1
|
Mahendran M, Upton JEM, Ramasubramanian R, Memmott HL, Germain G, Büsch K, Laliberté F, Harrington A. Overall survival among patients with activated phosphoinositide 3-kinase delta syndrome (APDS). Orphanet J Rare Dis 2025; 20:212. [PMID: 40319290 PMCID: PMC12049806 DOI: 10.1186/s13023-025-03734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND This study aimed to describe overall survival (OS) of patients with APDS relative to the global population as well as among subsets of patients with concurrent lymphoma or hematopoietic stem cell transplant (HSCT) relative to the overall APDS population. METHODS Patient-level data were extracted from a recent systematic literature review of 351 unique patients with APDS. OS was evaluated using the Kaplan-Meier method up to age 65 years. OS rate and corresponding 95% CI were reported at each decade of age. Global mortality estimates were obtained from World Health Organization life tables for 2019. RESULTS Of the 351 patients with APDS (APDS1, 267 [76.1%]; APDS2, 83 [23.6%]; unspecified, 1 [0.3%]), 41 (11.7%) died. The OS rate was 25.0% (95% CI, 1.6-62.7%) by the last death event at 64 years of age. Starting at 12 years of age, the OS rate was numerically lower in patients with APDS relative to the global population (median OS, 64 vs. 75 years, respectively). Relative to the overall APDS population, OS rates were numerically similar in those who underwent HSCT (median OS, 64 years for both; p = 0.569), whereas OS rates were numerically lower in patients with concurrent lymphoma (median OS, 41 vs. 64 years, respectively; p = 0.109). Publication bias in source data was a possible limitation. CONCLUSION Reduced survival in patients with APDS suggests a high disease burden, particularly in those with concurrent lymphoma. These results highlight the unmet need for disease-modifying treatments for APDS.
Collapse
Affiliation(s)
| | - Julia E M Upton
- Clinical Immunology and Allergy, Department of Pediatrics, The Hospital For Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
2
|
Büsch K, Memmott HL, McLaughlin HM, Upton JEM, Harrington A. Genetic Etiologies and Outcomes in Malignancy and Mortality in Activated Phosphoinositide 3-Kinase Delta Syndrome: A Systematic Review. Adv Ther 2025; 42:752-771. [PMID: 39636570 PMCID: PMC11787279 DOI: 10.1007/s12325-024-03066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION This analysis evaluated literature on patients with activated phosphoinositide 3-kinase delta syndrome (APDS) to better understand the genetic etiologies and occurrence of mortality in this population. METHODS A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach, including all articles published in English prior to March 13, 2023, in PubMed and Embase. Patients included in the study had reported either (1) APDS diagnosis or (2) ≥ 1 clinical sign consistent with APDS and a first-degree relative with genetically confirmed APDS. Reported age at last observation was also a required outcome. Publications not meeting these criteria were excluded. Data were summarized using descriptive statistics. RESULTS The search identified 108 publications describing 351 unique patients with 39 distinct disease-causing variants. Among these, 41 (12%) deaths were reported, with a mean age at last follow-up of 19.6 (range, 1-64) years. A cause of death was reported for 80% (33/41) of deaths; lymphoma (24%, 10/41) and infections (22%, 9/41) were the most common causes. Types of infections causing death were severe uncontrollable infections (n = 3), sepsis (n = 2), viral infection (varicella zoster pneumonitis [n = 1], cytomegalovirus and adenovirus [n = 1], and Epstein-Barr virus [n = 1]), and infection (n = 1). Mean age at death for lymphoma was 24.9 (range, 1-41) years, and all nine patients who died from infections died before the age of 15 years. The mean age at first APDS symptom was 2.0 (range, < 1-22) years, and mean age at APDS diagnosis was 13.4 (range, 0-56) years; the mean time between symptoms and diagnosis was 10.6 (range, 0-44) years. Limitations of the study were primarily related to the data source. CONCLUSION Patients with APDS suffer early mortality, largely from lymphoma and infection, with large time gaps between symptoms and diagnosis. These findings highlight the need for improved diagnostics, earlier genetic testing for APDS, increased awareness of familial testing, and targeted therapies.
Collapse
Affiliation(s)
- Katharina Büsch
- KJM Büsch Consulting GmbH, Industriestrasse 24, 6300, Zug, Switzerland
| | - Heidi L Memmott
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA
| | | | - Julia E M Upton
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital For Sick Children, 175 Elizabeth St, Room 13-14-027, Toronto, ON, M5G 2G3, Canada
- Department of Paediatrics, Temerty School of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Amanda Harrington
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA.
| |
Collapse
|
3
|
Lougaris V, Piane FL, Cancrini C, Conti F, Tommasini A, Badolato R, Trizzino A, Zecca M, De Rosa A, Barzaghi F, Pignata C. Activated phosphoinositde 3-kinase (PI3Kδ) syndrome: an Italian point of view on diagnosis and new advances in treatment. Ital J Pediatr 2024; 50:103. [PMID: 38769568 PMCID: PMC11106885 DOI: 10.1186/s13052-024-01662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Activated phosphoinositide 3-kinase (PI3Kδ) Syndrome (APDS) is an inborn error of immunity (IEI) with a variable clinical presentation, characterized by infection susceptibility and immune dysregulation that may overlaps with other Primary Immune Regulatory Disorders (PIRDs). The rarity of the disease, its recent discovery, and the multiform /multifaced clinical presentation make it difficult to establish a correct diagnosis, especially at an early stage. As a result, the true prevalence of the pathology remains unknown. There is no treatment protocol for APDS, and drug therapy is primarily focused on treating symptoms. The most common therapies include immunoglobulin replacement therapy, antimicrobial prophylaxis, and immunosuppressive drugs. Hematopoietic stem cell transplantation (HSCT) has been used in some cases, but the risk-benefit balance remains unclear. With the upcoming introduction of specific medications, such as selective inhibitors for PI3Kδ, clinicians are shifting their attention towards target therapy.This review provides a comprehensive overview of APDS with a focus on diagnostic and treatments procedures available. This review may be useful in implementing strategies for a more efficient patients' management and therapeutic interventions.Main Text.
Collapse
Affiliation(s)
- Vassilios Lougaris
- Pediatrics Clinic, Department of Clinical and Experimental Sciences, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili di Brescia, Brescia, Italy
| | | | - Caterina Cancrini
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Alberto Tommasini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, 34137, Italy
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Raffaele Badolato
- Department of Pediatrics, Università di Brescia, Istituto di Medicina Molecolare Angelo Nocivelli", ASST Spedali Civili, Brescia, Italy
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, ARNAS Ospedali Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Marco Zecca
- Paediatric Haematology and Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio De Rosa
- Department of Translational Medical Sciences, Università degli Studi di Napoli "Federico II", Naples, 80125, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (Sr-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Università degli Studi di Napoli "Federico II", Naples, 80125, Italy.
| |
Collapse
|
4
|
Meimand SE, Azizi G, Yazdani R, Sanadgol N, Rezaei N. Novel mutation of SLC37A4 in a glycogen storage disease type Ib patient with neutropenia, horseshoe kidney, and arteriovenous malformation: a case report. Immunol Res 2023; 71:107-111. [PMID: 36129616 DOI: 10.1007/s12026-022-09320-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/11/2022] [Indexed: 01/21/2023]
Abstract
Glycogen storage disease type Ib (GSDIb) is an autosomal recessive disorder caused by mutations of SLC37A4 gene, which encodes glucose 6-phosphate translocase (G6PT). Malfunction of G6PT leads to excessive fat and glycogen in liver, kidney, and intestinal mucosa. The clinical manifestations of GSD1b include hepatomegaly, renomegaly, neutropenia, hypoglycemia, and lactic acidosis. Furthermore, the disorder may result in severe complications in long-term including inflammatory bowel disease (IBD), hepatocellular adenomas (HCA), short stature, and autoimmune disorders, which stem from neutropenia and neutrophil dysfunction. Here, we represent a novel mutation of SLC37A4 in a 5-month girl who has a history of hospitalizations several times due to recurrent infection and her early presentations were failure to thrive and tachypnea. Further investigations revealed mild atrial septal defect, mild arteriovenous malformation from left lung, esophageal reflux, Horseshoe kidney, and urinary reflux in this patient. Moreover, the lab tests showed neutropenia, immunoglobulin (Ig) G and IgA deficiency, as well as thrombocytosis. Whole exome sequencing revealed c.1245G > A P.W415 homozygous mutation in SLC37A4 gene and c.580G > A p.V1941 heterozygous mutation in PIK3CD gene. This study shows that manifestations of GSD1b may not be limited to what was previously known and it should be considered in a wider range of patients.
Collapse
Affiliation(s)
- Sepideh Ebrahimi Meimand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Negin Sanadgol
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.,Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran.
| |
Collapse
|
5
|
Peng XP, Caballero-Oteyza A, Grimbacher B. Common Variable Immunodeficiency: More Pathways than Roads to Rome. ANNUAL REVIEW OF PATHOLOGY 2023; 18:283-310. [PMID: 36266261 DOI: 10.1146/annurev-pathmechdis-031521-024229] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fifty years have elapsed since the term common variable immunodeficiency (CVID) was introduced to accommodate the many and varied antibody deficiencies being identified in patients with suspected inborn errors of immunity (IEIs). Since then, how the term is understood and applied for diagnosis and management has undergone many revisions, though controversy persists on how exactly to define and classify CVID. Many monogenic disorders have been added under its aegis, while investigations into polygenic, epigenetic, and somatic contributions to CVID susceptibility have gained momentum. Expansion of the overall IEI landscape has increasingly revealed genotypic and phenotypic overlap between CVID and various other immunological conditions, while increasingly routine genotyping of CVID patients continues to identify an incredible diversity of pathophysiological mechanisms affecting even single genes. Though many questions remain to be answered, the lessons we have already learned from CVID biology have greatly informed our understanding of adaptive, but also innate, immunity.
Collapse
Affiliation(s)
- Xiao P Peng
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.,Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany.,German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|