These realities coupled with the green chemistry movement have prompted efforts to implement more predictive-based approaches to evaluate chemical toxicity early in product development. While used for many years in environmental toxicology and biomedicine, zebrafish use has accelerated more recently in genetic toxicology, high throughput screening (HTS), and behavioral testing. This review describes major advances in these testing methods that have positioned the zebrafish as a highly applicable model in chemical safety evaluations and sustainable chemistry efforts. Many toxic responses have been shown to be shared among fish and mammals owing to their generally well-conserved development, cellular networks, and organ systems. These shared responses have been observed for chemicals that impair endocrine functioning, development, and reproduction, as well as those that elicit cardiotoxicity and carcinogenicity, among other diseases. HTS technologies with zebrafish enable screening large chemical libraries for bioactivity that provide opportunities for testing early in product development. A compelling attribute of the zebrafish centers on being able to characterize toxicity mechanisms across multiple levels of biological organization from the genome to receptor interactions and cellular processes leading to phenotypic changes such as developmental malformations. Finally, there is a growing recognition of the links between human and wildlife health and the need for approaches that allow for assessment of real world multi-chemical exposures. The zebrafish is poised to be an important model in bridging these two conventionally separate areas of toxicology and characterizing the biological effects of chemical mixtures that could augment its role in sustainable chemistry.
Collapse
Affiliation(s)
- Pamela D. Noyes
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Gloria R. Garcia
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
10
|
Yuan H, Zhang Q, Guo J, Zhang T, Zhao J, Li J, White A, Carmichael PL, Westmoreland C, Peng S. A PGC-1α-Mediated Transcriptional Network Maintains Mitochondrial Redox and Bioenergetic Homeostasis against Doxorubicin-Induced Toxicity in Human Cardiomyocytes: Implementation of TT21C. Toxicol Sci 2016; 150:400-17. [PMID: 26781513 DOI: 10.1093/toxsci/kfw006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chemical toxicity testing is fast moving in a direction that relies increasingly on cell-basedin vitroassays anchored on toxicity pathways according to the toxicity testing in the 21st century vision. Identifying points of departure (POD) via these assays and revealing their mechanistic underpinnings via computational modeling of the relevant pathways are critical and challenging steps. Here we used doxorubicin (DOX) as a prototype chemical to study mitochondrial toxicity in human AC16 cells. Mitochondrial toxicity has been linked to cardiovascular risk of DOX, which has limited its clinical use as an antitumor drug. Ourin vitrostudy revealed a well-defined POD concentration of DOX below which adaptive induction of proliferator-activated receptor-γ coactivator-1α (PGC-1α) -mediated mitochondrial genes, including NRF-1, MnSOD, UCP2, and COX1, concurred with negligible changes in mitochondrial superoxide and cytotoxicity. At higher DOX concentrations adversity became significant with elevated superoxide and suppressed ATP levels. A computational model was formulated to simulate the PGC-1α-mediated transcriptional network comprising multiple negative feedback loops that underlie redox and bioenergetics homeostasis in the mitochondrion. The model recapitulated the transition phase from adaptive to adverse responses, supporting the notion that saturated induction of PGC-1α-mediated gene network underpins POD. The model further predicts (follow-up experiments verified) that silencing PGC-1α compromises the adaptive function of the transcriptional network, leading to disruption of mitochondria and cytotoxicity at lower DOX concentrations. In summary, our study demonstrates that combining pathway-focusedin vitroassays and computational simulation of relevant biochemical network is synergistic for understanding dose-response behaviors in the low-dose region and identifying POD.
Collapse
Affiliation(s)
- Haitao Yuan
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China;
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; and
| | - Jiabin Guo
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Tingfen Zhang
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jun Zhao
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jin Li
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Andrew White
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Carl Westmoreland
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Shuangqing Peng
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China;
| |
Collapse
|
11
|
Clewell RA, McMullen PD, Adeleye Y, Carmichael PL, Andersen ME. Pathway Based Toxicology and Fit-for-Purpose Assays. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 856:205-230. [DOI: 10.1007/978-3-319-33826-2_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Developing tools for defining and establishing pathways of toxicity. Arch Toxicol 2015; 89:809-12. [PMID: 25851822 PMCID: PMC4396705 DOI: 10.1007/s00204-015-1512-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/21/2022]
|
13
|
Bouhifd M, Andersen ME, Baghdikian C, Boekelheide K, Crofton KM, Fornace AJ, Kleensang A, Li H, Livi C, Maertens A, McMullen PD, Rosenberg M, Thomas R, Vantangoli M, Yager JD, Zhao L, Hartung T. The human toxome project. ALTEX 2015; 32:112-24. [PMID: 25742299 PMCID: PMC4778566 DOI: 10.14573/altex.1502091] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/02/2015] [Indexed: 12/26/2022]
Abstract
The Human Toxome Project, funded as an NIH Transformative Research grant 2011-2016, is focused on developing the concepts and the means for deducing, validating and sharing molecular pathways of toxicity (PoT). Using the test case of estrogenic endocrine disruption, the responses of MCF-7 human breast cancer cells are being phenotyped by transcriptomics and mass-spectroscopy-based metabolomics. The bioinformatics tools for PoT deduction represent a core deliverable. A number of challenges for quality and standardization of cell systems, omics technologies and bioinformatics are being addressed. In parallel, concepts for annotation, validation and sharing of PoT information, as well as their link to adverse outcomes, are being developed. A reasonably comprehensive public database of PoT, the Human Toxome Knowledge-base, could become a point of reference for toxicological research and regulatory test strategies.
Collapse
Affiliation(s)
- Mounir Bouhifd
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | | | - Christina Baghdikian
- ASPPH Fellow, National Center for Computational Toxicology, US EPA, Research Triangle Park, NC, USA
| | - Kim Boekelheide
- Brown University, Pathology & Laboratory Medicine, Providence, RI, USA
| | - Kevin M. Crofton
- US EPA, National Center for Computational Toxicology, Research Triangle Park, NC, USA
| | | | - Andre Kleensang
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | - Henghong Li
- Georgetown University Medical Center, Washington, DC, USA
| | | | - Alexandra Maertens
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | | | | | - Russell Thomas
- US EPA, National Center for Computational Toxicology, Research Triangle Park, NC, USA
| | | | - James D. Yager
- Johns Hopkins Bloomberg School of Public Health, Department of Environmental Health Sciences, Baltimore, MD, USA
| | - Liang Zhao
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | - Thomas Hartung
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
- University of Konstanz, Center for Alternatives to Animal Testing Europe, Konstanz, Germany
| |
Collapse
|
14
|
Lentz TJ, Dotson GS, Williams PR, Maier A, Gadagbui B, Pandalai SP, Lamba A, Hearl F, Mumtaz M. Aggregate Exposure and Cumulative Risk Assessment--Integrating Occupational and Non-occupational Risk Factors. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2015; 12 Suppl 1:S112-26. [PMID: 26583907 PMCID: PMC4654690 DOI: 10.1080/15459624.2015.1060326] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/20/2015] [Accepted: 03/02/2015] [Indexed: 05/20/2023]
Abstract
Occupational exposure limits have traditionally focused on preventing morbidity and mortality arising from inhalation exposures to individual chemical stressors in the workplace. While central to occupational risk assessment, occupational exposure limits have limited application as a refined disease prevention tool because they do not account for all of the complexities of the work and non-occupational environments and are based on varying health endpoints. To be of greater utility, occupational exposure limits and other risk management tools could integrate broader consideration of risks from multiple exposure pathways and routes (aggregate risk) as well as the combined risk from exposure to both chemical and non-chemical stressors, within and beyond the workplace, including the possibility that such exposures may cause interactions or modify the toxic effects observed (cumulative risk). Although still at a rudimentary stage in many cases, a variety of methods and tools have been developed or are being used in allied risk assessment fields to incorporate such considerations in the risk assessment process. These approaches, which are collectively referred to as cumulative risk assessment, have potential to be adapted or modified for occupational scenarios and provide a tangible path forward for occupational risk assessment. Accounting for complex exposures in the workplace and the broader risks faced by the individual also requires a more complete consideration of the composite effects of occupational and non-occupational risk factors to fully assess and manage worker health problems. Barriers to integrating these different factors remain, but new and ongoing community-based and worker health-related initiatives may provide mechanisms for identifying and integrating risk from aggregate exposures and cumulative risks from all relevant sources, be they occupational or non-occupational.
Collapse
Affiliation(s)
- T. J. Lentz
- Education and Information Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio
| | - G. S. Dotson
- Education and Information Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio
| | | | - A. Maier
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - B. Gadagbui
- Toxicology Excellence for Risk Assessment, Cincinnati, Ohio
| | - S. P. Pandalai
- Education and Information Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio
| | - A. Lamba
- Office of Pollution Prevention and Toxics, Environmental Protection Agency, Washington, DC
| | - F. Hearl
- Office of the Director, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Washington, DC
| | - M. Mumtaz
- Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
15
|
Liu Y, Morley M, Brandimarto J, Hannenhalli S, Hu Y, Ashley EA, Tang WHW, Moravec CS, Margulies KB, Cappola TP, Li M. RNA-Seq identifies novel myocardial gene expression signatures of heart failure. Genomics 2014; 105:83-9. [PMID: 25528681 DOI: 10.1016/j.ygeno.2014.12.002] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/25/2014] [Accepted: 12/09/2014] [Indexed: 01/22/2023]
Abstract
Heart failure is a complex clinical syndrome and has become the most common reason for adult hospitalization in developed countries. Two subtypes of heart failure, ischemic heart disease (ISCH) and dilated cardiomyopathy (DCM), have been studied using microarray platforms. However, microarray has limited resolution. Here we applied RNA sequencing (RNA-Seq) to identify gene signatures for heart failure from six individuals, including three controls, one ISCH and two DCM patients. Using genes identified from this small RNA-Seq dataset, we were able to accurately classify heart failure status in a much larger set of 313 individuals. The identified genes significantly overlapped with genes identified via genome-wide association studies for cardiometabolic traits and the promoters of those genes were enriched for binding sites for transcriptions factors. Our results indicate that it is possible to use RNA-Seq to classify disease status for complex diseases such as heart failure using an extremely small training dataset.
Collapse
Affiliation(s)
- Yichuan Liu
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| | - Michael Morley
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| | - Jeffrey Brandimarto
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| | - Sridhar Hannenhalli
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, United States.
| | - Yu Hu
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| | - Euan A Ashley
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States.
| | - Christine S Moravec
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States.
| | - Kenneth B Margulies
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| | - Thomas P Cappola
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| | | |
Collapse
|
16
|
Krewski D, Westphal M, Andersen ME, Paoli GM, Chiu WA, Al-Zoughool M, Croteau MC, Burgoon LD, Cote I. A framework for the next generation of risk science. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:796-805. [PMID: 24727499 PMCID: PMC4123023 DOI: 10.1289/ehp.1307260] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 04/09/2014] [Indexed: 05/19/2023]
Abstract
OBJECTIVES In 2011, the U.S. Environmental Protection Agency initiated the NexGen project to develop a new paradigm for the next generation of risk science. METHODS The NexGen framework was built on three cornerstones: the availability of new data on toxicity pathways made possible by fundamental advances in basic biology and toxicological science, the incorporation of a population health perspective that recognizes that most adverse health outcomes involve multiple determinants, and a renewed focus on new risk assessment methodologies designed to better inform risk management decision making. RESULTS The NexGen framework has three phases. Phase I (objectives) focuses on problem formulation and scoping, taking into account the risk context and the range of available risk management decision-making options. Phase II (risk assessment) seeks to identify critical toxicity pathway perturbations using new toxicity testing tools and technologies, and to better characterize risks and uncertainties using advanced risk assessment methodologies. Phase III (risk management) involves the development of evidence-based population health risk management strategies of a regulatory, economic, advisory, community-based, or technological nature, using sound principles of risk management decision making. CONCLUSIONS Analysis of a series of case study prototypes indicated that many aspects of the NexGen framework are already beginning to be adopted in practice.
Collapse
Affiliation(s)
- Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Clewell RA, Sun B, Adeleye Y, Carmichael P, Efremenko A, McMullen PD, Pendse S, Trask OJ, White A, Andersen ME. Profiling dose-dependent activation of p53-mediated signaling pathways by chemicals with distinct mechanisms of DNA damage. Toxicol Sci 2014; 142:56-73. [PMID: 25078064 PMCID: PMC4226763 DOI: 10.1093/toxsci/kfu153] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
As part of a larger effort to provide proof-of-concept in vitro-only risk assessments, we have developed a suite of high-throughput assays for key readouts in the p53 DNA damage response toxicity pathway: double-strand break DNA damage (p-H2AX), permanent chromosomal damage (micronuclei), p53 activation, p53 transcriptional activity, and cell fate (cell cycle arrest, apoptosis, micronuclei). Dose-response studies were performed with these protein and cell fate assays, together with whole genome transcriptomics, for three prototype chemicals: etoposide, quercetin, and methyl methanesulfonate. Data were collected in a human cell line expressing wild-type p53 (HT1080) and results were confirmed in a second p53 competent cell line (HCT 116). At chemical concentrations causing similar increases in p53 protein expression, p53-mediated protein expression and cellular processes showed substantial chemical-specific differences. These chemical-specific differences in the p53 transcriptional response appear to be determined by augmentation of the p53 response by co-regulators. More importantly, dose-response data for each of the chemicals indicate that the p53 transcriptional response does not prevent micronuclei induction at low concentrations. In fact, the no observed effect levels and benchmark doses for micronuclei induction were less than or equal to those for p53-mediated gene transcription regardless of the test chemical, indicating that p53's post-translational responses may be more important than transcriptional activation in the response to low dose DNA damage. This effort demonstrates the process of defining key assays required for a pathway-based, in vitro-only risk assessment, using the p53-mediated DNA damage response pathway as a prototype.
Collapse
Affiliation(s)
- Rebecca A Clewell
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Bin Sun
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Yeyejide Adeleye
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Paul Carmichael
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Alina Efremenko
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Patrick D McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Salil Pendse
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - O J Trask
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Andy White
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Melvin E Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
18
|
Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+). Cell Death Dis 2014; 5:e1222. [PMID: 24810058 PMCID: PMC4047858 DOI: 10.1038/cddis.2014.166] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022]
Abstract
Assessment of the network of toxicity pathways by Omics technologies and bioinformatic data processing paves the road toward a new toxicology for the twenty-first century. Especially, the upstream network of responses, taking place in toxicant-treated cells before a point of no return is reached, is still little explored. We studied the effects of the model neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) by a combined metabolomics (mass spectrometry) and transcriptomics (microarrays and deep sequencing) approach to provide unbiased data on earliest cellular adaptations to stress. Neural precursor cells (LUHMES) were differentiated to homogeneous cultures of fully postmitotic human dopaminergic neurons, and then exposed to the mitochondrial respiratory chain inhibitor MPP+ (5 μM). At 18–24 h after treatment, intracellular ATP and mitochondrial integrity were still close to control levels, but pronounced transcriptome and metabolome changes were seen. Data on altered glucose flux, depletion of phosphocreatine and oxidative stress (e.g., methionine sulfoxide formation) confirmed the validity of the approach. New findings were related to nuclear paraspeckle depletion, as well as an early activation of branches of the transsulfuration pathway to increase glutathione. Bioinformatic analysis of our data identified the transcription factor ATF-4 as an upstream regulator of early responses. Findings on this signaling pathway and on adaptive increases of glutathione production were confirmed biochemically. Metabolic and transcriptional profiling contributed complementary information on multiple primary and secondary changes that contribute to the cellular response to MPP+. Thus, combined ‘Omics' analysis is a new unbiased approach to unravel earliest metabolic changes, whose balance decides on the final cell fate.
Collapse
|
19
|
Willett C, Caverly Rae J, Goyak KO, Minsavage G, Westmoreland C, Andersen M, Avigan M, Duché D, Harris G, Hartung T, Jaeschke H, Kleensang A, Landesmann B, Martos S, Matevia M, Toole C, Rowan A, Schultz T, Seed J, Senior J, Shah I, Subramanian K, Vinken M, Watkins P. Building shared experience to advance practical application of pathway-based toxicology: liver toxicity mode-of-action. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2014; 31:500-19. [PMID: 24535319 DOI: 10.14573/altex.1401281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/11/2014] [Indexed: 11/23/2022]
Abstract
A workshop sponsored by the Human Toxicology Project Consortium (HTPC), "Building Shared Experience to Advance Practical Application of Pathway-Based Toxicology: Liver Toxicity Mode-of-Action" brought together experts from a wide range of perspectives to inform the process of pathway development and to advance two prototype pathways initially developed by the European Commission Joint Research Center (JRC): liver-specific fibrosis and steatosis. The first half of the workshop focused on the theory and practice of pathway development; the second on liver disease and the two prototype pathways. Participants agreed pathway development is extremely useful for organizing information and found that focusing the theoretical discussion on a specific AOP is extremely helpful. In addition, it is important to include several perspectives during pathway development, including information specialists, pathologists, human health and environmental risk assessors, and chemical and product manufacturers, to ensure the biology is well captured and end use is considered.
Collapse
|
20
|
Waldmann T, Rempel E, Balmer NV, König A, Kolde R, Gaspar JA, Henry M, Hescheler J, Sachinidis A, Rahnenführer J, Hengstler JG, Leist M. Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol 2014; 27:408-20. [PMID: 24383497 PMCID: PMC3958134 DOI: 10.1021/tx400402j] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Information on design principles
governing transcriptome changes
upon transition from safe to hazardous drug concentrations or from
tolerated to cytotoxic drug levels are important for the application
of toxicogenomics data in developmental toxicology. Here, we tested
the effect of eight concentrations of valproic acid (VPA; 25–1000
μM) in an assay that recapitulates the development of human
embryonic stem cells to neuroectoderm. Cells were exposed to the drug
during the entire differentiation process, and the number of differentially
regulated genes increased continuously over the concentration range
from zero to about 3000. We identified overrepresented transcription
factor binding sites (TFBS) as well as superordinate cell biological
processes, and we developed a gene ontology (GO) activation profiler,
as well as a two-dimensional teratogenicity index. Analysis of the
transcriptome data set by the above biostatistical and systems biology
approaches yielded the following insights: (i) tolerated (≤25
μM), deregulated/teratogenic (150–550 μM), and
cytotoxic (≥800 μM) concentrations could be differentiated.
(ii) Biological signatures related to the mode of action of VPA, such
as protein acetylation, developmental changes, and cell migration,
emerged from the teratogenic concentrations range. (iii) Cytotoxicity
was not accompanied by signatures of newly emerging canonical cell
death/stress indicators, but by catabolism and decreased expression
of cell cycle associated genes. (iv) Most, but not all of the GO groups
and TFBS seen at the highest concentrations were already overrepresented
at 350–450 μM. (v) The teratogenicity index reflected
this behavior, and thus differed strongly from cytotoxicity. Our findings
suggest the use of the highest noncytotoxic drug concentration for
gene array toxicogenomics studies, as higher concentrations possibly
yield wrong information on the mode of action, and lower drug levels
result in decreased gene expression changes and thus a reduced power
of the study.
Collapse
Affiliation(s)
- Tanja Waldmann
- Doerenkamp-Zbinden Chair for in Vitro Toxicology and Biomedicine, University of Konstanz , 78457 Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li Z, Sun B, Clewell RA, Adeleye Y, Andersen ME, Zhang Q. Dose-Response Modeling of Etoposide-Induced DNA Damage Response. Toxicol Sci 2013; 137:371-84. [DOI: 10.1093/toxsci/kft259] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Ramirez T, Daneshian M, Kamp H, Bois FY, Clench MR, Coen M, Donley B, Fischer SM, Ekman DR, Fabian E, Guillou C, Heuer J, Hogberg HT, Jungnickel H, Keun HC, Krennrich G, Krupp E, Luch A, Noor F, Peter E, Riefke B, Seymour M, Skinner N, Smirnova L, Verheij E, Wagner S, Hartung T, van Ravenzwaay B, Leist M. Metabolomics in toxicology and preclinical research. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2013; 30:209-25. [PMID: 23665807 DOI: 10.14573/altex.2013.2.209] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolomics, the comprehensive analysis of metabolites in a biological system, provides detailed information about the biochemical/physiological status of a biological system, and about the changes caused by chemicals. Metabolomics analysis is used in many fields, ranging from the analysis of the physiological status of genetically modified organisms in safety science to the evaluation of human health conditions. In toxicology, metabolomics is the -omics discipline that is most closely related to classical knowledge of disturbed biochemical pathways. It allows rapid identification of the potential targets of a hazardous compound. It can give information on target organs and often can help to improve our understanding regarding the mode-of-action of a given compound. Such insights aid the discovery of biomarkers that either indicate pathophysiological conditions or help the monitoring of the efficacy of drug therapies. The first toxicological applications of metabolomics were for mechanistic research, but different ways to use the technology in a regulatory context are being explored. Ideally, further progress in that direction will position the metabolomics approach to address the challenges of toxicology of the 21st century. To address these issues, scientists from academia, industry, and regulatory bodies came together in a workshop to discuss the current status of applied metabolomics and its potential in the safety assessment of compounds. We report here on the conclusions of three working groups addressing questions regarding 1) metabolomics for in vitro studies 2) the appropriate use of metabolomics in systems toxicology, and 3) use of metabolomics in a regulatory context.
Collapse
Affiliation(s)
- Tzutzuy Ramirez
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Assessing dose-dependent differences in DNA-damage, p53 response and genotoxicity for quercetin and curcumin. Toxicol In Vitro 2013; 27:1877-87. [PMID: 23764886 DOI: 10.1016/j.tiv.2013.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 01/01/2023]
Abstract
As part of a longer-term goal to create a quantitative mechanistic model of the p53-Mdm2 DNA-damage pathway, we are studying cellular responses to compounds causing DNA-damage by various modes-of action, including two natural polyphenols: quercetin (QUE) and curcumin (CUR). QUE and CUR are weak mutagens in some in vitro assays and possess both anti- or pro-oxidant effects depending on dose. This study examines the dose-response of DNA-damage pathway to these compounds in HT1080 cells (a human cell line with wild-type p53) at doses relevant to human exposure. CUR was more potent in causing reactive oxygen species, DNA damage (measured as phospho-H2AX) and p53 induction, with lowest observed effect levels (LOELs; 3-8 μM) approximately three-fold lower than QUE (20-30 μM). CUR showed a strong G2/M arrest and apoptosis at ≈ 10 μM. QUE caused S phase arrest at low doses (8 μM) and apoptosis was only induced at much higher doses (60 μM). At concentrations with similar levels of p-H2AX and p53 biomarkers, CUR caused greater micronuclei frequency. CUR induced clear increases micronuclei at 3-6 μM, while QUE had a weaker micronuclei response even at the highest doses. Thus, even with two compounds sharing common chemistries, DNA-damage response patterns differed significantly in terms of dose and cell fate.
Collapse
|
24
|
Williams DP, Shipley R, Ellis MJ, Webb S, Ward J, Gardner I, Creton S. Novel in vitro and mathematical models for the prediction of chemical toxicity. Toxicol Res (Camb) 2013; 2:40-59. [PMID: 26966512 PMCID: PMC4765367 DOI: 10.1039/c2tx20031g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/24/2012] [Indexed: 01/17/2023] Open
Abstract
The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science.
Collapse
Affiliation(s)
- Dominic P Williams
- MRC Centre for Drug Safety Science , Department of Molecular and Clinical Pharmacology , Institute of Translational Medicine , The University of Liverpool , Sherrington Building , Ashton St. , Liverpool , L69 3GE , UK . ; ; Tel: +44 (0)151 794 5791
| | - Rebecca Shipley
- Department of Mechanical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Marianne J Ellis
- Department of Chemical Engineering , University of Bath , Claverton Down , Bath , BA2 7AY , UK
| | - Steve Webb
- Department of Mathematics and Statistics , University of Strathclyde , Livingstone Tower , 26 Richmond Street , Glasgow , G1 1XH , UK
| | - John Ward
- School of Mathematical Sciences , Loughborough University , Loughborough , LE11 3TU , UK
| | - Iain Gardner
- Simcyp Limited , Blades Enterprise Centre , John Street , Sheffield S2 4SU , UK
| | - Stuart Creton
- NC3Rs Gibbs Building , 215 Euston Road , London , NW1 2BE , UK
| |
Collapse
|
25
|
Zimmer B, Lee G, Balmer NV, Meganathan K, Sachinidis A, Studer L, Leist M. Evaluation of developmental toxicants and signaling pathways in a functional test based on the migration of human neural crest cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1116-1122. [PMID: 22571897 PMCID: PMC3440079 DOI: 10.1289/ehp.1104489] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 05/09/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND Information on the potential developmental toxicity (DT) of the majority of chemicals is scarce, and test capacities for further animal-based testing are limited. Therefore, new approaches with higher throughput are required. A screening strategy based on the use of relevant human cell types has been proposed by the U.S. Environmental Protection Agency and others. Because impaired neural crest (NC) function is one of the known causes for teratologic effects, testing of toxicant effects on NC cells is desirable for a DT test battery. OBJECTIVE We developed a robust and widely applicable human-relevant NC function assay that would allow for sensitive screening of environmental toxicants and defining toxicity pathways. METHODS We generated NC cells from human embryonic stem cells, and after establishing a migration assay of NC cells (MINC assay), we tested environmental toxicants as well as inhibitors of physiological signal transduction pathways. RESULTS Methylmercury (50 nM), valproic acid (> 10 µM), and lead-acetate [Pb(CH3CO2)4] (1 µM) affected the migration of NC cells more potently than migration of other cell types. The MINC assay correctly identified the NC toxicants triadimefon and triadimenol. Additionally, it showed different sensitivities to various organic and inorganic mercury compounds. Using the MINC assay and applying classic pharmacologic inhibitors and large-scale microarray gene expression profiling, we found several signaling pathways that are relevant for the migration of NC cells. CONCLUSIONS The MINC assay faithfully models human NC cell migration, and it reveals impairment of this function by developmental toxicants with good sensitivity and specificity.
Collapse
Affiliation(s)
- Bastian Zimmer
- Doerenkamp-Zbinden Chair of In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Polak S, Ghobadi C, Mishra H, Ahamadi M, Patel N, Jamei M, Rostami-Hodjegan A. Prediction of Concentration–Time Profile and its Inter-Individual Variability following the Dermal Drug Absorption. J Pharm Sci 2012; 101:2584-95. [DOI: 10.1002/jps.23155] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/09/2012] [Accepted: 03/29/2012] [Indexed: 01/08/2023]
|
27
|
Leist M, Hasiwa N, Daneshian M, Hartung T. Validation and quality control of replacement alternatives – current status and future challenges. Toxicol Res (Camb) 2012. [DOI: 10.1039/c2tx20011b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Alternatives to animal testing have been developed mainly in the fields of toxicology and vaccine testing. Typical examples are the evaluation of phototoxicity, eye irritation or skin corrosion/irritation of cosmetics and industrial chemicals. However, examples can also be found in other biomedical areas, such the control of the quality of drug preparations for pyrogens or for the control of the production process of biologics, such as botulinum neurotoxin. For regulatory purposes, the quality, transferability and predictivity of an alternative method needs to be evaluated. This procedure is called the “validation process” of a new method. It follows defined rules, and several governmental institutions have been established to perform, supervise or advise on this process. As this often results in a delay of method implementation, different alternatives for the evaluation of a method's suitability and quality are under discussion. We describe here the principles of model development and quality control. We also give an overview on methods that have undergone validation. Strengths and shortcomings of traditional approaches are discussed, and new developments and challenges are outlined.
Collapse
Affiliation(s)
- Marcel Leist
- Doerenkamp-Zbinden Chair for In-vitro Toxicology and Biomedicine and Center for Alternatives to Animal Testing in Europe (CAAT-Europe), University of Konstanz, D-78467 Konstanz, Germany
| | - Nina Hasiwa
- Doerenkamp-Zbinden Chair for In-vitro Toxicology and Biomedicine and Center for Alternatives to Animal Testing in Europe (CAAT-Europe), University of Konstanz, D-78467 Konstanz, Germany
| | - Mardas Daneshian
- Doerenkamp-Zbinden Chair for In-vitro Toxicology and Biomedicine and Center for Alternatives to Animal Testing in Europe (CAAT-Europe), University of Konstanz, D-78467 Konstanz, Germany
| | - Thomas Hartung
- Doerenkamp-Zbinden Chair for In-vitro Toxicology and Biomedicine and Center for Alternatives to Animal Testing in Europe (CAAT-Europe), University of Konstanz, D-78467 Konstanz, Germany
| |
Collapse
|