1
|
Didier N, Cao D, King AC. The eyes have it: Alcohol-induced eye movement impairment and perceived impairment in older adults with and without alcohol use disorder. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:437-447. [PMID: 39878623 PMCID: PMC11828972 DOI: 10.1111/acer.15509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/22/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND While alcohol has been shown to impair eye movements in young adults, little is known about alcohol-induced oculomotor impairment in older adults with longer histories of alcohol use. Here, we examined whether older adults with chronic alcohol use disorder (AUD) exhibit more acute tolerance than age-matched light drinkers (LD), evidenced by less alcohol-induced oculomotor impairment and perceived impairment. METHOD Two random-order, double-blinded laboratory sessions with administration of alcohol (0.8 g/kg) or placebo. Participants (n = 117; 55 AUD, 62 LD) were 40-65 years of age. Eye tracking outcomes (pupil size, smooth pursuit gain, pro- and anti-saccadic velocity, latency, and accuracy) were measured at baseline and repeated at peak and declining breath alcohol intervals. Participants rated their perceived impairment during rising and declining intervals. RESULTS Following alcohol consumption, older adults with AUD (vs. LD) showed less impairment on smooth pursuit gain and reported lower perceived impairment, but both groups showed similar pupil dilation and impairment on saccadic measures. CONCLUSIONS While alcohol impaired older adults with AUD less than LD in terms of their ability to track a predictably moving object (i.e., smooth pursuit), both drinking groups were equally sensitive to alcohol-induced delays in reaction time, reductions in velocity, and deficits in accuracy to randomly appearing objects (i.e., saccade tasks). Thus, despite decades of chronic excessive drinking, older adults with AUD exhibited similar oculomotor tolerance on pro- and anti-saccade eye movements relative to their light-drinking counterparts. Given that these individuals also perceived less impairment during intoxication, they may be at risk for injury and harm when they engage in real-life drinking bouts.
Collapse
Affiliation(s)
- Nathan Didier
- Department of Psychiatry & Behavioral NeuroscienceUniversity of ChicagoChicagoIllinoisUSA
- Department of Behavioral and Social SciencesBrown University School of Public HealthProvidenceRhode IslandUSA
| | - Dingcai Cao
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Andrea C. King
- Department of Psychiatry & Behavioral NeuroscienceUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Taniguchi S, Kajiyama Y, Kochiyama T, Revankar G, Ogawa K, Shirahata E, Asai K, Saeki C, Ozono T, Kimura Y, Ikenaka K, D'Cruz N, Gilat M, Nieuwboer A, Mochizuki H. New Insights into Freezing of Gait in Parkinson's Disease from Spectral Dynamic Causal Modeling. Mov Disord 2024; 39:1982-1992. [PMID: 39295169 DOI: 10.1002/mds.29988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Freezing of gait is one of the most disturbing motor symptoms of Parkinson's disease (PD). However, the effective connectivity between key brain hubs that are associated with the pathophysiological mechanism of freezing of gait remains elusive. OBJECTIVE The aim of this study was to identify effective connectivity underlying freezing of gait. METHODS This study applied spectral dynamic causal modeling (DCM) of resting-state functional magnetic resonance imaging in dedicated regions of interest determined using a data-driven approach. RESULTS Abnormally increased functional connectivity between the bilateral dorsolateral prefrontal cortex (DLPFC) and the bilateral mesencephalic locomotor region (MLR) was identified in freezers compared with nonfreezers. Subsequently, spectral DCM analysis revealed that increased top-down excitatory effective connectivity from the left DLPFC to bilateral MLR and an independent self-inhibitory connectivity within the left DLPFC in freezers versus nonfreezers (>99% posterior probability) were inversely associated with the severity of freezing of gait. The lateralization of these effective connectivity patterns was not attributable to the initial dopaminergic deficit nor to structural changes in these regions. CONCLUSIONS We have identified novel effective connectivity and an independent self-inhibitory connectivity underlying freezing of gait. Our findings imply that modulating the effective connectivity between the left DLPFC and MLR through neurostimulation or other interventions could be a target for reducing freezing of gait in PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Seira Taniguchi
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuta Kajiyama
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Gajanan Revankar
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Emi Shirahata
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kana Asai
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chizu Saeki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsuhiko Ozono
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nicholas D'Cruz
- Department of Rehabilitation Sciences, Neurorehabilitation Research Group, KU Leuven, Leuven, Belgium
| | - Moran Gilat
- Department of Rehabilitation Sciences, Neurorehabilitation Research Group, KU Leuven, Leuven, Belgium
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, Neurorehabilitation Research Group, KU Leuven, Leuven, Belgium
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Saadat A, Pallera H, Lattanzio F, Owens D, Gaines A, Ravi SS, Shah T. Structural and Functional Effects of C5aR1 Antagonism in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. Dev Neurosci 2024; 47:112-126. [PMID: 38797164 PMCID: PMC11965858 DOI: 10.1159/000539506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction. METHODS Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions. RESULTS Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robust cortical neuroprotection from treatment but persistent injury to the CA1 region of the hippocampus. Better structural and functional outcomes were seen within 1 day of treatment, suggesting C5aR1 antagonism beyond the latent injury phase may impair recovery. In a dose-response experiment, cerebral area loss from injury was improved only in female rats, suggesting underlying sexual dimorphisms in the complement response. CONCLUSION These results demonstrate proof-of-concept for targeting C5aR1 signaling in neonatal HIE with PMX205 and underscore the role of sex in hypoxic-ischemic injury. INTRODUCTION The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction. METHODS Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions. RESULTS Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robust cortical neuroprotection from treatment but persistent injury to the CA1 region of the hippocampus. Better structural and functional outcomes were seen within 1 day of treatment, suggesting C5aR1 antagonism beyond the latent injury phase may impair recovery. In a dose-response experiment, cerebral area loss from injury was improved only in female rats, suggesting underlying sexual dimorphisms in the complement response. CONCLUSION These results demonstrate proof-of-concept for targeting C5aR1 signaling in neonatal HIE with PMX205 and underscore the role of sex in hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Angela Saadat
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Specialty Group, Norfolk, VA, USA
| | - Haree Pallera
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| | - Frank Lattanzio
- Neonatal Brain Institute, Norfolk, VA, USA
- Department Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Daley Owens
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| | - Amy Gaines
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| | - Sai Susmitha Ravi
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| | - Tushar Shah
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Specialty Group, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| |
Collapse
|
4
|
Miller Koop M, Rosenfeldt AB, Owen K, Zimmerman E, Johnston J, Streicher MC, Albright A, Penko AL, Alberts JL. The Microsoft HoloLens 2 Provides Accurate Biomechanical Measures of Performance During Military-Relevant Activities in Healthy Adults. Mil Med 2023; 188:92-101. [PMID: 37948237 DOI: 10.1093/milmed/usad041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Augmented reality systems, like the HoloLens 2 (HL2), have the potential to provide accurate assessments of mild traumatic brain injury (mTBI) symptoms in military personnel by simulating complex military scenarios while objectively measuring the user's movements with embedded motion sensors. The aim of this project was to determine if biomechanical measures of marching and squatting, derived from the HL2 motion sensors, were statistically equivalent, within 5%, to metrics derived from the gold-standard three-dimensional motion capture (MoCap) system. MATERIALS AND METHODS Sixty-four adults (18-45 years; 34 males) completed a squatting and a marching task under single- (motor) and dual-task (motor + cognitive) conditions. Positional data from the HL2 and MoCap were simultaneously collected during the tasks and used to calculate and compare biomechanical outcomes. The HL2's augmented reality capabilities were utilized to deliver the cognitive component of the marching dual task. RESULTS Equivalence testing indicated the HL2 and MoCap measures were within 5% in all squatting metrics-trial time, squat duration, squat velocity, squat depth, and dwell time. Marching metrics, including trial time, step count, stepping rate, and step interval, were also equivalent between the two systems. The mean reaction time for responses during the Stroop test was 810 (125) milliseconds per response. CONCLUSIONS Biomechanical outcomes characterizing performance during two common military movements, squatting and marching, were equivalent between the HL2 and MoCap systems in healthy adults. Squatting and marching are two military-relevant tasks that require strength, motor coordination, and balance to perform, all of which are known to be affected by mTBI. Taken together, the data provide support for using the HL2 platform to deliver military-specific assessment scenarios and accurately measure performance during these activities. Utilizing objective and quantitative measures of motor function may enhance the management of military mTBI and reduce unnecessary risk to service members.
Collapse
Affiliation(s)
- Mandy Miller Koop
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anson B Rosenfeldt
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kelsey Owen
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Eric Zimmerman
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joshua Johnston
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Matthew C Streicher
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alec Albright
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amanda L Penko
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jay L Alberts
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
5
|
The frequency and characteristics of saccadic dysmetria in isolated cerebellar infarction. Neurol Sci 2023; 44:2097-2102. [PMID: 36757606 DOI: 10.1007/s10072-023-06668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
OBJECTIVES To investigate the frequency and pattern of horizontal saccadic dysmetria in unilateral cerebellar infarction and identify the responsible region for horizontal saccadic dysmetria. METHODS From the acute stroke registry of Keimyung University Dongsan Medical Center between July 2016 and October 2020, 43 patients with acute unilateral cerebellar infarction were enrolled. Eye movements were recorded during the acute period and the lesion was mapped using MRIcron software for subtraction analysis. Saccadic dysmetria was marked as hypometric when the gain is < 0.85 and hypermetric when > 1.0. RESULTS Among the 43 participants, 30 patients (69.8%) demonstrated saccadic dysmetria. The age was significantly higher in patients with dysmetria (66.87 ± 12.82 vs. 53.54 ± 14.09, p = 0.004). Type of dysmetria showed a significant difference according to the vascular territory of the lesion. The posterior inferior cerebellar artery (PICA) infarction group presented ipsiversive saccadic dysmetria, while the superior cerebellar artery (SCA) group showed contraversive dysmetria (p < 0.001). In the SCA group, the culmen, fastigium, and dentate were the most frequently damaged regions, while the tonsil and inferior semilunar lobule were in the PICA group. CONCLUSION Saccadic dysmetria was observed in a large proportion of cerebellar stroke patients, and the types of saccades were distinctive according to the vascular territory of the lesion.
Collapse
|
6
|
Rahimi MD, Hassani P, Kheirkhah MT, Fadardi JS. Effectiveness of eye movement exercise and diaphragmatic breathing with jogging in reducing migraine symptoms: A preliminary, randomized comparison trial. Brain Behav 2023; 13:e2820. [PMID: 36454123 PMCID: PMC9847608 DOI: 10.1002/brb3.2820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Migraine is a multifactorial headache disorder. Maladaptive functional networks or altered circuit-related connectivity in the brain with migraine appear to perturb the effects of usual treatments. OBJECTIVES In the present preliminary trial, we aim to study the effectiveness of performing pieces of body-mind, cognitive, or network reconstruction-based training (i.e., eye movement exercise plus jogging; EME+J and diaphragmatic breathing plus jogging; DB+J) in decreasing migraine symptoms. METHODS We used a three-arm, triple-blind, non-inferiority randomized comparison design with pre-test, post-test, and follow-up measurements to assess the effectiveness of EME+J and DB+J in the brain with migraine. Participants were randomly assigned to one of the study groups to perform either 12 consecutive weeks of EME+J (n = 22), DB+J (n = 19), or receiving, treatment as usual, TAU (n = 22). RESULTS The primary outcome statistical analysis through a linear mixed model showed a significant decrease in the frequency (p = .0001), duration (p = .003), and intensity (p = .007) of migraine attacks among the interventions and measurement times. The pairwise comparisons of simple effects showed that EME+J and DB+J effectively reduced migraine symptoms at the post-test and follow-up (p < .05). Cochran's tests showed that interventions decreased the number of menses-related migraine attacks. EME+J and DB+J effectively decreased over-the-counter (OTC) drug use, refreshed wake-up mode, and improved sleep and water drinking patterns. These are the secondary outcomes that Cochran's tests showed in the interventional groups after the interventions and at 12 months of follow-up. CONCLUSION EME+J or DB+J can be an effective and safe method with no adverse effects to decrease the symptoms of migraine attacks. Moreover, a reduction in the frequency of menstrual cycle-related attacks, OTC drug use, and improved quality of sleep and drinking water were the secondary outcomes of the post-test and a 12-month follow-up.
Collapse
Affiliation(s)
| | - Pouriya Hassani
- Department of Cognitive Neuroscience and Clinical Neuropsychology, University of Padova, Padua, Italy
| | | | - Javad Salehi Fadardi
- Faculty of Education and Psychology, Ferdowsi University of Mashhad, Mashhad, Iran.,School of Community and Global Health, Claremont Graduate University, Claremont, California, USA.,School of Psychology, Bangor University, Bangor, UK
| |
Collapse
|
7
|
Imaoka Y, Flury A, Hauri L, de Bruin ED. Effects of different virtual reality technology driven dual-tasking paradigms on posture and saccadic eye movements in healthy older adults. Sci Rep 2022; 12:18059. [PMID: 36302813 PMCID: PMC9613688 DOI: 10.1038/s41598-022-21346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Postural sway and eye movements are potential biomarkers for dementia screening. Assessing the two movements comprehensively could improve the understanding of complicated syndrome for more accurate screening. The purpose of this research is to evaluate the effects of comprehensive assessment in healthy older adults (OA), using a novel concurrent comprehensive assessment system consisting of stabilometer and virtual reality headset. 20 healthy OA (70.4 ± 4.9 years) were recruited. Using a cross-sectional study design, this study investigated the effects of various dual-tasking paradigms with integrated tasks of visuospatial memory (VM), spatial orientation (SO), and visual challenge on posture and saccades. Dual-task paradigms with VM and SO affected the saccadic eye movements significantly. Two highly intensive tests of anti-saccade with VM task and pro-saccade with SO task also influenced postural sway significantly. Strong associations were seen between postural sway and eye movements for the conditions where the two movements theoretically shared common neural pathways in the brain, and vice versa. This study suggests that assessing posture and saccades with the integrated tasks comprehensively and simultaneously could be useful to explain different functions of the brain. The results warrant a cross-sectional study in OA with and without dementia to explore differences between these groups.
Collapse
Affiliation(s)
- Yu Imaoka
- grid.5801.c0000 0001 2156 2780Motor Control and Learning Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Andri Flury
- grid.5801.c0000 0001 2156 2780Motor Control and Learning Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Laura Hauri
- grid.5801.c0000 0001 2156 2780Motor Control and Learning Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Eling D. de Bruin
- grid.5801.c0000 0001 2156 2780Motor Control and Learning Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland ,grid.4714.60000 0004 1937 0626Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 141 83 Stockholm, Sweden ,grid.510272.3School of Health Professions, Eastern Switzerland University of Applied Sciences, 9001 St. Gallen, Switzerland
| |
Collapse
|
8
|
Bae Y. Decreased Saccadic Eye Movement Speed Correlates with Dynamic Balance in Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137842. [PMID: 35805500 PMCID: PMC9266155 DOI: 10.3390/ijerph19137842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022]
Abstract
This study aimed to determine the change in saccadic eye movement (SEM) speed according to age (young older; 65–72 years, middle older; 73–80 years, old older: over 81 years) in the elderly and identify the correlation between SEM speed and balance ability. We recruited 128 elderly individuals and measured their SEM speed and balance. The SEM speed was measured to allow the target to appear once every 2 s (0.5 Hz), twice per second (2 Hz), or thrice per second (3 Hz). The SEM performance time was 1 min with a washout period of 1 min. Balance ability was measured using the functional reach test (FRT), timed up-and-go test (TUG), and walking speed (WS). As age increased, FRT, TUG, and WS decreased and SEM speed was significantly decreased in old older than in young older adults at 3 HZ. In all participants, the 3 Hz SEM speed was significantly correlated with TUG and WS. Therefore, SEM speed may be inadequate or decreased in response to rapid external environmental stimuli and may be a factor that deteriorates the ability to balance in older adults.
Collapse
Affiliation(s)
- Youngsook Bae
- Department of Physical Therapy, College of Health Science, Gachon University, 191 Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| |
Collapse
|
9
|
What Happens in Your Brain When You Walk Down the Street? Implications of Architectural Proportions, Biophilia, and Fractal Geometry for Urban Science. URBAN SCIENCE 2022. [DOI: 10.3390/urbansci6010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
This article reviews current research in visual urban perception. The temporal sequence of the first few milliseconds of visual stimulus processing sheds light on the historically ambiguous topic of aesthetic experience. Automatic fractal processing triggers initial attraction/avoidance evaluations of an environment’s salubriousness, and its potentially positive or negative impacts upon an individual. As repeated cycles of visual perception occur, the attractiveness of urban form affects the user experience much more than had been previously suspected. These perceptual mechanisms promote walkability and intuitive navigation, and so they support the urban and civic interactions for which we establish communities and cities in the first place. Therefore, the use of multiple fractals needs to reintegrate with biophilic and traditional architecture in urban design for their proven positive effects on health and well-being. Such benefits include striking reductions in observers’ stress and mental fatigue. Due to their costs to individual well-being, urban performance, environmental quality, and climatic adaptation, this paper recommends that nontraditional styles should be hereafter applied judiciously to the built environment.
Collapse
|
10
|
Lirani-Silva E, Stuart S, Parrington L, Campbell K, King L. Saccade and Fixation Eye Movements During Walking in People With Mild Traumatic Brain Injury. Front Bioeng Biotechnol 2021; 9:701712. [PMID: 34805104 PMCID: PMC8602343 DOI: 10.3389/fbioe.2021.701712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Clinical and laboratory assessment of people with mild traumatic brain injury (mTBI) indicate impairments in eye movements. These tests are typically done in a static, seated position. Recently, the use of mobile eye-tracking systems has been proposed to quantify subtle deficits in eye movements and visual sampling during different tasks. However, the impact of mTBI on eye movements during functional tasks such as walking remains unknown. Objective: Evaluate differences in eye-tracking measures collected during gait between healthy controls (HC) and patients in the sub-acute stages of mTBI recovery and to determine if there are associations between eye-tracking measures and gait speed. Methods: Thirty-seven HC participants and 67individuals with mTBI were instructed to walk back and forth over 10-m, at a comfortable self-selected speed. A single 1-min trial was performed. Eye-tracking measures were recorded using a mobile eye-tracking system (head-mounted infra-red Tobbii Pro Glasses 2, 100 Hz, Tobii Technology Inc. VA, United States). Eye-tracking measures included saccadic (frequency, mean and peak velocity, duration and distance) and fixation measurements (frequency and duration). Gait was assessed using six inertial sensors (both feet, sternum, right wrist, lumbar vertebrae and the forehead) and gait velocity was selected as the primary outcome. General linear model was used to compare the groups and association between gait and eye-tracking outcomes were explored using partial correlations. Results: Individuals with mTBI showed significantly reduced saccade frequency (p = 0.016), duration (p = 0.028) and peak velocity (p = 0.032) compared to the HC group. No significant differences between groups were observed for the saccade distance, fixation measures and gait velocity (p > 0.05). A positive correlation was observed between saccade duration and gait velocity only for participants with mTBI (p = 0.025). Conclusion: Findings suggest impaired saccadic eye movement, but not fixations, during walking in individuals with mTBI. These findings have implications in real-world function including return to sport for athletes and return to duty for military service members. Future research should investigate whether or not saccade outcomes are influenced by the time after the trauma and rehabilitation.
Collapse
Affiliation(s)
- Ellen Lirani-Silva
- Balance Disorders Laboratory, Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, United Kingdom.,Northumbria Healthcare NHS Foundation Trust, North Shields, United Kingdom
| | - Lucy Parrington
- Balance Disorders Laboratory, Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Veterans Affairs Portland Oregon Health Care System, Portland, OR, United States
| | - Kody Campbell
- Balance Disorders Laboratory, Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Veterans Affairs Portland Oregon Health Care System, Portland, OR, United States
| | - Laurie King
- Balance Disorders Laboratory, Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Veterans Affairs Portland Oregon Health Care System, Portland, OR, United States
| |
Collapse
|
11
|
Zhao J, Allison RS. The Role of Binocular Vision in Avoiding Virtual Obstacles While Walking. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3277-3288. [PMID: 31985426 DOI: 10.1109/tvcg.2020.2969181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advances in Virtual Reality technology have enabled physical walking in virtual environments. While most Virtual Reality systems render stereoscopic images to users, the implication of binocular viewing with respect to the performance of human walking in virtual environments remains largely unknown. In the present study, we conducted two walking experiments in virtual environments using a linear treadmill and a novel projected display known as the Wide Immersive Stereo Environment (WISE) to study the role of binocular viewing in virtual locomotion. The first experiment investigated the walking performance of people stepping over obstacles while the second experiment focused on a scenario on stepping over gaps. Both experiments were conducted under both stereoscopic viewing and non-stereoscopic viewing conditions. By analysing the gait parameters, we found that binocular viewing helped people to make more accurate movements to step over obstacles and gaps in virtual locomotion.
Collapse
|
12
|
Gallea C, Wicki B, Ewenczyk C, Rivaud-Péchoux S, Yahia-Cherif L, Pouget P, Vidailhet M, Hainque E. Antisaccade, a predictive marker for freezing of gait in Parkinson's disease and gait/gaze network connectivity. Brain 2021; 144:504-514. [PMID: 33279957 DOI: 10.1093/brain/awaa407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/14/2022] Open
Abstract
Freezing of gait is a challenging sign of Parkinson's disease associated with disease severity and progression and involving the mesencephalic locomotor region. No predictive factor of freezing has been reported so far. The primary objective of this study was to identify predictors of freezing occurrence at 5 years. In addition, we tested whether functional connectivity of the mesencephalic locomotor region could explain the oculomotor factors at baseline that were predictive of freezing onset. We performed a prospective study investigating markers (parkinsonian signs, cognitive status and oculomotor recordings, with a particular focus on the antisaccade latencies) of disease progression at baseline and at 5 years. We identified two groups of patients defined by the onset of freezing at 5 years of follow-up; the 'Freezer' group was defined by the onset of freezing in the ON medication condition during follow-up (n = 17), while the 'non-Freezer' group did not (n = 8). Whole brain resting-state functional MRI was recorded at baseline to determine how antisaccade latencies were associated with connectivity of the mesencephalic locomotor region networks in patients compared to 25 age-matched healthy volunteers. Results showed that, at baseline and compared to the non-Freezer group, the Freezer group had equivalent motor or cognitive signs, but increased antisaccade latencies (P = 0.008). The 5-year course of freezing of gait was correlated with worsening antisaccade latencies (P = 0.0007). Baseline antisaccade latencies was also predictive of the freezing onset (χ2 = 0.008). Resting state connectivity of mesencephalic locomotor region networks correlated with (i) antisaccade latency differently in patients and healthy volunteers at baseline; and (ii) the further increase of antisaccade latency at 5 years. We concluded that antisaccade latency is a predictive marker of the 5-year onset of freezing of gait. Our study suggests that functional networks associated with gait and gaze control are concurrently altered during the course of the disease.
Collapse
Affiliation(s)
- Cécile Gallea
- Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Benoit Wicki
- Service de Neurologie, Hôpital du Valais, Sion, Switzerland
| | - Claire Ewenczyk
- Department of Genetics, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Sophie Rivaud-Péchoux
- Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Lydia Yahia-Cherif
- Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Pierre Pouget
- Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Marie Vidailhet
- Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France.,Department of Neurology, Hôpital Pitié-Salpêtrière , AP-HP, Paris, France
| | - Elodie Hainque
- Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France.,Department of Neurology, Hôpital Pitié-Salpêtrière , AP-HP, Paris, France
| |
Collapse
|
13
|
Mena-Garcia L, Pastor-Jimeno JC, Maldonado MJ, Coco-Martin MB, Fernandez I, Arenillas JF. Multitasking Compensatory Saccadic Training Program for Hemianopia Patients: A New Approach With 3-Dimensional Real-World Objects. Transl Vis Sci Technol 2021; 10:3. [PMID: 34003888 PMCID: PMC7873505 DOI: 10.1167/tvst.10.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/25/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose To examine whether a noncomputerized multitasking compensatory saccadic training program (MCSTP) for patients with hemianopia, based on a reading regimen and eight exercises that recreate everyday visuomotor activities using three-dimensional (3D) real-world objects, improves the visual ability/function, quality of life (QL), and functional independence (FI). Methods The 3D-MCSTP included four in-office visits and two customized home-based daily training sessions over 12 weeks. A quasiexperimental, pretest/posttest study design was carried out with an intervention group (IG) (n = 20) and a no-training group (NTG) (n = 20) matched for age, hemianopia type, and brain injury duration. Results The groups were comparable for the main baseline variables and all participants (n = 40) completed the study. The IG mainly showed significant improvements in visual-processing speed (57.34% ± 19.28%; P < 0.0001) and visual attention/retention ability (26.67% ± 19.21%; P < 0.0001), which also were significantly greater (P < 0.05) than in the NTG. Moreover, the IG showed large effect sizes (Cohen's d) in 75% of the total QL and FI dimensions analyzed; in contrast to the NTG that showed negligible mean effect sizes in 96% of these dimensions. Conclusions The customized 3D-MCSTP was associated with a satisfactory response in the IG for improving complex visual processing, QL, and FI. Translational Relevance Neurovisual rehabilitation of patients with hemianopia seems more efficient when programs combine in-office visits and customized home-based training sessions based on real objects and simulating real-life conditions, than no treatment or previously reported computer-screen approaches, probably because of better stimulation of patients´ motivation and visual-processing speed brain mechanisms.
Collapse
Affiliation(s)
- Laura Mena-Garcia
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Eye Institute, Universidad de Valladolid, Valladolid, Spain
- Universidad de Valladolid, Valladolid, Spain
| | - Jose C. Pastor-Jimeno
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Eye Institute, Universidad de Valladolid, Valladolid, Spain
- Universidad de Valladolid, Valladolid, Spain
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- Red Temática de Investigación Colaborativa en Oftalmología (OftaRed), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel J. Maldonado
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Eye Institute, Universidad de Valladolid, Valladolid, Spain
- Universidad de Valladolid, Valladolid, Spain
- Red Temática de Investigación Colaborativa en Oftalmología (OftaRed), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria B. Coco-Martin
- Universidad de Valladolid, Valladolid, Spain
- Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Itziar Fernandez
- Universidad de Valladolid, Valladolid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| | - Juan F. Arenillas
- Universidad de Valladolid, Valladolid, Spain
- Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
14
|
Okada KI, Takahira M, Mano T, Uga T, Konaka K, Hosomi K, Saitoh Y. Concomitant improvement in anti-saccade success rate and postural instability gait difficulty after rTMS treatment for Parkinson's disease. Sci Rep 2021; 11:2472. [PMID: 33510266 PMCID: PMC7844238 DOI: 10.1038/s41598-021-81795-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder characterised by motor and non-motor deficits. Repetitive transcranial magnetic stimulation (rTMS) over the bilateral primary motor cortex at a high frequency (5 Hz or higher) is reported to be a potential treatment of PD. We aimed to assess the effect of rTMS on eye movement control in patients with PD in their ‘on’ state. We enrolled 14 patients with PD and assessed motor symptoms (Movement Disorder Society-Sponsored Unified Parkinson’s Disease Rating Scale; MDS-UPDRS) and eye movement performances (visually guided saccades, volitional anti-saccades, and small involuntary saccades during fixation) at baseline and after administering bilateral 10 Hz rTMS on leg region of the motor cortex. We confirmed that rTMS improved the MDS-UPDRS motor scores and found that rTMS improved the anti-saccade success rate, which requires adequate inhibition of the reflexive response. The improvement in anti-saccade success rate was correlated with that of the postural instability gait difficulty (PIGD) sub-scores of MDS-UPDRS and lower baseline Japanese version of the Montreal Cognitive Assessment scores. This result is consistent with previous findings that PIGD and inhibitory control deficits share common brain dysfunctions in PD. rTMS may alleviate dysfunctions of that circuit and have a clinical effect.
Collapse
Affiliation(s)
- Ken-Ichi Okada
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, 1-4 Yamadaoka, Suita, 565-0871, Japan.,Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Mizuki Takahira
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Tomoo Mano
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan.,Department of Neurology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521, Japan
| | - Taichi Uga
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Kuni Konaka
- Department of Physical Therapy, Faculty of Health Science, Osaka Yukioka College of Health Science, 1-1-41 Soujiji, Ibaraki, 567-0801, Japan
| | - Koichi Hosomi
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Youichi Saitoh
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan. .,Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan.
| |
Collapse
|
15
|
Moser C, Schmitt L, Schmidt J, Fairchild A, Klusek J. Response Inhibition Deficits in Women with the FMR1 Premutation are Associated with Age and Fall Risk. Brain Cogn 2020; 148:105675. [PMID: 33387817 DOI: 10.1016/j.bandc.2020.105675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/04/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
One in 113-178 females worldwide carry a premutation allele on the FMR1 gene. The FMR1 premutation is linked to neurocognitive and neuromotor impairments, although the phenotype is not fully understood, particularly with respect to age effects. This study sought to define oculomotor response inhibition skills in women with the FMR1 premutation and their association with age and fall risk. We employed an antisaccade eye-tracking paradigm to index oculomotor inhibition skills in 35 women with the FMR1 premutation and 28 control women. The FMR1 premutation group exhibited longer antisaccade latency and reduced accuracy relative to controls, indicating deficient response inhibition skills. Longer response latency was associated with older age in the FMR1 premutation and was also predictive of fall risk. Findings highlight the utility of the antisaccade paradigm for detecting early signs of age-related executive decline in the FMR1 premutation, which is related to fall risk. Findings support the need for clinical prevention efforts to decrease and delay the trajectory of age-related executive decline in women with the FMR1 premutation during midlife.
Collapse
Affiliation(s)
- Carly Moser
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA
| | - Lyndsay Schmitt
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA
| | - Joseph Schmidt
- Department of Psychology, University of Central Florida, 4111 Pictor Lane, Orlando, FL 32816, Orlando, Florida 32816, USA
| | - Amanda Fairchild
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, South Carolina, 29208, USA
| | - Jessica Klusek
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
16
|
Klarendic M, Kaski D. Deep brain stimulation and eye movements. Eur J Neurosci 2020; 53:2344-2361. [DOI: 10.1111/ejn.14898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Maja Klarendic
- Neurological Department University Clinical Center Ljubljana Ljubljana Slovenia
| | - Diego Kaski
- Department of Clinical and Motor Neurosciences Centre for Vestibular and Behavioural Neurosciences University College London London UK
| |
Collapse
|