1
|
Pasqualetti F, Lombardi G, Gadducci G, Giannini N, Montemurro N, Feletti A, Zeppieri M, Somma T, Caffo M, Bertolotti C, Ius T. Brain Stem Glioma Recurrence: Exploring the Therapeutic Frontiers. J Pers Med 2024; 14:899. [PMID: 39338153 PMCID: PMC11433503 DOI: 10.3390/jpm14090899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Gliomas of the brainstem represent a small percentage of central nervous system gliomas in adults. Due to the proximity of the tumor to critical structures, radical surgery is highly challenging and limited to selected cases. In addition, postoperative treatments, which become exclusive to non-operable patients, do not guarantee satisfactory disease control, making the progression of the disease inevitable. Currently, there is a lack of therapeutic options to control tumor growth after the diagnosis of recurrence. The rarity of these tumors, their distinct behavioral characteristics, and the limited availability of tumor tissue necessary for the development of prognostic and predictive biomarkers contribute to the absence of a standardized approach for treating recurrent brainstem gliomas. A salvage radiotherapy (RT) retreatment could represent a promising approach for recurrent brainstem gliomas. However, to date, it has been mainly evaluated in pediatric cases, with few experiences available to assess the most appropriate RT dose, safety, and clinical responses in adult patients. This comprehensive review aims to identify instances of adult patients with recurrent brainstem gliomas subjected to a secondary course of RT, with a specific focus on the analysis of treatment-related toxicity and outcomes. Through this investigation, we endeavor to contribute valuable insights into the viability and efficacy of salvage RT retreatment in managing recurrent brainstem gliomas in the adult population.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Division of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy; (F.P.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Giovanni Gadducci
- Division of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy; (F.P.)
| | - Noemi Giannini
- Division of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy; (F.P.)
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy
| | - Alberto Feletti
- Department of Neurosciences, Biomedicine, and Movement Sciences, Institute of Neurosurgery, University of Verona, 37126 Verona, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80134 Naples, Italy
| | - Maria Caffo
- Unit of Neurosurgery, Department of Biomorphology and Dental Science, and Morphofunctional Imaging, Università degli Studi di Messina, 98125 Messina, Italy
| | - Chiara Bertolotti
- Department of Neuroradiology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
2
|
Zhang X, Zhao L, Zhang H, Zhang Y, Ju H, Wang X, Ren H, Zhu X, Dong Y. The immunosuppressive microenvironment and immunotherapy in human glioblastoma. Front Immunol 2022; 13:1003651. [PMID: 36466873 PMCID: PMC9712217 DOI: 10.3389/fimmu.2022.1003651] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 08/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant intracranial tumor in adults, characterized by extensive infiltrative growth, high vascularization, and resistance to multiple therapeutic approaches. Among the many factors affecting the therapeutic effect, the immunosuppressive GBM microenvironment that is created by cells and associated molecules via complex mechanisms plays a particularly important role in facilitating evasion of the tumor from the immune response. Accumulating evidence is also revealing a close association of the gut microbiota with the challenges in the treatment of GBM. The gut microbiota establishes a connection with the central nervous system through bidirectional signals of the gut-brain axis, thus affecting the occurrence and development of GBM. In this review, we discuss the key immunosuppressive components in the tumor microenvironment, along with the regulatory mechanism of the gut microbiota involved in immunity and metabolism in the GBM microenvironment. Lastly, we concentrate on the immunotherapeutic strategies currently under investigation, which hold promise to overcome the hurdles of the immunosuppressive tumor microenvironment and improve the therapeutic outcome for patients with GBM.
Collapse
Affiliation(s)
- Xuehua Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Leilei Zhao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - He Zhang
- Department of Immunology, Qiqihar Medical University, Qiqihar, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Huanyu Ju
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Xiaoyu Wang
- Department of Neurology, Hongda Hospital, Jinxiang, China
| | - Huan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|