1
|
Weaver S, Dávila Conn VM, Ji D, Verdonk H, Ávila-Ríos S, Leigh Brown AJ, Wertheim JO, Kosakovsky Pond SL. AUTO-TUNE: selecting the distance threshold for inferring HIV transmission clusters. FRONTIERS IN BIOINFORMATICS 2024; 4:1400003. [PMID: 39086842 PMCID: PMC11289888 DOI: 10.3389/fbinf.2024.1400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/17/2024] [Indexed: 08/02/2024] Open
Abstract
Molecular surveillance of viral pathogens and inference of transmission networks from genomic data play an increasingly important role in public health efforts, especially for HIV-1. For many methods, the genetic distance threshold used to connect sequences in the transmission network is a key parameter informing the properties of inferred networks. Using a distance threshold that is too high can result in a network with many spurious links, making it difficult to interpret. Conversely, a distance threshold that is too low can result in a network with too few links, which may not capture key insights into clusters of public health concern. Published research using the HIV-TRACE software package frequently uses the default threshold of 0.015 substitutions/site for HIV pol gene sequences, but in many cases, investigators heuristically select other threshold parameters to better capture the underlying dynamics of the epidemic they are studying. Here, we present a general heuristic scoring approach for tuning a distance threshold adaptively, which seeks to prevent the formation of giant clusters. We prioritize the ratio of the sizes of the largest and the second largest cluster, maximizing the number of clusters present in the network. We apply our scoring heuristic to outbreaks with different characteristics, such as regional or temporal variability, and demonstrate the utility of using the scoring mechanism's suggested distance threshold to identify clusters exhibiting risk factors that would have otherwise been more difficult to identify. For example, while we found that a 0.015 substitutions/site distance threshold is typical for US-like epidemics, recent outbreaks like the CRF07_BC subtype among men who have sex with men (MSM) in China have been found to have a lower optimal threshold of 0.005 to better capture the transition from injected drug use (IDU) to MSM as the primary risk factor. Alternatively, in communities surrounding Lake Victoria in Uganda, where there has been sustained heterosexual transmission for many years, we found that a larger distance threshold is necessary to capture a more risk factor-diverse population with sparse sampling over a longer period of time. Such identification may allow for more informed intervention action by respective public health officials.
Collapse
Affiliation(s)
- Steven Weaver
- Center for Viral Evolution, Temple University, Philadelphia, PA, United States
| | - Vanessa M. Dávila Conn
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Daniel Ji
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Hannah Verdonk
- Center for Viral Evolution, Temple University, Philadelphia, PA, United States
| | | | - Andrew J. Leigh Brown
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Joel O. Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | | |
Collapse
|
2
|
Weaver S, Dávila-Conn V, Ji D, Verdonk H, Ávila-Ríos S, Leigh Brown AJ, Wertheim JO, Kosakovsky Pond SL. AUTO-TUNE: SELECTING THE DISTANCE THRESHOLD FOR INFERRING HIV TRANSMISSION CLUSTERS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584522. [PMID: 38559140 PMCID: PMC10979987 DOI: 10.1101/2024.03.11.584522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Molecular surveillance of viral pathogens and inference of transmission networks from genomic data play an increasingly important role in public health efforts, especially for HIV-1. For many methods, the genetic distance threshold used to connect sequences in the transmission network is a key parameter informing the properties of inferred networks. Using a distance threshold that is too high can result in a network with many spurious links, making it difficult to interpret. Conversely, a distance threshold that is too low can result in a network with too few links, which may not capture key insights into clusters of public health concern. Published research using the HIV-TRACE software package frequently uses the default threshold of 0.015 substitutions/site for HIV pol gene sequences, but in many cases, investigators heuristically select other threshold parameters to better capture the underlying dynamics of the epidemic they are studying. Here, we present a general heuristic scoring approach for tuning a distance threshold adaptively, which seeks to prevent the formation of giant clusters. We prioritize the ratio of the sizes of the largest and the second largest cluster, maximizing the number of clusters present in the network. We apply our scoring heuristic to outbreaks with different characteristics, such as regional or temporal variability, and demonstrate the utility of using the scoring mechanism's suggested distance threshold to identify clusters exhibiting risk factors that would have otherwise been more difficult to identify. For example, while we found that a 0.015 substitutions/site distance threshold is typical for US-like epidemics, recent outbreaks like the CRF07_BC subtype among men who have sex with men (MSM) in China have been found to have a lower optimal threshold of 0.005 to better capture the transition from injected drug use (IDU) to MSM as the primary risk factor. Alternatively, in communities surrounding Lake Victoria in Uganda, where there has been sustained hetero-sexual transmission for many years, we found that a larger distance threshold is necessary to capture a more risk factor-diverse population with sparse sampling over a longer period of time. Such identification may allow for more informed intervention action by respective public health officials.
Collapse
Affiliation(s)
- Steven Weaver
- Center for Viral Evolution, Temple University, Philadelphia, PA, USA
| | - Vanessa Dávila-Conn
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Daniel Ji
- Department of Computer Science & Engineering, UC San Diego, La Jolla, CA 92093, USA
| | - Hannah Verdonk
- Center for Viral Evolution, Temple University, Philadelphia, PA, USA
| | - Santiago Ávila-Ríos
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Andrew J Leigh Brown
- School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
3
|
Christensen KT, Pierard F, Bonsall D, Bowden R, Barnes E, Florence E, Ansari MA, Nguyen D, de Cesare M, Nevens F, Robaeys G, Schrooten Y, Busschots D, Simmonds P, Vandamme AM, Van Wijngaerden E, Dierckx T, Cuypers L, Van Laethem K. Phylogenetic Analysis of Hepatitis C Virus Infections in a Large Belgian Cohort Using Next-Generation Sequencing of Full-Length Genomes. Viruses 2023; 15:2391. [PMID: 38140632 PMCID: PMC10747466 DOI: 10.3390/v15122391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 12/24/2023] Open
Abstract
The hepatitis C virus (HCV) epidemic in Western countries is primarily perpetuated by the sub-populations of men who have sex with men (MSM) and people who inject drugs (PWID). Understanding the dynamics of transmission in these communities is crucial for removing the remaining hurdles towards HCV elimination. We sequenced 269 annotated HCV plasma samples using probe enrichment and next-generation sequencing, obtaining 224 open reading frames of HCV (OR497849-OR498072). Maximum likelihood phylogenies were generated on the four most prevalent subtypes in this study (HCV1a, 1b, 3a, 4d) with a subsequent transmission cluster analysis. The highest rate of clustering was observed for HCV4d samples (13/17 (76.47%)). The second highest rate of clustering was observed in HCV1a samples (42/78 (53.85%)) with significant association with HIV-positive MSM. HCV1b and HCV3a had very low rates of clustering (2/83 (2.41%) and (0/29)). The spread of the prevalent subtype HCV1b appears to have been largely curtailed, and we demonstrate the onwards transmission of HCV1a and HCV4d in the HIV-positive MSM population across municipal borders. More systematic data collection and sequencing is needed to allow a better understanding of the HCV transmission among the community of PWID and overcome the remaining barriers for HCV elimination in Belgium.
Collapse
Affiliation(s)
- Kasper T. Christensen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (F.P.); (Y.S.); (A.-M.V.); (T.D.); (L.C.); (K.V.L.)
| | - Florian Pierard
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (F.P.); (Y.S.); (A.-M.V.); (T.D.); (L.C.); (K.V.L.)
| | - David Bonsall
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK;
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; (R.B.); (D.N.); (M.d.C.)
| | - Rory Bowden
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; (R.B.); (D.N.); (M.d.C.)
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK;
- Translational Gastroenterology Unit, University of Oxford, Oxford OX3 9DU, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Eric Florence
- Department of General Internal Medicine, Infectious Diseases and Tropical Medicine, Antwerp University Hospital, 2650 Edegem, Belgium;
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - M. Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK;
| | - Dung Nguyen
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; (R.B.); (D.N.); (M.d.C.)
| | - Mariateresa de Cesare
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; (R.B.); (D.N.); (M.d.C.)
| | - Frederik Nevens
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium; (F.N.); (G.R.)
| | - Geert Robaeys
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium; (F.N.); (G.R.)
- Faculty of Medicine and Life Sciences—LCRC, UHasselt, Agoralaan, 3590 Diepenbeek, Belgium;
- Department of Gastroenterology and Hepatology, Ziekenhuis Oost-Limburg, 3600 Genk, Belgium
| | - Yoeri Schrooten
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (F.P.); (Y.S.); (A.-M.V.); (T.D.); (L.C.); (K.V.L.)
- Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Dana Busschots
- Faculty of Medicine and Life Sciences—LCRC, UHasselt, Agoralaan, 3590 Diepenbeek, Belgium;
- Department of Gastroenterology and Hepatology, Ziekenhuis Oost-Limburg, 3600 Genk, Belgium
| | - Peter Simmonds
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford OX3 7BN, UK;
| | - Anne-Mieke Vandamme
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (F.P.); (Y.S.); (A.-M.V.); (T.D.); (L.C.); (K.V.L.)
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Eric Van Wijngaerden
- Department of General Internal Medicine, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Tim Dierckx
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (F.P.); (Y.S.); (A.-M.V.); (T.D.); (L.C.); (K.V.L.)
| | - Lize Cuypers
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (F.P.); (Y.S.); (A.-M.V.); (T.D.); (L.C.); (K.V.L.)
- Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Kristel Van Laethem
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (F.P.); (Y.S.); (A.-M.V.); (T.D.); (L.C.); (K.V.L.)
- Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Graf C, Fuhrmann L, Lutz T, Stephan C, Knecht G, Gute P, Bickel M, Peiffer KH, Finkelmeier F, Dultz G, Mondorf A, Wetzstein N, Filmann N, Herrmann E, Zeuzem S, Beerenwinkel N, Dietz J, Sarrazin C. Expanding epidemic of recently acquired HCV in HIV-coinfected patients over a period of 10 years. JHEP Rep 2023; 5:100701. [PMID: 37305441 PMCID: PMC10250927 DOI: 10.1016/j.jhepr.2023.100701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 06/13/2023] Open
Abstract
Background & Aims Ongoing transmission of HCV infections is associated with risk factors such as drug injection, needlestick injuries, and men who have sex with men (MSM). Ways of transmission, the course of acute infection, changes of virologic features, and incidence over time are not well known. Methods Over a period of 10 years, n = 161 patients with recently acquired HCV infection (RAHC) (median follow-up 6.8 years) were prospectively enrolled. NS5B sequencing was performed to re-evaluate the HCV genotype (GT) and for phylogenetic analyses. Results Patients with RAHC were mainly male (92.5%), MSM (90.1%), and HIV-coinfected (86.3%). Transmission risk factors for MSM and non-MSM were sexual risk behaviour (100 and 6.3%, respectively), injection drug use (9.7 and 37.5%, respectively), and nasal drug use (15.2 and 0%, respectively). Spontaneous and interferon- or direct-acting antiviral-based clearance rates were 13.6, 84.3 and 93.4%, respectively. Mean RAHC declined from 19.8 in the first to 13.2 in the past five study years. Although the majority of infections was caused by HCV GT1a, the frequency of HCV GT4d and slightly HCV GT3a increased over time. No relevant clustering of HCV isolates was observed in non-MSM. However, 45% of HCV GT1a and 100% of HCV GT4d MSM cases clustered with MSM isolates from other countries. Travel-associated infections were supported by personal data in an MSM subgroup. No international clustering was detected in MSM with HCV GT1b or HCV GT3a. Conclusions RAHCs were mainly diagnosed in HIV-coinfected MSM patients and were associated with sexual risk behaviour. Spontaneous clearance rates were low, and phylogenetic clusters were observed in the majority of patients. Impact and Implications We evaluated the occurrence and transmission of recently acquired HCV infections (RAHCs) over a period of 10 years. Our data demonstrate that the presence of RAHC was mainly found in HIV-coinfected MSM, with internationally connected transmission networks being observed in the majority of patients. Spontaneous clearance rates were low, and reinfection rates increased mainly driven by a small subset of MSM patients with high-risk behaviour.
Collapse
Affiliation(s)
- Christiana Graf
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany
| | - Lara Fuhrmann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Christoph Stephan
- HIVCENTER, Department of Infectious Diseases, University Hospital, Goethe University, Frankfurt, Germany
| | | | | | | | - Kai-Henrik Peiffer
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany
| | - Fabian Finkelmeier
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany
| | - Georg Dultz
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany
| | - Antonia Mondorf
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany
| | - Nils Wetzstein
- HIVCENTER, Department of Infectious Diseases, University Hospital, Goethe University, Frankfurt, Germany
| | - Natalie Filmann
- Institute of Biostatistics and Mathematical Modeling, Goethe University, Frankfurt, Germany
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modeling, Goethe University, Frankfurt, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Julia Dietz
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany
| | - Christoph Sarrazin
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany
- Medizinische Klinik II, St. Josefs-Hospital, Wiesbaden, Germany
| |
Collapse
|
5
|
Lopez Luis BA, Rodríguez-Díaz R, Angulo-Medina L, Soto-Ramírez LE. The Emergence of Hepatitis C Virus Genotype 4d Among Human Immunodeficiency Virus-Infected Patients in Mexico City: A Molecular Epidemiological Study. Sex Transm Dis 2022; 49:e90-e94. [PMID: 35001015 DOI: 10.1097/olq.0000000000001596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT The recent detection of hepatitis C virus genotype 4 infection in human immunodeficiency virus-infected patients prompted performing molecular characterization of these isolates. All the Mexican isolates belonged to a subcluster within the 4d group and shared a common ancestor with a French isolate. The estimated timing of introduction in Mexico City was as recent as December 2015.
Collapse
Affiliation(s)
- Bruno Ali Lopez Luis
- From the Laboratory of Molecular Virology, Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Colonia Belisario Domínguez Sección XVI, Delegación Tlalpan, Mexico City, Mexico
| | | | | | | |
Collapse
|
6
|
Guntipalli P, Pakala R, Kumari Gara S, Ahmed F, Bhatnagar A, Endaya Coronel MK, Razzack AA, Solimando AG, Thompson A, Andrews K, Enebong Nya G, Ahmad S, Ranaldo R, Cozzolongo R, Shahini E. Worldwide prevalence, genotype distribution and management of hepatitis C. Acta Gastroenterol Belg 2021; 84:637-656. [PMID: 34965046 DOI: 10.51821/84.4.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Hepatitis C virus (HCV) is one of the leading causes of chronic liver disease, cirrhosis, and hepatocellular carcinoma, resulting in major global public health concerns. The HCV infection is unevenly distributed worldwide, with variations in prevalence across and within countries. The studies on molecular epidemiology conducted in several countries provide an essential supplement for a comprehensive knowledge of HCV epidemiology, genotypes, and subtypes, along with providing information on the impact of current and earlier migratory flows. HCV is phylogenetically classified into 8 major genotypes and 57 subtypes. HCV genotype and subtype distribution differ according to geographic origin and transmission risk category. Unless people with HCV infection are detected and treated appropriately, the number of deaths due to the disease will continue to increase. In 2015, 1.75 million new viral infections were mostly due to unsafe healthcare procedures and drug use injections. In the same year, access to direct-acting antivirals was challenging and varied in developing and developed countries, affecting HCV cure rates based on their availability. The World Health Assembly, in 2016, approved a global strategy to achieve the elimination of the HCV public health threat by 2030 (by reducing new infections by 90% and deaths by 65%). Globally, countries are implementing policies and measures to eliminate HCV risk based on their distribution of genotypes and prevalence.
Collapse
Affiliation(s)
- P Guntipalli
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, Florida, United States of America
| | - R Pakala
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, Florida, United States of America
| | - S Kumari Gara
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, Florida, United States of America
| | - F Ahmed
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, Florida, United States of America
| | - A Bhatnagar
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, Florida, United States of America
| | - M-K Endaya Coronel
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, Florida, United States of America
| | - A A Razzack
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, Florida, United States of America
| | - A G Solimando
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - A Thompson
- Department of Family Medicine, Mississauga Health Centre, Mississauga, Ontario, Canada
| | - K Andrews
- Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahad University, Al Khobar, Saudi Arabia
| | - G Enebong Nya
- Department of Gastroenterology, John Hopkins Hospital, Baltimore, Maryland, USA
| | - S Ahmad
- Advent Health Cancer Institute, Division of Oncology, Orlando, FL 32804, USA
| | - R Ranaldo
- Digestive Endoscopy, Department of Internal Medicine, "Mazzolani-Vandini" Hospital, Via Nazionale Ponente, 7, Argenta (Ferrara), Italy
| | - R Cozzolongo
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - E Shahini
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| |
Collapse
|
7
|
Minosse C, Salichos L, Taibi C, Luzzitelli I, Nardozi D, Capobianchi MR, D’Offizi G, McPhee F, Garbuglia AR. Phylogenetic and Phylodynamic Analyses of HCV Strains Circulating among Patients Using Injectable Drugs in Central Italy. Microorganisms 2021; 9:microorganisms9071432. [PMID: 34361868 PMCID: PMC8304011 DOI: 10.3390/microorganisms9071432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 01/13/2023] Open
Abstract
Approximately 71 million people worldwide are infected with the hepatitis C virus (HCV). Injectable drug use represents the most common route of transmission in Europe and other developed countries. We studied the molecular characteristics of the HCV infection among mono-infected people who used drugs (PWUD) in Italy. Among 208 PWUD with anti-HCV antibodies, 101 (48.6%) were HCV RNA-positive, the majority (47%) were infected with the HCV genotype (Gt)1a, followed by Gt3a (34.9%), Gt4 (9.1%), Gt1b (4.5%), and Gt2 (4.5%). Bayesian phylogenetic analyses of clustered HCV NS5B sequences from 66 HCV-positive PWUDs with available plasma samples indicated age and neighborhood proximity as the most common characteristics between closely related HCV strains. Population dynamics, as measured by a coalescent Bayesian skyline analysis, revealed an increase in HCV Gt1a infections from the mid-1980s to mid-1990s. While HCV Gt3a infections were first detected in the 1980s, patient numbers with this genotype subtype remained relatively constant. For both Gt1a and Gt3a, Birth–Death Bayesian Skyline analyses produced higher reproduction numbers post 2014. For earlier time intervals, slow growths were observed for both Gt1a and Gt3a with reproduction numbers (Re) of approximately 1. The evolutionary rates for Gt1a and Gt3a were estimated as 2.23 × 10−4 and 3.85 × 10−4, respectively.
Collapse
Affiliation(s)
- Claudia Minosse
- Laboratory of Virology, “Lazzaro Spallanzani” National Institute for Infectious Diseases, IRCCS, 00149 Rome, Italy; (C.M.); (D.N.); (M.R.C.)
| | - Leonidas Salichos
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA;
- Biological and Chemical Sciences, New York Institute of Technology, New York, NY 11568, USA
| | - Chiara Taibi
- Hepatology and Infectious Diseases Unit, “Lazzaro Spallanzani” National Institute for Infectious Diseases, IRCCS, 00149 Rome, Italy; (C.T.); (I.L.); (G.D.)
| | - Ilaria Luzzitelli
- Hepatology and Infectious Diseases Unit, “Lazzaro Spallanzani” National Institute for Infectious Diseases, IRCCS, 00149 Rome, Italy; (C.T.); (I.L.); (G.D.)
| | - Daniela Nardozi
- Laboratory of Virology, “Lazzaro Spallanzani” National Institute for Infectious Diseases, IRCCS, 00149 Rome, Italy; (C.M.); (D.N.); (M.R.C.)
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, “Lazzaro Spallanzani” National Institute for Infectious Diseases, IRCCS, 00149 Rome, Italy; (C.M.); (D.N.); (M.R.C.)
| | - Gianpiero D’Offizi
- Hepatology and Infectious Diseases Unit, “Lazzaro Spallanzani” National Institute for Infectious Diseases, IRCCS, 00149 Rome, Italy; (C.T.); (I.L.); (G.D.)
| | - Fiona McPhee
- Bristol-Myers Squibb Research and Development, Cambridge, MA 02142, USA;
| | - Anna Rosa Garbuglia
- Laboratory of Virology, “Lazzaro Spallanzani” National Institute for Infectious Diseases, IRCCS, 00149 Rome, Italy; (C.M.); (D.N.); (M.R.C.)
- Correspondence: ; Tel.: +39-06-55170692
| |
Collapse
|
8
|
Phylogenetic investigation of HCV-4d epidemic in Paris MSM HIV population reveals a still active outbreak and a strong link to the Netherlands. Clin Microbiol Infect 2020; 26:785.e1-785.e4. [PMID: 32035235 DOI: 10.1016/j.cmi.2020.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The hepatitis C virus (HCV) epidemic is evolving quickly despite new treatments, and due to behaviour changes increasing at-risk situations. We investigated potential origins and evolution of the HCV-4d French emergence among human immunodeficiency virus (HIV)-infected men who have sex with men (MSM), in Paris in 2003. METHODS We analysed all HCV sequences from the initial Paris outbreak with all newly available sequences publicly available, including sampling date and geographical location, resulting in 184, 68, 156, 107, 13 and 2 sequences from France, The Netherlands, other European countries, Africa, the Middle East or Turkey, Americas and Asia, respectively. Phylogenetic reconstruction was performed using maximum likelihood and Bayesian approaches. RESULTS HCV-4d sequences from Europe were strongly separated from non-European sequences. Sequences from the initial Paris outbreak were all included into two well-separated and supported clusters with branch support at 100%, mean genetic distance <2.8 substitutions/100 nucleotides and >3.4 substitutions/100 nucleotides between their common ancestor and the previous node. The largest cluster interleaved French (n = 98) and Dutch (n = 28) sequences, suggesting several translocations between these countries. This cluster included 41 French sequences from Lyon sampled after 2014, highlighting its continuous spread within France since the initial outbreak. The smallest cluster included one Paris sequence with UK sequences (n = 9). DISCUSSION A few previous works have shown HCV-4d transmissions occurring between a few countries. In our work, we suggest a new and large connection between France and The Netherlands MSM communities and highlight a well-separated pan-European transmission network. Large collaborative networks are needed to investigate ongoing transmissions across countries and help specific prevention measures.
Collapse
|