1
|
Gadhachanda KR, Marsool Marsool MD, Bozorgi A, Ameen D, Nayak SS, Nasrollahizadeh A, Alotaibi A, Farzaei A, Keivanlou MH, Hassanipour S, Amini-Salehi E, Jonnalagadda AK. Artificial intelligence in cardiovascular procedures: a bibliometric and visual analysis study. Ann Med Surg (Lond) 2025; 87:2187-2203. [PMID: 40212154 PMCID: PMC11981337 DOI: 10.1097/ms9.0000000000003112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/18/2025] [Indexed: 04/13/2025] Open
Abstract
Background The integration of artificial intelligence (AI) into cardiovascular procedures has significantly advanced diagnostic accuracy, outcome prediction, and robotic-assisted surgeries. However, a comprehensive bibliometric analysis of AI's impact in this field is lacking. This study examines research trends, key contributors, and emerging themes in AI-driven cardiovascular interventions. Methods We retrieved relevant publications from the Web of Science Core Collection and analyzed them using VOSviewer, CiteSpace, and Biblioshiny to map research trends and collaborations. Results AI-related cardiovascular research has grown substantially from 1993 to 2024, with a sharp increase from 2020 to 2023, peaking at 93 publications in 2023. The USA (127 papers), China (79), and England (31) were the top contributors, with Harvard University leading institutional output (17 papers). Frontiers in Cardiovascular Medicine was the most prolific journal. Core research themes included "machine learning," "mortality," and "cardiac surgery," with emerging trends in "association," "implantation," and "aortic stenosis," underscoring AI's expanding role in predictive modeling and surgical outcomes. Conclusion AI demonstrates transformative potential in cardiovascular procedures, particularly in diagnostic imaging, predictive modeling, and patient management. This bibliometric analysis highlights the growing interest in AI applications and provides a framework for integrating AI into clinical workflows to enhance diagnostic accuracy, treatment strategies, and patient outcomes.
Collapse
Affiliation(s)
| | | | - Ali Bozorgi
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Daniyal Ameen
- Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital, Bridgeport, Connecticut, USA
| | - Sandeep Samethadka Nayak
- Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital, Bridgeport, Connecticut, USA
| | | | | | - Alireza Farzaei
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
2
|
Cerdas MG, Pandeti S, Reddy L, Grewal I, Rawoot A, Anis S, Todras J, Chouihna S, Salma S, Lysak Y, Khan SA. The Role of Artificial Intelligence and Machine Learning in Cardiovascular Imaging and Diagnosis: Current Insights and Future Directions. Cureus 2024; 16:e72311. [PMID: 39583537 PMCID: PMC11585328 DOI: 10.7759/cureus.72311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 11/26/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the major cause of mortality worldwide, emphasizing the critical need for timely and accurate diagnosis. Artificial intelligence (AI) and machine learning (ML) have become revolutionary tools in the healthcare system with significant potential for cardiovascular diagnosis and imaging. AI and ML techniques, including supervised and unsupervised learning, logistic regression, deep learning models, neural networks, and convolutional neural networks (CNNs), have significantly advanced cardiovascular imaging. Applications in echocardiography include left and right ventricular segmentation, ejection fraction measurement, and wall motion analysis. AI and ML hold substantial promise for revolutionizing cardiovascular imaging, demonstrating improvements in diagnostic accuracy and efficiency. This narrative review aims to explore the current applications, advantages, challenges, and future pathways of AI and ML in cardiovascular imaging, highlighting their impact on different imaging modalities and their integration into clinical practice.
Collapse
Affiliation(s)
| | | | | | - Inayat Grewal
- Radiology, Government Medical College and Hospital, Chandigarh, IND
| | - Asiya Rawoot
- Internal Medicine, Maharashtra University of Health Sciences, Nashik, IND
| | - Samia Anis
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Jade Todras
- Biology, Suffolk County Community College, New York, USA
| | - Sami Chouihna
- Internal Medicine, University of Toronto, Toronto, CAN
| | - Saba Salma
- Internal Medicine, Wayne State University Detroit Medical Center, Detroit, USA
| | - Yuliya Lysak
- Internal Medicine, St. George's University, True Blue, GRD
| | - Saad Ahmed Khan
- Internal Medicine, Wayne State University Detroit Medical Center, Detroit, USA
| |
Collapse
|
3
|
Diao K, Liang HQ, Yin HK, Yuan MJ, Gu M, Yu PX, He S, Sun J, Song B, Li K, He Y. Multi-channel deep learning model-based myocardial spatial-temporal morphology feature on cardiac MRI cine images diagnoses the cause of LVH. Insights Imaging 2023; 14:70. [PMID: 37093501 PMCID: PMC10126185 DOI: 10.1186/s13244-023-01401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/08/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND To develop a fully automatic framework for the diagnosis of cause for left ventricular hypertrophy (LVH) via cardiac cine images. METHODS A total of 302 LVH patients with cine MRI images were recruited as the primary cohort. Another 53 LVH patients prospectively collected or from multi-centers were used as the external test dataset. Different models based on the cardiac regions (Model 1), segmented ventricle (Model 2) and ventricle mask (Model 3) were constructed. The diagnostic performance was accessed by the confusion matrix with respect to overall accuracy. The capability of the predictive models for binary classification of cardiac amyloidosis (CA), hypertrophic cardiomyopathy (HCM) or hypertensive heart disease (HHD) were also evaluated. Additionally, the diagnostic performance of best Model was compared with that of 7 radiologists/cardiologists. RESULTS Model 3 showed the best performance with an overall classification accuracy up to 77.4% in the external test datasets. On the subtasks for identifying CA, HCM or HHD only, Model 3 also achieved the best performance with AUCs yielding 0.895-0.980, 0.879-0.984 and 0.848-0.983 in the validation, internal test and external test datasets, respectively. The deep learning model showed non-inferior diagnostic capability to the cardiovascular imaging expert and outperformed other radiologists/cardiologists. CONCLUSION The combined model based on the mask of left ventricular segmented from multi-sequences cine MR images shows favorable and robust performance in diagnosing the cause of left ventricular hypertrophy, which could be served as a noninvasive tool and help clinical decision.
Collapse
Affiliation(s)
- Kaiyue Diao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hong-Qing Liang
- Department of Radiology, First Affiliated Hospital to Army Medical University (Third Military Medical University Southwest Hospital), Chongqing, China
| | - Hong-Kun Yin
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd, Beijing, China
| | - Ming-Jing Yuan
- Department of Radiology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Min Gu
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Peng-Xin Yu
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd, Beijing, China
| | - Sen He
- Department of Cardiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, Sanya Municipal People's Hospital, Sanya, Hainan, China
| | - Kang Li
- West China Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, China.
| | - Yong He
- Department of Cardiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Wellnhofer E. Real-World and Regulatory Perspectives of Artificial Intelligence in Cardiovascular Imaging. Front Cardiovasc Med 2022; 9:890809. [PMID: 35935648 PMCID: PMC9354141 DOI: 10.3389/fcvm.2022.890809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Recent progress in digital health data recording, advances in computing power, and methodological approaches that extract information from data as artificial intelligence are expected to have a disruptive impact on technology in medicine. One of the potential benefits is the ability to extract new and essential insights from the vast amount of data generated during health care delivery every day. Cardiovascular imaging is boosted by new intelligent automatic methods to manage, process, segment, and analyze petabytes of image data exceeding historical manual capacities. Algorithms that learn from data raise new challenges for regulatory bodies. Partially autonomous behavior and adaptive modifications and a lack of transparency in deriving evidence from complex data pose considerable problems. Controlling new technologies requires new controlling techniques and ongoing regulatory research. All stakeholders must participate in the quest to find a fair balance between innovation and regulation. The regulatory approach to artificial intelligence must be risk-based and resilient. A focus on unknown emerging risks demands continuous surveillance and clinical evaluation during the total product life cycle. Since learning algorithms are data-driven, high-quality data is fundamental for good machine learning practice. Mining, processing, validation, governance, and data control must account for bias, error, inappropriate use, drifts, and shifts, particularly in real-world data. Regulators worldwide are tackling twenty-first century challenges raised by "learning" medical devices. Ethical concerns and regulatory approaches are presented. The paper concludes with a discussion on the future of responsible artificial intelligence.
Collapse
Affiliation(s)
- Ernst Wellnhofer
- Institute of Computer-Assisted Cardiovascular Medicine, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
5
|
Thomas LB, Mastorides SM, Viswanadhan NA, Jakey CE, Borkowski AA. Artificial Intelligence: Review of Current and Future Applications in Medicine. Fed Pract 2022; 38:527-538. [PMID: 35136337 DOI: 10.12788/fp.0174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background The role of artificial intelligence (AI) in health care is expanding rapidly. Currently, there are at least 29 US Food and Drug Administration-approved AI health care devices that apply to numerous medical specialties and many more are in development. Observations With increasing expectations for all health care sectors to deliver timely, fiscally-responsible, high-quality health care, AI has potential utility in numerous areas, such as image analysis, improved workflow and efficiency, public health, and epidemiology, to aid in processing large volumes of patient and medical data. In this review, we describe basic terminology, principles, and general AI applications relating to health care. We then discuss current and future applications for a variety of medical specialties. Finally, we discuss the future potential of AI along with the potential risks and limitations of current AI technology. Conclusions AI can improve diagnostic accuracy, increase patient safety, assist with patient triage, monitor disease progression, and assist with treatment decisions.
Collapse
Affiliation(s)
- L Brannon Thomas
- James A. Haley Veterans' Hospital, Tampa, Florida.,University of South Florida, Morsani College of Medicine, Tampa
| | - Stephen M Mastorides
- James A. Haley Veterans' Hospital, Tampa, Florida.,University of South Florida, Morsani College of Medicine, Tampa
| | | | - Colleen E Jakey
- James A. Haley Veterans' Hospital, Tampa, Florida.,University of South Florida, Morsani College of Medicine, Tampa
| | - Andrew A Borkowski
- James A. Haley Veterans' Hospital, Tampa, Florida.,University of South Florida, Morsani College of Medicine, Tampa
| |
Collapse
|
6
|
Suri JS, Puvvula A, Majhail M, Biswas M, Jamthikar AD, Saba L, Faa G, Singh IM, Oberleitner R, Turk M, Srivastava S, Chadha PS, Suri HS, Johri AM, Nambi V, Sanches JM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Bit A, Pareek G, Miner M, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji J, Porcu M, Al-Maini M, Agbakoba A, Sockalingam M, Sexena A, Nicolaides A, Sharma A, Rathore V, Viswanathan V, Naidu S, Bhatt DL. Integration of cardiovascular risk assessment with COVID-19 using artificial intelligence. Rev Cardiovasc Med 2020; 21:541-560. [PMID: 33387999 DOI: 10.31083/j.rcm.2020.04.236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 11/06/2022] Open
Abstract
Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors.
Collapse
Affiliation(s)
- Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
- Annu's Hospitals for Skin and Diabetes, Nellore, 524001, AP, India
| | - Misha Majhail
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
- Oakmount High School and AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Ankush D Jamthikar
- Department of ECE, Visvesvaraya National Institute of Technology, Nagpur, 440010, MH, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Gavino Faa
- Department of Pathology, 09100, AOU of Cagliari, Italy
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27749, Delmenhorst, Germany
| | - Saurabh Srivastava
- School of Computing Science & Engineering, Galgotias University, 201301, Gr. Noida, India
| | - Paramjit S Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, B0P 1R0, Ontario, Canada
| | - Vijay Nambi
- Department of Cardiology, Baylor College of Medicine, 77001, TX, USA
| | - J Miguel Sanches
- Institute of Systems and Robotics, Instituto Superior Tecnico, 1000-001, Lisboa, Portugal
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001, New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 104 31, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, 94574, CA, USA
| | - Arindam Bit
- Department of Biomedical Engineering, NIT, Raipur, 783334, CG, India
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, 02901, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, 02901, Rhode Island, USA
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 104 31, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 544 53, Thessaloniki, Greece
| | | | - Durga Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226001, UP, India
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226001, UP, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, DY1, Dudley, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, M13, Manchester, UK
| | | | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, 60601, Chicago, USA
| | - Michele Porcu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, M3H 6A7, Toronto, Canada
| | | | | | - Ajit Sexena
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001, New Delhi, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 999058, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, 22901, VA, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, 94203, CA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, 600001, Chennai, India
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, 55801, MN, USA
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart & Vascular Center, Harvard Medical School, Boston, 02108, MA, USA
| |
Collapse
|