1
|
Hemmati YB, Bahrami R, Pourhajibagher M. Assessing the physico-mechanical, anti-bacterial, and anti-demineralization properties of orthodontic resin composite containing different concentrations of photoactivated zinc oxide nanoparticles on Streptococcus mutans biofilm around ceramic and metal orthodontic brackets: An ex vivo study. Int Orthod 2024; 22:100901. [PMID: 39173494 DOI: 10.1016/j.ortho.2024.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND PURPOSE The aim of this study was to evaluate the physico-mechanical, anti-bacterial, and anti-demineralization properties of orthodontic resin composite containing photoactivated zinc oxide nanoparticles (ZnONPs) on Streptococcus mutans biofilm around ceramic and metal brackets. MATERIAL AND METHODS Following the minimum inhibitory concentration (MIC) determination for ZnONPs, shear bond strength (SBS) was tested for composites containing different concentrations of ZnONPs. The chosen concentration was used to evaluate the microleakage, anti-bacterial, and anti-demineralization properties. RESULTS Adding 50μg/mL of ZnONPs to the orthodontic composite did not negatively affect its physico-mechanical properties. ZnONPs (50μg/mL)-mediated aPDT and 0.2% chlorhexidine significantly (P=0.000) reduced S. mutans biofilms compared to the phosphate-buffered saline (PBS) groups (metal/PBS=7.47±0.7×106, and ceramic/PBS=7.47±0.7×106), with the lowest colony count observed in these groups (metal/chlorhexidine=1.06±0.4×105, ceramic/chlorhexidine=1±0.2×105, metal/ZnONPs-mediated aPDT=1.33±0.3×105, and ceramic/ZnONPs-mediated aPDT=1.2±0.3×105). Sodium fluoride varnish and ZnONPs-mediated aPDT showed the highest efficacy in anti-demineralization and significantly improving the enamel surface microhardness compared to the artificial saliva, especially in ceramic bracket groups (524.17±42.78N and 441.00±29.48N, 394.17±46.83N, P=0.000, and P=0.003, respectively). CONCLUSION ZnONPs (50μg/mL)-mediated aPDT effectively inhibited S. mutans biofilm and promoted anti-demineralization without adverse effects on the physico-mechanical properties of the composite resin. These results suggest the potential of this method in preventing white spot lesions during orthodontic treatment.
Collapse
Affiliation(s)
- Yasamin Babaee Hemmati
- Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Rashin Bahrami
- Department of Orthodontics, School of Dentistry, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Alnazeh AA, Kamran MA, Almoammar S, Al Jearah MM, Qasim M, Alshahrani I. Visible light-activated curcumin-doped zinc oxide nanoparticles integrated into orthodontic adhesive on Micro-tensile bond strength, degree of conversion, and antibacterial effectiveness against Staphylococcus Aureus. An investigation using scanning electron microscopy and energy-dispersive X-ray spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112888. [PMID: 38471422 DOI: 10.1016/j.jphotobiol.2024.112888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
AIM To acquire a thorough comprehension of the photoactivated Cur-doped ZnONPs at different concentrations 0%, 2.5%, and 5% on the physical qualities, antibacterial efficacy, degree of conversion, and μshear bond strength between orthodontic brackets and the enamel surface. MATERIAL AND METHODS An extensive investigation was carried out utilizing a range of analytical methods, scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FTIR) spectroscopy, micro tensile bond strength (μTBS) testing, and evaluation of antibacterial effectiveness. Cur-doped ZnONPs at concentrations of 2.5% and 5% were blended with Transbond XT, a light-curable orthodontic adhesive. A control group without the addition of Cur-doped ZnONPs was also prepared. The tooth samples were categorized into three groups based on the weight percentage of NPs: Group 1 (control) with 0% Cur-doped ZnONPs, Group 2 with 2.5 wt% Cur-doped ZnONPs, and Group 3 with 5 wt% Cur-doped ZnONPs. The SEM technique was employed to analyze the morphological characteristics of Cur-doped ZnONPs and ZnONPs. The composition and elemental distribution of the modified Cur-doped ZnONPs were assessed using energy-dispersive X-ray spectroscopy. The effectiveness of NPs at various concentrations against S.Mutans was gauged through the pour plate method. DC of Cur-doped ZnONPs at a region of 1608 cm-1 to 1636 cm-1 for the cured area, whereas the uncured area spanned the same range of 1608 cm-1 to 1636 cm-1 was assessed. The Adhesive Remnant Index (ARI) approach was utilized to investigate the bond failure of orthodontic brackets, while a Universal Testing Machine (UTM) was utilized to test μTBS. The Kruskal-Wallis test was employed to investigate variations in S.mutans survival rates. To determine the μTBS values, analysis of variance (ANOVA) and the post hoc Tukey multiple comparisons test were used. RESULTS The maximum μTBS was given and documented in group 3: 5 wt% Cur-doped ZnONPs (21.21 ± 1.53 MPa). The lowest μTBS was given in group 2: 2.5 wt% Cur-doped ZnONPs (19.58 ± 1.27 MPa). The highest efficacy against S.mutans was documented in group 3 in which 5 wt% Cur-doped ZnONPs (0.39 ± 0.15). The lowest efficacy was seen in group 1 in which no Cur-doped ZnONPs were used (6.47 ± 1.23). The ARI analysis indicated that the predominant failure was between scores 0 and 1 among all experimental groups. Control group 1 which was not modified showed the highest DC (73.11 ± 4.19). CONCLUSION Orthodontic adhesive, containing 5% Cur-doped ZnONPs photoactivated with visible light exhibited a favorable impact on μTBS and indicated enhanced antibacterial efficacy against S.mutans. Nevertheless, it was observed that the addition of Cur-doped ZnONPs at different concentrations (2.5%,5%) resulted in a decrease in the monomer-to-polymer ratio compromising DC.
Collapse
Affiliation(s)
- Abdullah A Alnazeh
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University Abha, Saudi Arabia
| | - Muhammad Abdullah Kamran
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University Abha, Saudi Arabia.
| | - Salem Almoammar
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University Abha, Saudi Arabia
| | | | - Muhammad Qasim
- Department of Operative Dentistry and Endodontics King Khalid University Abha, Saudi Arabia
| | - Ibrahim Alshahrani
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University Abha, Saudi Arabia
| |
Collapse
|
3
|
Almeshal R, Pagni S, Ali A, Zoukhri D. Antibacterial Activity and Shear Bond Strength of Orthodontic Adhesive Containing Various Sizes of Chitosan Nanoparticles: An In Vitro Study. Cureus 2024; 16:e54098. [PMID: 38487116 PMCID: PMC10938044 DOI: 10.7759/cureus.54098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
INTRODUCTION White spot lesions are common after orthodontic treatment. Chitosan nanoparticles (CS-NPs) have emerged as promising antibacterial agents that inhibit the growth of Streptococcus mutans. The aim of the study was to investigate the nano-effect of adhesives containing CS-NPs on S. mutans and their effects on shear bond strength. MATERIALS AND METHODS The inhibitory effects of two sizes of CS-NPs were assessed using the disc agar diffusion method. Four wells were created in the petri dishes, and each was inoculated with broth (negative control), chlorhexidine (positive control), CS-NPs (20 nm), or CS-NPs (131 nm). An Instron machine was used to evaluate shear bond strength by allocating 24 teeth into three groups, and all measurements were recorded in megapascals. Caries progression was assessed using the International Caries Detection and Assessment System and surface profilometry. Statistical analysis was performed using IBM SPSS Statistics for Windows, Version 27.0 (Released 2020; IBM Corp., Armonk, New York, United States) for a one-way ANOVA followed by Tukey's multiple comparison test. RESULTS Disc agar diffusion showed a reduction in S. mutans in the CS-NP group compared to the control (p < 0.001), with no statistical significance between the sizes of 20 and 131 nm (p = 0.95). Regarding shear bond strength, no differences were recorded when adhesive-containing CS-NPs and the control were compared (p = 0.44). Additionally, no differences were found within the CS-NP groups (p = 0.91). Caries assessments showed excellent agreement, as indicated by a weighted kappa. Profilometry readings showed higher surface roughness in the control than in the CS-NP groups (p < 0.001), with no statistically significant difference between the CS-NP groups (p = 0.72). CONCLUSION CS-NPs of both sizes tested had similar antibacterial effects. In addition, the incorporation of CS-NPs did not affect shear bond strength.
Collapse
Affiliation(s)
| | - Sarah Pagni
- Department of Public Health and Community Service, Tufts University School of Dental Medicine, Boston, USA
| | - Ala Ali
- Department of Prosthodontics and Operative Dentistry, Tufts University School of Dental Medicine, Boston, USA
| | - Driss Zoukhri
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, USA
| |
Collapse
|
4
|
Noorollahian S, Zarei Z, Sadeghalbanaei L, Pakzamir K. The Effect of Bonding Surface Design on Shear Bond Strength of 3D-Printed Orthodontic Attachments. Int J Dent 2023; 2023:6697178. [PMID: 37583370 PMCID: PMC10425242 DOI: 10.1155/2023/6697178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction This study compared the shear bond strength (SBS) of four innovative designs of the bonding surface of 3D-printed orthodontic attachments with conventional mesh design. Methods In this in vitro study, the bonding surface design in different groups was as follows: Group 1, flat surface without any feature as a negative control; Group 2, concentric circles with no cuts; Group 3, concentric circles with 16 radial cuts; Group 4, concentric circles with 32 radial cuts; Group 5, small cones with a flat end and rounded edges; Group 6, mesh-based commercially available metal brackets of the maxillary central incisor (standard edgewise, Dentaurum®) as a positive control (n = 20). In Groups 1-5, attachments were designed with SolidWorks® Software and printed with a 2K DLP-LCD printer with hard tough resin (eSun®). All the samples were bonded to the restorative composite resin (Solafil®) surfaces with orthodontic composite resin (CuRAY-ECLIPSE®). The samples were examined for SBS with a universal testing machine after thermocycling (1,000 cycles of 5‒55°C). Data were analyzed with Shapiro-Wilk, one-way ANOVA, and Bonferroni tests. The statistical significance level was set at 0.05. Results The mean SBS was significantly different between all the groups (P < 0.001) except for Groups 2 and 5 (P = 1.00) and Groups 2 and 6 (P = 1.00). Group 4 had the highest mean of SBS. Conclusion The bonding surface design significantly influenced the SBS of orthodontic attachments. The concentric circles with 32 cuts had higher bond strength than other designs and can be suggested as a new bonding surface design for orthodontic attachments.
Collapse
Affiliation(s)
- Saeed Noorollahian
- Department of Orthodontics, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Zarei
- Department of Orthodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Sadeghalbanaei
- Department of Orthodontics, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
5
|
Guravaiah D, Prudhvi K, Sonika Mani Kiran S, Sri Kavya K, Raghu Ram R. An In-Vitro Comparison of Shear Bond Strength and Adhesive Remnant Score Between Two Color Change Adhesives in Orthodontic Bonding With Reduced Curing Time Using Different High-Intensity Light Emitting Diode Units. Cureus 2023; 15:e40951. [PMID: 37503503 PMCID: PMC10368936 DOI: 10.7759/cureus.40951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
AIM AND OBJECTIVES This study aims to determine the effect on shear bond strength (SBS) and adhesive remnant score between two color change adhesives (CCAs) with reduced curing time using different high-intensity light emitting diode (LED) units. MATERIALS AND METHODS A total of 108 human first maxillary premolar teeth were randomly allocated into three principal groups (n = 36) based on the type of adhesives used. The adhesives include two CCAs: Transbond Plus Color Change Adhesive (3M, St. Paul, MN, USA) and Grengloo (Ormco, Orange, CA, USA), and the conventional tooth-colored adhesive: Transbond XT (3M). Each principal group was further divided into three sub-groups (n = 12 each) based on the curing time and type of high-intensity LED units used for bonding the stainless steel brackets. Woodpecker iLED Light Curing Unit (Guilin Woodpecker Medical Instrument Co., Ltd., Guilin, China) was cured for three and six seconds, and the ELIPAR S10 LED Curing Light (3M) was cured for 20 seconds. Bonding of the brackets was done in a standardized manner following the manufacturers' instructions. All the samples were submerged in distilled water at 370C for 24 hours. SBS testing was performed using an Instron machine, and adhesive residue on the debonded surface was examined and scored using a stereomicroscope. Statistical analysis was conducted using one-way ANOVA and Tukey's post-hoc test. RESULTS The results showed significant differences in SBS based on curing time and the type of adhesive resin used. The six seconds curing group exhibited the higher SBS values (15.5 - 22.82 Megapascals [MPa]) followed by the 20 seconds (12.17 - 18.14 MPa) and three seconds (11.31 - 11.74 MPa) groups. Grengloo adhesive demonstrated the highest SBS values among the three types of adhesives. The predominant adhesive remnant scores were 2 and 3. CONCLUSIONS Grengloo adhesive demonstrates superior bond strength compared to Transbond Plus and Transbond XT. Both Transbond Plus and Grengloo adhesives experience bond failure within the adhesive layer, regardless of the curing intensity or time.
Collapse
Affiliation(s)
- Dasari Guravaiah
- Orthodontics and Dentofacial Orthopaedics, GSL Dental College & Hospital, Rajahmundry, IND
| | - Konni Prudhvi
- Orthodontics and Dentofacial Orthopaedics, GSL Dental College & Hospital, Rajahmundry, IND
| | | | - Kanaparthy Sri Kavya
- Orthodontics and Dentofacial Orthopaedics, GSL Dental College & Hospital, Rajahmundry, IND
| | - Rsvm Raghu Ram
- Orthodontics and Dentofacial Orthopaedics, GSL Dental College & Hospital, Rajahmundry, IND
| |
Collapse
|
6
|
Alqerban A, Asiri SN, Alharbi F, Alqhtani N, Alenazi A, Robaian A, Samran A. Incorporation of Zirconium Oxide Nanoparticles in Adhesive Resin for Bonding of Brackets to Enamel Conditioned with Er,Cr:YSGG, Photodynamic Therapy, and Phosphoric Acid. Photobiomodul Photomed Laser Surg 2023; 41:218-224. [PMID: 37159404 DOI: 10.1089/photob.2022.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Objective: To evaluate the effect of enamel conditioning methods, that is, total-etch and rinse (TER), Er,Cr:YSGG (ECYL), and photodynamic therapy (PDT) on the shear bond strength (SBS) of orthodontic metallic brackets bonded using Zirconium oxide experimental adhesive (ZOEA). Methods: Sixty human incisor buccal surfaces were cleaned and allocated into three groups based on the method of enamel surface treatment, that is, TER using 37% phosphoric acid gel, methylene blue photosensitizer activated by PDT and ECYL (n = 20 each). Each group was further divided into two subgroups (n = 10) based on the type of adhesive, that is, ZOEA and experimental adhesive (EA). Metallic brackets were seated using composite resin. Samples were placed in a universal testing machine for SBS and failure mode using the ARI index. One-way analysis of variance and post hoc Tukey were used for multiple comparisons. ARI was presented in percentages in different investigated groups. Results: TER+ZOEA (17.16 ± 0.41 MPa) displayed the highest bond integrity. However, group PDT+EA (11.34 ± 0.25 MPa) demonstrated the lowest bond scores. The intergroup comparison revealed that the TER system displayed significantly higher SBS values than the PDT and ECYL groups (p < 0.05). The intragroup comparison revealed that enamel conditioned with TER and brackets bonded with ZOEA and EA displayed comparable bond integrity (p > 0.05). Conclusions: Enamel conditioned with TER bonded to a metallic bracket displayed better bond strength than PDT and ECYL. Zirconium oxide nanoparticles incorporated in adhesive have proved to be promising in improving the bond integrity of adhesive.
Collapse
Affiliation(s)
- Ali Alqerban
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saeed N Asiri
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Fahad Alharbi
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nasser Alqhtani
- Department of Oral and Maxillofacial Surgery and Diagnostic Science, College of Dentistry, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Adel Alenazi
- Department of Oral and Maxillofacial Surgery and Diagnostic Science, College of Dentistry, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ali Robaian
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz Samran
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Malik Z, Muhammad N, Kaleem M, Nayyar M, Qazi AS, Butt DQ, Safi SZ, Khan AS. Anticariogenic and Mechanical Characteristics of Resin-Modified Glass Ionomer Cement Containing Lignin-Decorated Zinc Oxide Nanoparticles. ACS APPLIED BIO MATERIALS 2023; 6:425-435. [PMID: 36700919 DOI: 10.1021/acsabm.2c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study aims to synthesize and characterize lignin-decorated zinc oxide nanoparticles before incorporating them into resin-modified glass ionomer cement (RMGIC) to improve their anticariogenic potential and mechanical properties (shear bond strength and microhardness). Probe sonication was used to synthesize lignin-decorated zinc oxide nanoparticles which were then characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Following characterization, these were incorporated in RMGIC (Gold label, Fuji II LC). Three major groups, experimental group A (EGA), experimental group B (EGB), and control group (CG), were outlined. EGA and EGB were divided into numbered subgroups based on the ascending concentrations of nanoparticles (5, 10, and 15%) of lignin-coated zinc oxide and zinc-oxide, respectively. CG served as a control and comprised cured RMGIC samples without any incorporation. Anticariogenic analysis was conducted on experimental RMGIC samples via disk-diffusion (n = 3) and direct contact test (n = 3) against Streptococcus mutans (ATCC 25175). Optical density values for days 1, 3, and 5 were recorded via a UV-Vis spectrophotometer. A shear bond strength test was performed using 35 premolars. The adhesive remnant index was used to estimate the site of bond failure. For the Vickers microhardness test (n = 3), 100 g of load at 10 s dwell time was set. Atomic absorption spectroscopy was performed over 28 days to determine the release of zinc from the samples. All tests were analyzed statistically. The anticariogenic potential of EGA and EGB was significantly greater (p ≤ 0.05) than that of the control. The shear bond strength test reported the highest value for EGA15 with all groups exhibiting failure at the bracket/RMGIC interface. The microhardness of EGA15 yielded the highest value (p ≤ 0.05). Release kinetics displayed a steady release with EGB15 exhibiting the highest value. The EGA and EGB samples displayed good anticariogenic potential, which was sustained for 28 days without any deleterious effect on the shear bond strength and microhardness.
Collapse
Affiliation(s)
- Zuleikha Malik
- Department of Dental Materials, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
- Department of Dental Materials, Dental College HITEC-IMS, Taxila Cantt 47070, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Kaleem
- Department of Dental Materials, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
| | - Maleeha Nayyar
- Department of Dental Materials, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
| | - Asma Saleem Qazi
- Department of Biological Science, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
| | - Danial Qasim Butt
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 15200, Kelantan, Malaysia
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| |
Collapse
|
8
|
Eser I, Cicek O, Ozkalayci N, Yetmez M, Erener H. Effect of Different Types of Adhesive Agents on Orthodontic Bracket Shear Bond Strength: A Cyclic Loading Study. MATERIALS (BASEL, SWITZERLAND) 2023; 16:724. [PMID: 36676460 PMCID: PMC9863063 DOI: 10.3390/ma16020724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Bracket failure is one of the most important problems encountered during fixed orthodontic treatment. For this reason, different types of adhesive agents have been developed over the years. Consequently, the aim of this study was to evaluate the shear bond strength of brackets bonded to teeth etched with a conventional acid etching method in a laboratory environment by using different types of adhesive agents and comparing the number of shear strokes. Sixty human maxillary premolars were divided into three groups and Gemini stainless steel metal brackets (3M Unitek, Monrovia, CA, USA) were bonded to all teeth. In Group 1, Transbond™ XT Primer (3M Unitek, Monrovia, CA, USA) and Transbond™ XT Light Cure Adhesive Paste composite (3M Unitek, Monrovia, CA, USA) were used. In Group 2, BracePaste® MTP Primer (American Orthodontics, Sheboygan, CA, USA) and BracePaste® Adhesive composite (American Orthodontics, Sheboygan, WI, USA) were used. In Group 3, Ortho Solo™ Primer (Ormco, Orange, CA, USA) and Grengloo™ Adhesive composite (Ormco, Brea, CA, USA) were used. The samples were subjected to a shear test with a closed-loop controlled, low-cycle fatigue machine with a capacity of 10 N and a crosshead speed of 300 mm/min. The number of shear strokes of the brackets was recorded. According to the Kruskal−Wallis and Mann−Whitney U tests performed on the data obtained, statistically significant differences were found between the groups in terms of the numbers of shear strokes (p < 0.05). Significantly higher numbers of shear strokes and higher shear bond strengths were observed in Group 3 compared with Group 1 and Group 2 (p < 0.05). There was no statistically significant difference between the numbers of shear strokes for Group 1 and Group 2 samples (p > 0.05). To conclude the study, it was observed that the type of adhesive used had an effect on the bond strength of the bracket and that the Grengloo™ adhesive agent showed higher shear bond strength. It was observed that BracePaste® Adhesive and Transbond™ XT Light Cure Adhesive Paste adhesive agents had similar shear bond strengths.
Collapse
Affiliation(s)
- Irfan Eser
- Department of Orthodontics, Faculty of Dentistry, Zonguldak Bulent Ecevit University, Zonguldak 67100, Turkey
| | - Orhan Cicek
- Department of Orthodontics, Faculty of Dentistry, Zonguldak Bulent Ecevit University, Zonguldak 67100, Turkey
| | - Nurhat Ozkalayci
- Department of Healthcare Management, Boyabat Faculty of Economics and Administrative Sciences, Sinop University, Sinop 57000, Turkey
| | - Mehmet Yetmez
- Department of Mechanical Engineering, Faculty of Engineering, Zonguldak Bulent Ecevit University, Zonguldak 67100, Turkey
| | - Hande Erener
- Department of Orthodontics, Faculty of Dentistry, Tekirdag Namık Kemal University, Tekirdag 59030, Turkey
| |
Collapse
|
9
|
Chaimaungchuen K, Riddhabhaya A, Niyomtham N, Sirisoontorn I. Shear Bond Strength and Mode of Failure of Polypropylene Fibers in Orthodontic Flash-Free Adhesive. Polymers (Basel) 2022; 14:polym14194167. [PMID: 36236114 PMCID: PMC9571870 DOI: 10.3390/polym14194167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this research is to evaluate the effects of magnetostrictive and piezoelectric scalers on the shear bond strength (SBS), failure mode of the polypropylene fiber adhesive brackets, and the load of both scaler tips. The adhesive precoated (APC) Flash-Free brackets were placed on the buccal surfaces of sixty maxillary first premolars, which were divided into three equal groups of 20 specimens each, following the control group (no scaling), the magnetostrictive group, and the piezoelectric group. All specimens were measured for SBS value by using a universal testing machine at a crosshead speed of 0.75 mm/minute. The mode of failure was examined under a×10 magnification light microscope digital camera and scores for the adhesive remnant index (ARI) were recorded and measured load between the magnetostrictive and piezoelectric groups. For statistical analysis, ANOVA and multiple comparison, as well as unpaired t-test and chi-square tests, at the 0.05 significance level were used. The results showed that the average SBS value of the control group was greater than that of the magnetostrictive group and the piezoelectric group. However, the SBS was not significantly influenced by ultrasonic instruments (p > 0.05). The ARI score and load showed no significant differences among the groups (p > 0.05). In conclusion, the SBS of the APC Flash-Free bracket wasn’t affected by using ultrasonic instrumentation around the base of the bracket.
Collapse
Affiliation(s)
- Kitiporn Chaimaungchuen
- Department of Clinical Dentistry, Walailak University International College of Dentistry (WUICD), 87 Ranong 2 Road, Dusit, Bangkok 10300, Thailand
| | - Apiwat Riddhabhaya
- Department of Oral Health Science, Walailak University International College of Dentistry (WUICD), 87 Ranong 2 Road, Dusit, Bangkok 10300, Thailand
- Correspondence:
| | - Nattisa Niyomtham
- Department of Oral Health Science, Walailak University International College of Dentistry (WUICD), 87 Ranong 2 Road, Dusit, Bangkok 10300, Thailand
| | - Irin Sirisoontorn
- Department of Clinical Dentistry, Walailak University International College of Dentistry (WUICD), 87 Ranong 2 Road, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
10
|
Effects of Er, Cr: YSGG Laser on Shear Bond Strength of the Orthodontic Brackets for 5 and 10 Seconds: An In Vitro Study. Int J Dent 2022; 2022:9126699. [PMID: 35386546 PMCID: PMC8977336 DOI: 10.1155/2022/9126699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives. The study designed to compare the effect of erbium, chromium: yttrium-scandium-gallium-garnet (Er, Cr: YSGG) laser at different power outputs and short periods of time (5 and 10 s) and acid etching on the shear bond strength (SBS) and failure mode of metallic orthodontic brackets. Material and methods. A total of sixty-nine human premolars extracted for orthodontic purposes were used. 60 teeth were randomly assigned to one of the five treatment groups. (n = 12): group 1: 37% phosphoric acid etching and groups 2–5: the enamel surface irradiated by the Er, Cr: YSGG laser operated at different power outputs (1 W, 1.5 W, 2 W, and 2.5 W), each laser group was divided into two subgroups (n = 6) according to exposure time (5 s and 10 s). Nine teeth were not subjected to SBS testing but were prepared for scanning electron microscopy (SEM). The nonparametric Kruskal–Wallis test was used to evaluate the data; the SBS and adhesive remanent index (ADI) were evaluated. Results. The mean SBS for all laser groups and the acid-etched group were comparable, with no significant differences except for the 1 W group for 5 and 10 s and the 1.5 W group for 5 s. For the ARI scores, no statistically significant difference was found among the groups (
), and the majority of the samples had ARI type 2 or 3. Conclusion. The laser irradiation at 2 and 2.5 W for 5 s was similar to that produced by acid etching, whereas the laser irradiation at 2 and 2.5 W at 10 s was higher compared with that obtained with acid etching and adequate to etch the enamel.
Collapse
|
11
|
Althagafi NM. Impact of fluoride-releasing orthodontic adhesives on the shear bond strength of orthodontic brackets to eroded enamel following different surface treatment protocols. J Orthod Sci 2022; 11:3. [PMID: 35282290 PMCID: PMC8895365 DOI: 10.4103/jos.jos_139_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE: To assess the impact of enamel surface treatment protocols and the types of adhesive materials on the shear bond strength (SBS) of brackets to eroded enamel substrate. MATERIALS AND METHODS: Eighty extracted premolars were randomly assigned to four main groups in which group C (no treatment) was the control group. The remaining groups were exposed to an erosion challenge through short-term acidic exposure to HCl solution (0.01 M, pH 2.3) for 30 s, with an agitation speed of 50 rpm at an environmental temperature of 25°C. The eroded enamel surface within each group was treated as follows: group N received no treatment; in group P, the eroded enamel was treated with 35% phosphoric acid (Ultradent Products, South Jordan, UT, USA) for 15 s, followed by a rinse for 10 s; and in group F, the eroded enamel was treated with fluoride gel (Bifluorid 12; Voco-GmbH, Cuxhaven, Germany) for 4 min. The brackets were bonded with either a resin composite adhesive (Transbond XT; light-cure adhesive, 3M Unitek, CA, USA) or resin-modified glass ionomer cement (Fuji Ortho LC-GC Corporation, Japan). The specimens were tested for SBS, and the bond failure was assessed according to the adhesive remnant index (ARI). Analysis of variance (ANOVA) and Tukey's post-hoc tests (P < 0.05) were used to compare the SBS of the groups. The ARI values between the groups were recorded. RESULTS: Statistically significant differences were found among the tested variables (P < 0.05). Group P showed the highest mean SBS values regardless of the type of adhesive used, and the difference was statistically significant (P < 0.05). The application of the fluoride gel showed no statistically significant improvement in SBS values. The failure mode distribution among the test groups indicated that failures at the adhesive–bracket interface were predominant in group C compared with the other study groups. CONCLUSIONS: Fluoride pretreatment, which was used to remineralize the eroded enamel surfaces before bonding, resulted in a decrease in the SBS of the orthodontic brackets in vitro compared with the other treated groups. The use of fluoride-releasing adhesive also enhances bonding to the eroded enamel surfaces.
Collapse
Affiliation(s)
- Nebras Mohammed Althagafi
- Department of Pediatric Dentistry and Orthodontics, College of Dentistry, Taibah University, AlMadinah AlMunawwarah, Saudi Arabia
| |
Collapse
|
12
|
Sfondrini MF, Pascadopoli M, Gallo S, Ricaldone F, Kramp DD, Valla M, Gandini P, Scribante A. Effect of Enamel Pretreatment with Pastes Presenting Different Relative Dentin Abrasivity (RDA) Values on Orthodontic Bracket Bonding Efficacy of Microfilled Composite Resin: In Vitro Investigation and Randomized Clinical Trial. MATERIALS (BASEL, SWITZERLAND) 2022; 15:531. [PMID: 35057248 PMCID: PMC8779612 DOI: 10.3390/ma15020531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023]
Abstract
Bonding failure is a clinical issue frequently encountered in orthodontic practice. The aim of this study was to evaluate enamel pretreatment both in vitro and clinically using agents with different RDA values before brackets' bonding, to assess if RDA can affect the Shear Bond Strength (SBS), Adhesive Remnant Index (ARI) and clinical failure rate of orthodontic brackets. For the in vitro study, 220 bovine teeth were pretreated with agents with different RDA values. Subsequently, brackets were bonded. For the clinical study, 20 patients underwent bonding of 20 brackets each with a split-mouth design. Low and high RDA toothpastes were used for enamel pretreatment. SBS, ARI and failures were recorded. Higher SBS values were found for teeth pretreated with lower RDA agents; conversely, lower SBS values were found for teeth pretreated with higher RDA agents (p < 0.05). For high ARI values, RDA increased too (p > 0.05). In the clinical study, a significantly lower failure rate was reported for teeth pretreated with low RDA toothpaste (2.5% in low RDA group, 7.0% in high RDA group; p < 0.05). No significant differences were assessed comparing the two dental arches and anterior and posterior sites. Enamel pretreatment with low RDA toothpastes could increase brackets' survival rate. Further in vitro and clinical studies would be welcomed to confirm these findings.
Collapse
Affiliation(s)
- Maria Francesca Sfondrini
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.F.S.); (F.R.); (D.D.K.); (P.G.)
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.F.S.); (F.R.); (D.D.K.); (P.G.)
| | - Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.F.S.); (F.R.); (D.D.K.); (P.G.)
| | - Federico Ricaldone
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.F.S.); (F.R.); (D.D.K.); (P.G.)
| | - Davide Dirk Kramp
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.F.S.); (F.R.); (D.D.K.); (P.G.)
| | - Margherita Valla
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Paola Gandini
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.F.S.); (F.R.); (D.D.K.); (P.G.)
| | - Andrea Scribante
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.F.S.); (F.R.); (D.D.K.); (P.G.)
| |
Collapse
|
13
|
Chanachai S, Chaichana W, Insee K, Benjakul S, Aupaphong V, Panpisut P. Physical/Mechanical and Antibacterial Properties of Orthodontic Adhesives Containing Calcium Phosphate and Nisin. J Funct Biomater 2021; 12:jfb12040073. [PMID: 34940552 PMCID: PMC8706961 DOI: 10.3390/jfb12040073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Enamel demineralization around orthodontic adhesive is a common esthetic concern during orthodontic treatment. The aim of this study was to prepare orthodontic adhesives containing monocalcium phosphate monohydrate (MCPM) and nisin to enable mineralizing and antibacterial actions. The physicomechanical properties and the inhibition of S. mutans growth of the adhesives with added MCPM (5, 10 wt %) and nisin (5, 10 wt %) were examined. Transbond XT (Trans) was used as the commercial comparison. The adhesive containing a low level of MCPM showed significantly higher monomer conversion (42–62%) than Trans (38%) (p < 0.05). Materials with additives showed lower monomer conversion (p < 0.05), biaxial flexural strength (p < 0.05), and shear bond strength to enamel than those of a control. Additives increased water sorption and solubility of the experimental materials. The addition of MCPM encouraged Ca and P ion release, and the precipitation of calcium phosphate at the bonding interface. The growth of S. mutans in all the groups was comparable (p > 0.05). In conclusion, experimental orthodontic adhesives with additives showed comparable conversion but lesser mechanical properties than the commercial material. The materials showed no antibacterial action, but exhibited ion release and calcium phosphate precipitation. These properties may promote remineralization of the demineralized enamel.
Collapse
Affiliation(s)
- Supachai Chanachai
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Wirinrat Chaichana
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Kanlaya Insee
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Sutiwa Benjakul
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Visakha Aupaphong
- Division of Oral Biology, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand;
| | - Piyaphong Panpisut
- Division of Restorative Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
- Correspondence:
| |
Collapse
|
14
|
Grazioli G, Hardan L, Bourgi R, Nakanishi L, Amm E, Zarow M, Jakubowicz N, Proc P, Cuevas-Suárez CE, Lukomska-Szymanska M. Residual Adhesive Removal Methods for Rebonding of Debonded Orthodontic Metal Brackets: Systematic Review and Meta-Analysis. MATERIALS 2021; 14:ma14206120. [PMID: 34683722 PMCID: PMC8537998 DOI: 10.3390/ma14206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
Debonding of orthodontic brackets is a common occurrence during orthodontic treatment. Therefore, the best option for treating debonded brackets should be indicated. This study aimed to evaluate the bond strength of rebonded brackets after different residual adhesive removal methods. This systematic review and meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. PubMed, Web of Science, The Cochrane Library, SciELO, Scopus, LILACS, IBECS, and BVS databases were screened up to December 2020. Bond strength comparisons were made considering the method used for removing the residual adhesive on the bracket base. A total of 12 studies were included for the meta-analysis. Four different adhesive removal methods were identified: sandblasting, laser, mechanical grinding, and direct flame. When compared with new orthodontic metallic brackets, bond strength of debonded brackets after air abrasion (p = 0.006), mechanical grinding (p = 0.007), and direct flame (p < 0.001) was significantly lower. The use of an erbium-doped yttrium aluminum garnet (Er:YAG) laser showed similar shear bond strength (SBS) values when compared with those of new orthodontic brackets (p = 0.71). The Er:YAG laser could be considered an optimal method for promoting the bond of debonded orthodontic brackets. Direct flame, mechanical grinding, or sandblasting are also suitable, obtaining clinically acceptable bond strength values.
Collapse
Affiliation(s)
- Guillermo Grazioli
- Department of Dental Materials, School of Dentistry, Universidad de la República. Av. General Las Heras 1925, Montevideo 11300, Uruguay;
| | - Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (L.H.); (R.B.)
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (L.H.); (R.B.)
| | - Leina Nakanishi
- Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Rua Gonçalves Chaves, 457, Pelotas 96015560, Brazil;
| | - Elie Amm
- Department of Orthodontics, School of Dental Medicine, Saint Joseph University, Beirut 1107 2180, Lebanon;
| | - Maciej Zarow
- “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre—pl. Inwalidow 7/5, 30-033 Cracow, Poland; (M.Z.); (N.J.)
| | - Natalia Jakubowicz
- “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre—pl. Inwalidow 7/5, 30-033 Cracow, Poland; (M.Z.); (N.J.)
| | - Patrycja Proc
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland;
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca 42160, Mexico
- Correspondence: (C.E.C.-S.); (M.L.-S.); Tel.: +48-42-675-74-61 (M.L.-S.)
| | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
- Correspondence: (C.E.C.-S.); (M.L.-S.); Tel.: +48-42-675-74-61 (M.L.-S.)
| |
Collapse
|
15
|
Shear bond strength of metallic brackets bonded to enamel pretreated with Er,Cr:YSGG LASER and CPP-ACP. BMC Oral Health 2021; 21:306. [PMID: 34126965 PMCID: PMC8204548 DOI: 10.1186/s12903-021-01669-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022] Open
Abstract
Background Increased risk of enamel demineralization during and after orthodontic treatment raises the demand for better preventive measures including combinations of laser, CPP-ACP, and fluoride. The combination of Er,Cr:YSGG laser with CPP-ACP was proved to have a synergetic effect compared to each of them alone. Shear bond strength (SBS) of orthodontic brackets bonded to the enamel surface after being treated with preventive measures is critical. The aim of this study was to compare the SBS and failure mode of metallic brackets bonded to teeth with no pretreatment and pretreated enamel surface, either with Er,Cr:YSGG laser alone or combined with CPP-ACP. Methods Sixty sound extracted human premolar teeth were allocated randomly to 3 groups: In Group 1 (control), teeth were etched and bonded directly; in Group 2, laser pretreatment of the enamel surface was done followed by etching and bonding as in the control group; in Group 3, the enamel surface was lased then CPP-ACP was applied according to the manufacturer instructions, etched and bonded. SBS and Adhesive remnant index (ARI) were evaluated. Results No significant differences were found between the 3 groups neither in the SBS nor in the ARI scores. Conclusions The use of combined Er,Cr:YSGG laser with CPP-ACP as a preventive measure before bonding orthodontic brackets does not endanger the bracket’s bonding strength.
Collapse
|
16
|
Cicek O, Ozkalayci N, Yetmez M. Mean Shearing Stroke Frequency of Orthodontic Brackets under Cycling Loading: An In Vitro Study. MATERIALS 2020; 13:ma13194280. [PMID: 32992817 PMCID: PMC7579618 DOI: 10.3390/ma13194280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/05/2022]
Abstract
Based on the development of many adhesive systems and bonding techniques, bonding strength of orthodontic brackets has become even more important in modern clinical orthodontics. The aim of this study was to determine mean shearing stroke frequency of different orthodontic bracket types and bonding agents under cycling loading. Therefore, 10 different types of orthodontic bracket from 4 different brands were divided into 2 groups. Two different adhesives, namely Transbond™ XT etch-and-rinse for Group 1 and Transbond™ Plus self-etching-primer adhesive for Group 2 were considered. The brackets were tested under cycling loading force of 10-N and a crosshead speed of 300 mm/min and 40 cycle/min. The frequency of strokes that the brackets failed were determined and these data were analyzed by statistical analysis using an independent sample t-test and one-way analysis of variance (ANOVA). The level of significance was set at p < 0.05. Generally, differences between the frequency of shearing strokes of the bracket failures were found to be statistically significant depending on the type of adhesives and brackets (p < 0.05). The bonding technique for Group 1 was found to have a significantly higher shear bonding strength than Group 2. It is also seen that different types of bracket belonging to the same or different brands had different shear bonding strength. It may be concluded that: (i) all bracket types used in this study can be applied with both bonding techniques, (ii) in order to minimize the risk of hard tissue damage, ceramic brackets should be carefully bonded using the self-etching primary adhesive technique.
Collapse
Affiliation(s)
- Orhan Cicek
- Department of Orthodontics, Faculty of Dentistry, Zonguldak Bulent Ecevit University, 67600 Zonguldak, Turkey;
- Correspondence: or
| | - Nurhat Ozkalayci
- Department of Orthodontics, Faculty of Dentistry, Zonguldak Bulent Ecevit University, 67600 Zonguldak, Turkey;
| | - Mehmet Yetmez
- Department of Mechanical Engineering, Faculty of Engineering, Zonguldak Bulent Ecevit University, 67100 Zonguldak, Turkey;
| |
Collapse
|
17
|
Comparison of lithium disilicate-reinforced glass ceramic surface treatment with hydrofluoric acid, Nd:YAG, and CO2 lasers on shear bond strength of metal brackets. Clin Oral Investig 2020; 25:2659-2666. [PMID: 32918122 DOI: 10.1007/s00784-020-03576-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To evaluate and compare the effects of different surface conditioning methods of lithium disilicate-reinforced ceramic on shear bond strength (SBS) of metallic brackets. MATERIALS AND METHODS Thirty-six lithium disilicate ceramic blocks mounted in acrylic resin blocks were assigned to 3 groups (n = 12): 9.6% hydrofluoric acid (HF); neodymium-doped yttrium aluminium garnet (Nd:YAG) laser; and carbon dioxide (CO2) laser. The glass ceramic surfaces were primed with a silane, and the brackets were bonded using a light-cured composite resin. SBS test was carried out in a universal testing machine at 0.5 mm/min crosshead speed until the brackets were debonded. The remaining adhesive was evaluated under a stereomicroscope in terms of the adhesive remnant index (ARI). The surface hardness was determined with a 100-gr force using a microhardness tester. Glass ceramic surface changes were evaluated using the scanning electron microscope. One-way ANOVA and post hoc Tamhane tests were used to compare microhardness values, and Kruskal-Wallis and Mann-Whitney U tests were used to analyze SBS values and ARI. RESULTS The median and interquartile range of SBS values in 3 groups were 6.48 (1.56-15.18), 1.26 (0.83-1.67), and 0.99 MPa (0.70-2.10), respectively. Microhardness analysis revealed significant differences between the CO2 laser and intact porcelain groups (P = 0.003), without significant differences between the other groups. Group 1 exhibited the highest ARI. CONCLUSION Neither CO2 nor Nd:YAG lasers resulted in adequate surface changes for bonding of brackets on ceramics compared with the samples conditioned with HF. CO2 laser decreased the microhardness of ceramics. CLINICAL RELEVANCE Surface conditioning with HF resulted in clinically acceptable SBS values.
Collapse
|
18
|
Garcés GA, Rojas VH, Bravo C, Sampaio CS. Shear bond strength evaluation of metallic brackets bonded to a CAD/CAM PMMA material compared to traditional prosthetic temporary materials: an in vitro study. Dental Press J Orthod 2020; 25:31-38. [PMID: 32844970 PMCID: PMC7437152 DOI: 10.1590/2177-6709.25.3.031-038.oar] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 07/06/2019] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Orthodontic treatment for adults is currently increasing, and therefore the need to bond brackets to restorations and temporary crowns. The use of CAD/CAM PMMA provisional restorations for orthodontic purposes have not yet been described, and there is currently insufficient information regarding the strength of bracket adhesion. OBJECTIVE This study aimed at evaluating the effects of thermocycling (TC) and surface treatment on shear bond strength (SBS) of brackets to different provisional materials. METHODS Forty specimens were made from each material [PMMA (Telio Lab), bis-acryl (Telio CS C&B), and PMMA CAD/CAM (Telio CAD)], sandpapered, and divided according to surface treatment (pumiced or sandblasted) and TC (half of the samples = 1,000 cycles, 5°C/55°C water baths) (n = 10/group). Stainless-steel brackets were bonded to the specimens (using Transbond XT), and SBS testing was performed. Data were analyzed by three-way ANOVA and LSD post-hoc tests (α = 0.05). Failure types were classified with adhesive remnant index (ARI) scores. RESULTS SBS values ranged from 1.5 to 14.9 MPa. Sandblasted bis-acryl and sandblasted auto-curing PMMA groups presented similar values (p> 0.05), higher than the CAD/CAM material (p< 0.05), with or without TC. When thermocycled, pumiced bis-acryl showed higher SBS than pumiced acrylic (p= 0.005) and CAD/CAM materials (p= 0.000), with statistical difference (p= 0.009). TC showed negative effect (p< 0.05) for sandblasted bis-acryl and pumiced acrylic groups. ARI predominant score was mostly zero (0) for CAD/CAM, 1 and 2 for bis-acryl, and 1 for acrylic groups. CONCLUSION In general, bis-acryl material showed the highest SBS values, followed by acrylic and CAD/CAM materials, which showed SBS values lower than an optimum strength for bonding brackets.
Collapse
Affiliation(s)
- Gonzalo Andrés Garcés
- Department of Biomaterials, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
| | - Victor Hugo Rojas
- Department of Orthodontics, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
| | - Cristian Bravo
- Department of Biomaterials, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
| | - Camila S Sampaio
- Department of Biomaterials, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
| |
Collapse
|
19
|
Rossato PH, Kaneshima EN, Domingues F, Fernandes TMF, Berger SB, Oltramari PVP. Do fluorescent agents alter the mechanical strength of orthodontic adhesives? An in vitro and clinical study. Prog Orthod 2020; 21:4. [PMID: 32037477 PMCID: PMC7008105 DOI: 10.1186/s40510-020-0304-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/06/2020] [Indexed: 12/28/2023] Open
Abstract
Background Fluorescent agents are added to orthodontic adhesives with the aim of making them visible under ultraviolet (UV) light, which ensures the complete, safe removal of remnants after orthodontic treatment. However, it is necessary to evaluate if the mechanical strength of these materials is maintained. Therefore, this study evaluated whether the addition of fluorescent agents influences the shear bond strength and clinical performance of a UV light-sensitive adhesive system. Methods This study consisted of two stages: (1) In vitro phase: 40 human teeth were selected, divided at random into 2 groups (n = 20), according to the adhesive system used: UV group—adhesive with fluorescent agent, and control group—conventional adhesive. A shear bond strength test was performed using a DL 2000 universal testing machine, at a speed of 0.5 mm/min. The accessories were removed and an evaluation of the Adhesive Remnant Index (ARI) was carried out. (2) Clinical phase: 8 patients were selected and had their appliances bonded using the split-mouth design (160 teeth) with the same tested adhesive systems (UV, n = 80; control, n = 80). The patients were monitored for bonding failure for a period of 24 months. Statistical analysis was performed using the Independent t test, chi-squared tests, and Mann-Whitney test, at a level of significance of 5% and confidence interval of 95%. Results Regarding the in vitro phase, the shear bond strength test yielded similar results in the two groups (p > 0.05) and the ARI showed statistically significant differences between the groups with a score of 1 being the most frequent ARI for both groups (70%). In addition, there was no clinical difference in terms of bonding failure between the groups (p > 0.05). Conclusion The addition of fluorescent elements does not alter the mechanical strength and performance of the orthodontic adhesive and represents a viable alternative for clinical application.
Collapse
Affiliation(s)
- Paulo Henrique Rossato
- Department of Oral Health, IFPR, Federal Institute of Parana (IFPR), Londrina, Brazil.,Department of Orthodontics, UNOPAR (University of North Parana), Londrina, Brazil
| | | | - Fábio Domingues
- Department of Orthodontics, UNOPAR (University of North Parana), Londrina, Brazil
| | | | | | | |
Collapse
|
20
|
Scribante A, Sfondrini MF, Collesano V, Tovt G, Bernardinelli L, Gandini P. Dental Hygiene and Orthodontics: Effect of Ultrasonic Instrumentation on Bonding Efficacy of Different Lingual Orthodontic Brackets. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3714651. [PMID: 28904955 PMCID: PMC5585592 DOI: 10.1155/2017/3714651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 12/29/2022]
Abstract
Dental hygienists are often faced with patients wearing lingual orthodontic therapy, as ultrasonic instrumentation (UI) is crucial for oral health. As the application of external forces can lead to premature bonding failure, the aim of this study was to evaluate the effect of UI on shear bond strength (SBS) and on adhesive remnant index (ARI) of different lingual orthodontic brackets. 200 bovine incisors were divided into 10 groups. Four different lingual (STB, Ormco; TTR, Rocky Mountain Orthodontics; Idea, Leone; 2D, Forestadent) and vestibular control (Victory, 3M) brackets were bonded. UI was performed in half of specimens, whereas the other half did not receive any treatment. All groups were tested with a universal testing machine. SBS and ARI values were recorded. Statistical analysis was performed (significance: P = 0.05). TTR, Idea, and 2D lingual brackets significantly lowered SBS after UI, whereas for other braces no effect was recorded. Appliances with lower mesh area significantly reduced their adhesion capacity after UI. Moreover groups subjected to UI showed higher ARI scores than controls. UI lowered SBS of lingual appliances of small dimensions so particular care should be posed avoiding prolonged instrumentation around bracket base during plaque removal. Moreover, UI influenced also ARI scores.
Collapse
Affiliation(s)
- Andrea Scribante
- Unit of Orthodontics and Paediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Maria Francesca Sfondrini
- Unit of Orthodontics and Paediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Vittorio Collesano
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Gaia Tovt
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Luisa Bernardinelli
- Section of Statistics, Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Paola Gandini
- Unit of Orthodontics and Paediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
21
|
Felemban NH, Ebrahim MI. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study. BMC Oral Health 2017; 17:43. [PMID: 28086858 PMCID: PMC5237344 DOI: 10.1186/s12903-017-0332-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 01/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this in-vitro study was to examine the effect of incorporating different concentrations of Zirconium oxide-Titanium dioxide (ZrO2-TiO2) nanoparticles, which can have antibacterial properties, on the mechanical properties of an orthodontic adhesive. METHODS ZrO2-TiO2 (Zirconium oxide, HWNANO, Hongwu International Group Ltd, China) -Titanium dioxide, Nanoshell, USA) nanopowder were incorporated into orthodontic adhesive (Transbond XT, 3 M Unitek, Monrovia, USA) with different concentrations (0.5% weight nonofiller and 1% weight nanofiller). The size of nanoparticle was 70-80 nm for ZrO2 and less than 50 nm for TiO2. For measuring the shear bond strength of the three groups of orthodontic adhesives [Transbond (control), Transbond mixed with 0.5% weight ZrO2-TiO2, and Transbond mixed with 1% weight ZrO2-TiO2], 30 freshly extracted human first premolars were used and bonded with stainless steel metal brackets (Dentaurum®, Discovery®, Deutschland), using the 3 orthodontic adhesives and 3 M Unitek; Transbond TM Plus Self-Etching Primer (10 samples in each group). The recorded values of compressive strength and tensile strength (measured separately on 10 samples of orthodontic adhesives (add the 3 D size of sample, light cured for 40 s on both sides) of each orthodontic adhesives), as well as the shear bond strength in Mega Pascal unit (MPa) were collected and exposed to one-way analysis of variance (ANOVA) and Tukey's post-hoc tests. RESULTS orthodontic adhesive with 1% weight ZrO2-TiO2 showed the highest mean compressive (73.42 ± 1.55 MPa, p: 0.003, F: 12.74), tensile strength (8.65 ± 0.74 MPa, p: 0.001, F: 68.20), and shear bond strength (20.05 ± 0.2 MPa, p: 0.001, F: 0.17). CONCLUSIONS Adding ZrO2-TiO2 nanoparticle to orthodontic adhesive increased compressive strength, tensile strength, and shear bond strength in vitro, but in vivo studies and randomized clinical trials are needed to validate the present findings.
Collapse
Affiliation(s)
- Nayef H Felemban
- Orthodontic department, Faculty of Dentistry, Taif University, Taif, Saudi Arabia. .,, P.O.B. 4302, Makkah, 21955, Saudi Arabia.
| | - Mohamed I Ebrahim
- Restorative dentistry department, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| |
Collapse
|