1
|
Khadim RR, Vadivelu RK, Utami T, Torizal FG, Nishikawa M, Sakai Y. Integrating Oxygen and 3D Cell Culture System: A Simple Tool to Elucidate the Cell Fate Decision of hiPSCs. Int J Mol Sci 2022; 23:ijms23137272. [PMID: 35806277 PMCID: PMC9266965 DOI: 10.3390/ijms23137272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Oxygen, as an external environmental factor, plays a role in the early differentiation of human stem cells, such as induced pluripotent stem cells (hiPSCs). However, the effect of oxygen concentration on the early-stage differentiation of hiPSC is not fully understood, especially in 3D aggregate cultures. In this study, we cultivated the 3D aggregation of hiPSCs on oxygen-permeable microwells under different oxygen concentrations ranging from 2.5 to 20% and found that the aggregates became larger, corresponding to the increase in oxygen level. In a low oxygen environment, the glycolytic pathway was more profound, and the differentiation markers of the three germ layers were upregulated, suggesting that the oxygen concentration can function as a regulator of differentiation during the early stage of development. In conclusion, culturing stem cells on oxygen-permeable microwells may serve as a platform to investigate the effect of oxygen concentration on diverse cell fate decisions during development.
Collapse
Affiliation(s)
- Rubina Rahaman Khadim
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Hongo, Tokyo 113-8654, Japan; (T.U.); (F.G.T.); (Y.S.)
- Correspondence: (R.R.K.); (R.K.V.)
| | - Raja Kumar Vadivelu
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Hongo, Tokyo 113-8654, Japan;
- Human Biomimetic System, RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research (CPR), Wako 351-0198, Saitama, Japan
- Correspondence: (R.R.K.); (R.K.V.)
| | - Tia Utami
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Hongo, Tokyo 113-8654, Japan; (T.U.); (F.G.T.); (Y.S.)
| | - Fuad Gandhi Torizal
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Hongo, Tokyo 113-8654, Japan; (T.U.); (F.G.T.); (Y.S.)
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Hongo, Tokyo 113-8654, Japan;
| | - Yasuyuki Sakai
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Hongo, Tokyo 113-8654, Japan; (T.U.); (F.G.T.); (Y.S.)
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Hongo, Tokyo 113-8654, Japan;
| |
Collapse
|
2
|
Millman JR, Tan JH, Colton CK. Mouse Pluripotent Stem Cell Differentiation Under Physiological Oxygen Reduces Residual Teratomas. Cell Mol Bioeng 2021; 14:555-567. [PMID: 34900010 DOI: 10.1007/s12195-021-00687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/24/2021] [Indexed: 10/20/2022] Open
Abstract
Introduction Residual pluripotent stem cells (PSC) within differentiated populations are problematic because of their potential to form tumors. Simple methods to reduce their occurrence are needed. Methods Here, we demonstrate that control of the oxygen partial pressure (pO2) to physiological levels typical of the developing embryo, enabled by culture on a highly oxygen permeable substrate, reduces the fraction of PSC within and the tumorigenic potential of differentiated populations. Results Differentiation and/or extended culture at low pO2 reduced measured pluripotency markers by up to four orders of magnitude for mouse PSCs (mPSCs). Combination with cell sorting increased the reduction to as much as six orders of magnitude. Upon implantation into immunocompromised mice, mPSCs differentiated at low pO2 either did not form tumors or formed tumors at a slower rate than at high pO2. Conclusions Low pO2 culture alone or in combination with other methods is a potentially straightforward method that could be applied to future cell therapy protocols to minimize the possibility of tumor formation.
Collapse
Affiliation(s)
- Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Jit Hin Tan
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 USA
| | - Clark K Colton
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 USA
| |
Collapse
|
3
|
Chakrabarty K, Shetty R, Argulwar S, Das D, Ghosh A. Induced pluripotent stem cell-based disease modeling and prospective immune therapy for coronavirus disease 2019. Cytotherapy 2021; 24:235-248. [PMID: 34656419 PMCID: PMC8437760 DOI: 10.1016/j.jcyt.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022]
Abstract
The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses a never before seen challenge to human health and the economy. Considering its clinical impact, with no streamlined therapeutic strategies in sight, it is crucial to understand the infection process of SARS-CoV-2. Our limited knowledge of the mechanisms underlying SARS-CoV-2 infection impedes the development of alternative therapeutics to address the pandemic. This aspect can be addressed by modeling SARS-CoV-2 infection in the human context to facilitate drug screening and discovery. Human induced pluripotent stem cell (iPSC)-derived lung epithelial cells and organoids recapitulating the features and functionality of the alveolar cell types can serve as an in vitro human model and screening platform for SARS-CoV-2. Recent studies suggest an immune system asynchrony leading to compromised function and a decreased proportion of specific immune cell types in coronavirus disease 2019 (COVID-19) patients. Replenishing these specific immune cells may serve as useful treatment modality against SARS-CoV-2 infection. Here the authors review protocols for deriving lung epithelial cells, alveolar organoids and specific immune cell types, such as T lymphocytes and natural killer cells, from iPSCs with the aim to aid investigators in making relevant in vitro models of SARS-CoV-2 along with the possibility derive immune cell types to treat COVID-19.
Collapse
Affiliation(s)
| | - Rohit Shetty
- Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Shubham Argulwar
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| |
Collapse
|
4
|
Otero J, Ulldemolins A, Farré R, Almendros I. Oxygen Biosensors and Control in 3D Physiomimetic Experimental Models. Antioxidants (Basel) 2021; 10:1165. [PMID: 34439413 PMCID: PMC8388981 DOI: 10.3390/antiox10081165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022] Open
Abstract
Traditional cell culture is experiencing a revolution moving toward physiomimetic approaches aiming to reproduce healthy and pathological cell environments as realistically as possible. There is increasing evidence demonstrating that biophysical and biochemical factors determine cell behavior, in some cases considerably. Alongside the explosion of these novel experimental approaches, different bioengineering techniques have been developed and improved. Increased affordability and popularization of 3D bioprinting, fabrication of custom-made lab-on-a chip, development of organoids and the availability of versatile hydrogels are factors facilitating the design of tissue-specific physiomimetic in vitro models. However, lower oxygen diffusion in 3D culture is still a critical limitation in most of these studies, requiring further efforts in the field of physiology and tissue engineering and regenerative medicine. During recent years, novel advanced 3D devices are introducing integrated biosensors capable of monitoring oxygen consumption, pH and cell metabolism. These biosensors seem to be a promising solution to better control the oxygen delivery to cells and to reproduce some disease conditions involving hypoxia. This review discusses the current advances on oxygen biosensors and control in 3D physiomimetic experimental models.
Collapse
Affiliation(s)
- Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
- Centro de Investigación Biomédica en Red, Enfermedades Repiratorias, 28029 Madrid, Spain
- Institut de Nanociència i Nanotecnologia UB, 08028 Barcelona, Spain
| | - Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
- Centro de Investigación Biomédica en Red, Enfermedades Repiratorias, 28029 Madrid, Spain
- Institut de Nanociència i Nanotecnologia UB, 08028 Barcelona, Spain
- Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer, 08036 Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
- Centro de Investigación Biomédica en Red, Enfermedades Repiratorias, 28029 Madrid, Spain
- Institut de Nanociència i Nanotecnologia UB, 08028 Barcelona, Spain
- Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer, 08036 Barcelona, Spain
| |
Collapse
|
5
|
Kawakita N, Toba H, Miyoshi K, Sakamoto S, Matsumoto D, Takashima M, Aoyama M, Inoue S, Morimoto M, Nishino T, Takizawa H, Tangoku A. Bronchioalveolar stem cells derived from mouse-induced pluripotent stem cells promote airway epithelium regeneration. Stem Cell Res Ther 2020; 11:430. [PMID: 33008488 PMCID: PMC7531137 DOI: 10.1186/s13287-020-01946-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022] Open
Abstract
Background Bronchioalveolar stem cells (BASCs) located at the bronchioalveolar-duct junction (BADJ) are stem cells residing in alveoli and terminal bronchioles that can self-renew and differentiate into alveolar type (AT)-1 cells, AT-2 cells, club cells, and ciliated cells. Following terminal-bronchiole injury, BASCs increase in number and promote repair. However, whether BASCs can be differentiated from mouse-induced pluripotent stem cells (iPSCs) remains unreported, and the therapeutic potential of such cells is unclear. We therefore sought to differentiate BASCs from iPSCs and examine their potential for use in the treatment of epithelial injury in terminal bronchioles. Methods BASCs were induced using a modified protocol for differentiating mouse iPSCs into AT-2 cells. Differentiated iPSCs were intratracheally transplanted into naphthalene-treated mice. The engraftment of BASCs into the BADJ and their subsequent ability to promote repair of injury to the airway epithelium were evaluated. Results Flow cytometric analysis revealed that BASCs represented ~ 7% of the cells obtained. Additionally, ultrastructural analysis of these iPSC-derived BASCs via transmission electron microscopy showed that the cells containing secretory granules harboured microvilli, as well as small and immature lamellar body-like structures. When the differentiated iPSCs were intratracheally transplanted in naphthalene-induced airway epithelium injury, transplanted BASCs were found to be engrafted in the BADJ epithelium and alveolar spaces for 14 days after transplantation and to maintain the BASC phenotype. Notably, repair of the terminal-bronchiole epithelium was markedly promoted after transplantation of the differentiated iPSCs. Conclusions Mouse iPSCs could be differentiated in vitro into cells that display a similar phenotype to BASCs. Given that the differentiated iPSCs promoted epithelial repair in the mouse model of naphthalene-induced airway epithelium injury, this method may serve as a basis for the development of treatments for terminal-bronchiole/alveolar-region disorders.
Collapse
Affiliation(s)
- Naoya Kawakita
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroaki Toba
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Keiko Miyoshi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shinichi Sakamoto
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Daisuke Matsumoto
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mika Takashima
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mariko Aoyama
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Seiya Inoue
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masami Morimoto
- Department of Breast Surgery, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Takeshi Nishino
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Akira Tangoku
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
6
|
Tsuchiya T, Doi R, Obata T, Hatachi G, Nagayasu T. Lung Microvascular Niche, Repair, and Engineering. Front Bioeng Biotechnol 2020; 8:105. [PMID: 32154234 PMCID: PMC7047880 DOI: 10.3389/fbioe.2020.00105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/03/2020] [Indexed: 12/28/2022] Open
Abstract
Biomaterials have been used for a long time in the field of medicine. Since the success of "tissue engineering" pioneered by Langer and Vacanti in 1993, tissue engineering studies have advanced from simple tissue generation to whole organ generation with three-dimensional reconstruction. Decellularized scaffolds have been widely used in the field of reconstructive surgery because the tissues used to generate decellularized scaffolds can be easily harvested from animals or humans. When a patient's own cells can be seeded onto decellularized biomaterials, theoretically this will create immunocompatible organs generated from allo- or xeno-organs. The most important aspect of lung tissue engineering is that the delicate three-dimensional structure of the organ is maintained during the tissue engineering process. Therefore, organ decellularization has special advantages for lung tissue engineering where it is essential to maintain the extremely thin basement membrane in the alveoli. Since 2010, there have been many methodological developments in the decellularization and recellularization of lung scaffolds, which includes improvements in the decellularization protocols and the selection and preparation of seeding cells. However, early transplanted engineered lungs terminated in organ failure in a short period. Immature vasculature reconstruction is considered to be the main cause of engineered organ failure. Immature vasculature causes thrombus formation in the engineered lung. Successful reconstruction of a mature vasculature network would be a major breakthrough in achieving success in lung engineering. In order to regenerate the mature vasculature network, we need to remodel the vascular niche, especially the microvasculature, in the organ scaffold. This review highlights the reconstruction of the vascular niche in a decellularized lung scaffold. Because the vascular niche consists of endothelial cells (ECs), pericytes, extracellular matrix (ECM), and the epithelial-endothelial interface, all of which might affect the vascular tight junction (TJ), we discuss ECM composition and reconstruction, the contribution of ECs and perivascular cells, the air-blood barrier (ABB) function, and the effects of physiological factors during the lung microvasculature repair and engineering process. The goal of the present review is to confirm the possibility of success in lung microvascular engineering in whole organ engineering and explore the future direction of the current methodology.
Collapse
Affiliation(s)
- Tomoshi Tsuchiya
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Division of Nucleic Acid Drug Development, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Ryoichiro Doi
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomohiro Obata
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Go Hatachi
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
7
|
VeDepo MC, Buse EE, Paul A, Converse GL, Hopkins RA. Non-physiologic Bioreactor Processing Conditions for Heart Valve Tissue Engineering. Cardiovasc Eng Technol 2019; 10:628-637. [PMID: 31650518 DOI: 10.1007/s13239-019-00438-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Conventional methods of seeding decellularized heart valves for heart valve tissue engineering have led to inconsistent results in interstitial cellular repopulation, particularly of the distal valve leaflet, and notably distinct from documented re-endothelialization. The use of bioreactor conditioning mimicking physiologic parameters has been well explored but cellular infiltration remains challenging. Non-characteristic, non-physiologic conditioning parameters within a bioreactor, such as hypoxia and cyclic chamber pressure, may be used to increase the cellular infiltration leading to increased recellularization. METHODS To investigate the effects of novel and perhaps non-intuitive bioreactor conditioning parameters, ovine aortic heart valves were seeded with mesenchymal stem cells and cultured in one of four environments: hypoxia and high cyclic pressures (120 mmHg), normoxia and high cyclic pressures, hypoxia and negative cyclic pressures (- 20 mmHg), and normoxia and negative cyclic pressures. Analysis included measurements of cellular density, cell phenotype, and biochemical concentrations. RESULTS The results revealed that the bioreactor conditioning parameters influenced the degree of recellularization. Groups that implemented hypoxic conditioning exhibited increased cellular infiltration into the valve leaflet tissue compared to normoxic conditioning, while pressure conditioning did not have a significant effect of recellularization. Protein expression across all groups was similar, exhibiting a stem cell and valve interstitial cell phenotype. Biochemical analysis of the extracellular matrix was similar between all groups. CONCLUSION These results suggest the use of non-physiologic bioreactor conditioning parameters can increase in vitro recellularization of tissue engineered heart valve leaflets. Particularly, hypoxic culture was found to increase the cellular infiltration. Therefore, bioreactor conditioning of tissue engineered constructs need not always mimic physiologic conditions, and it is worth investigating novel or uncharacteristic culture conditions as they may benefit aspects of tissue culture.
Collapse
Affiliation(s)
- Mitchell C VeDepo
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA. .,Bioengineering Program, University of Kansas, 3135A Learned Hall, 1530 W. 15th St, Lawrence, KS, 66045, USA. .,Department of Bioengineering, University of Colorado Anschutz Medical Campus, 12705 E. Montview Blvd. Suite 100, Aurora, CO, 80045-7109, USA.
| | - Eric E Buse
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Arghya Paul
- Bioengineering Program, University of Kansas, 3135A Learned Hall, 1530 W. 15th St, Lawrence, KS, 66045, USA.,BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, 66045, USA
| | - Gabriel L Converse
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Richard A Hopkins
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| |
Collapse
|
8
|
Lee CH, Ingrole RSJ, Gill HS. Generation of induced pluripotent stem cells using elastin like polypeptides as a non-viral gene delivery system. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165405. [PMID: 30753882 DOI: 10.1016/j.bbadis.2019.01.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have been generated from various somatic cells using different approaches; however, a major restriction of reprogramming methods is the use of viral vectors, which have the risk of causing genome-integration of viral DNA. Here, without a viral vector, we generated iPSCs from mouse fibroblasts using an elastin-like polypeptide (ELP)-based transfection method. Our findings support the possible use of ELPs for delivery of the reprogramming genes in to somatic cells for generation of iPSCs. Results of gel retardation assay demonstrated efficient complexation of ELPs with a plasmid containing the four Yamanaka stem cell factors, Oct-4, Klf4, c-myc, and Sox2. After transfection, the iPSCs showed embryonic stem cell-like characteristics, including expression of endogenous pluripotency genes, differentiation into three germ layer lineages, and formation of teratomas in vivo. Our results demonstrate that ELP-based gene delivery may provide a safe method for use in generation of virus-free and exogenous DNA-free iPSCs, which will be crucial for future applications in stem cell-based therapies.
Collapse
Affiliation(s)
- Chang Hyun Lee
- Department of Chemical Engineering, Texas Tech University, 8th and Canton, Lubbock, TX 79409, United States
| | - Rohan S J Ingrole
- Department of Chemical Engineering, Texas Tech University, 8th and Canton, Lubbock, TX 79409, United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, 8th and Canton, Lubbock, TX 79409, United States.
| |
Collapse
|
9
|
Keeley TP, Mann GE. Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev 2019; 99:161-234. [PMID: 30354965 DOI: 10.1152/physrev.00041.2017] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive oxygen gradient between the air we breathe (Po2 ~21 kPa) and its ultimate distribution within mitochondria (as low as ~0.5-1 kPa) is testament to the efforts expended in limiting its inherent toxicity. It has long been recognized that cell culture undertaken under room air conditions falls short of replicating this protection in vitro. Despite this, difficulty in accurately determining the appropriate O2 levels in which to culture cells, coupled with a lack of the technology to replicate and maintain a physiological O2 environment in vitro, has hindered addressing this issue thus far. In this review, we aim to address the current understanding of tissue Po2 distribution in vivo and summarize the attempts made to replicate these conditions in vitro. The state-of-the-art techniques employed to accurately determine O2 levels, as well as the issues associated with reproducing physiological O2 levels in vitro, are also critically reviewed. We aim to provide the framework for researchers to undertake cell culture under O2 levels relevant to specific tissues and organs. We envisage that this review will facilitate a paradigm shift, enabling translation of findings under physiological conditions in vitro to disease pathology and the design of novel therapeutics.
Collapse
Affiliation(s)
- Thomas P Keeley
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| |
Collapse
|
10
|
Gilpin SE, Wagner DE. Acellular human lung scaffolds to model lung disease and tissue regeneration. Eur Respir Rev 2018; 27:27/148/180021. [PMID: 29875137 PMCID: PMC9488127 DOI: 10.1183/16000617.0021-2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/05/2018] [Indexed: 11/25/2022] Open
Abstract
Recent advances in whole lung bioengineering have opened new doors for studying lung repair and regeneration ex vivo using acellular human derived lung tissue scaffolds. Methods to decellularise whole human lungs, lobes or resected segments from normal and diseased human lungs have been developed using both perfusion and immersion based techniques. Immersion based techniques allow laboratories without access to intact lobes the ability to generate acellular human lung scaffolds. Acellular human lung scaffolds can be further processed into small segments, thin slices or extracellular matrix extracts, to study cell behaviour such as viability, proliferation, migration and differentiation. Recent studies have offered important proof of concept of generating sufficient primary endothelial and lung epithelial cells to recellularise whole lobes that can be maintained for several days ex vivo in a bioreactor to study regeneration. In parallel, acellular human lung scaffolds have been increasingly used for studying cell–extracellular environment interactions. These studies have helped provide new insights into the role of the matrix and the extracellular environment in chronic human lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Acellular human lung scaffolds are a versatile new tool for studying human lung repair and regeneration ex vivo. Acellular human lung scaffolds can be used as diverse tools to study lung disease and tissue regeneration ex vivohttp://ow.ly/ZS0l30k9MEH
Collapse
Affiliation(s)
- Sarah E Gilpin
- Laboratory for Organ Engineering and Regeneration, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Darcy E Wagner
- Lund University, Dept of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund, Sweden .,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Centre, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Radom-Aizik S, Zaldivar FP, Nance DM, Haddad F, Cooper DM, Adams GR. A Translational Model of Incomplete Catch-Up Growth: Early-Life Hypoxia and the Effect of Physical Activity. Clin Transl Sci 2018; 11:412-419. [PMID: 29603633 PMCID: PMC6039202 DOI: 10.1111/cts.12550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/14/2018] [Indexed: 12/19/2022] Open
Abstract
Advances in therapies have led to prolonged survival from many previously lethal health threats in children, notably among prematurely born babies and those with congenital heart disease. Evidence for catch‐up growth is common in these children, but in many cases the adult phenotype is never achieved. A translational animal model is required in which specific tissues can be studied over a reasonable time interval. We investigated the impact of postnatal hypoxia (HY) (12%O2 (HY12) or 10% O2 (HY10)) on growth in rats relative to animals raised in room air. Subgroups had access to running wheels following the HY period. Growth was fully compensated in adult HY12 rats but not HY10 rats. The results of this study indicate that neonatal hypoxia can be a useful model for the elucidation of mechanisms that mediate successful catch‐up growth following neonatal insults and identify the critical factors that prevent successful catch‐up growth.
Collapse
Affiliation(s)
- Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center (PERC), Departments of Pediatrics, University of California, Irvine, California, USA
| | - Frank P Zaldivar
- Pediatric Exercise and Genomics Research Center (PERC), Departments of Pediatrics, University of California, Irvine, California, USA
| | - Dwight M Nance
- Pediatric Exercise and Genomics Research Center (PERC), Departments of Pediatrics, University of California, Irvine, California, USA
| | - Fadia Haddad
- Pediatric Exercise and Genomics Research Center (PERC), Departments of Pediatrics, University of California, Irvine, California, USA
| | - Dan M Cooper
- Pediatric Exercise and Genomics Research Center (PERC), Departments of Pediatrics, University of California, Irvine, California, USA
| | - Gregory R Adams
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| |
Collapse
|
12
|
Farré R, Otero J, Almendros I, Navajas D. Bioengineered Lungs: A Challenge and An Opportunity. Arch Bronconeumol 2017; 54:31-38. [PMID: 29102342 DOI: 10.1016/j.arbres.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/28/2022]
Abstract
Lung biofabrication is a new tissue engineering and regenerative development aimed at providing organs for potential use in transplantation. Lung biofabrication is based on seeding cells into an acellular organ scaffold and on culturing them in an especial purpose bioreactor. The acellular lung scaffold is obtained by decellularizing a non-transplantable donor lung by means of conventional procedures based on application of physical, enzymatic and detergent agents. To avoid immune recipient's rejection of the transplanted bioengineered lung, autologous bone marrow/adipose tissue-derived mesenchymal stem cells, lung progenitor cells or induced pluripotent stem cells are used for biofabricating the bioengineered lung. The bioreactor applies circulatory perfusion and mechanical ventilation with physiological parameters to the lung during biofabrication. These physical stimuli to the organ are translated into the stem cell local microenvironment - e.g. shear stress and cyclic stretch - so that cells sense the physiological conditions in normally functioning mature lungs. After seminal proof of concept in a rodent model was published in 2010, the hypothesis that lungs can be biofabricated is accepted and intense research efforts are being devoted to the topic. The current experimental evidence obtained so far in animal tests and in ex vivo human bioengineered lungs suggests that the date of first clinical tests, although not immediate, is coming. Lung bioengineering is a disrupting concept that poses a challenge for improving our basic science knowledge and is also an opportunity for facilitating lung transplantation in future clinical translation.
Collapse
Affiliation(s)
- Ramon Farré
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain; Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain.
| | - Jordi Otero
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Isaac Almendros
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain; Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Daniel Navajas
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain; Institut de Bioenginyeria de Catalunya, The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
13
|
Qi L, Knapton EK, Zhang X, Zhang T, Gu C, Zhao Y. Pre-culture Sudan Black B treatment suppresses autofluorescence signals emitted from polymer tissue scaffolds. Sci Rep 2017; 7:8361. [PMID: 28827657 PMCID: PMC5567053 DOI: 10.1038/s41598-017-08723-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/17/2017] [Indexed: 01/21/2023] Open
Abstract
In tissue engineering, autofluorescence of polymer scaffolds often lowers the image contrast, making it difficult to examine cells and subcellular structures. Treating the scaffold materials with Sudan Black B (SBB) after cell fixation can effectively suppress autofluorescence, but this approach is not conducive to live cell imaging. Post-culture SBB treatment also disrupts intracellular structures and leads to reduced fluorescence intensity of the targets of interest. In this study, we introduce pre-culture SBB treatment to suppress autofluorescence, where SBB is applied to polymeric scaffold materials before cell seeding. The results show that the autofluorescence signals emitted from polycaprolactone (PCL) scaffolds in three commonly used fluorescence channels effectively decrease without diminishing the fluorescence signals emitted from the cells. The pre-culture SBB treatment does not significantly affect cell viability. The autofluorescence suppressive effect does not substantially diminish during the culturing period up to 28 days. The results also show that cell migration, proliferation, and myogenic differentiation in pre-culture SBB-treated groups do not exhibit statistical difference from the non-treated groups. As such, this approach greatly improves the fluorescence image quality for examining live cell behaviors and dynamics while the cells are cultured within autofluorescent polymer scaffolds.
Collapse
Affiliation(s)
- Lin Qi
- Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Erin K Knapton
- Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Xu Zhang
- Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Tongwen Zhang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Chen Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Yi Zhao
- Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA.
| |
Collapse
|
14
|
Physiological oxygen tension reduces hepatocyte dedifferentiation in in vitro culture. Sci Rep 2017; 7:5923. [PMID: 28724942 PMCID: PMC5517567 DOI: 10.1038/s41598-017-06433-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
Primary hepatocytes cultured in vitro are a powerful tool to study the functions of hepatocytes and to evaluate the metabolism and toxicity of new drugs. However, in vitro culture of hepatocytes has proven to be very difficult. Ordinary culture conditions lead to dedifferentiation of hepatocytes, resulting in rapid change in cell morphology and significant reduction in specific cell functions. In the current study, we show that hepatocyte dedifferentiation is a rapid process under 21% O2 conditions. Hepatocytes cultured in 21% O2 undergo epithelial-to-mesenchymal transition (EMT), obtain fibroblast-like morphology, and show decreased hepatic functions. In contrast, 5% O2 is very effective in maintaining the epithelial morphology and many functions of the primary hepatocytes cultured in vitro for up to five days. These functions include albumin production, glycogen storage, LDL-uptake and CYP450-mediated drug metabolism. Furthermore, we find that 5% O2 can relieve the production of reactive oxygen species (ROS) and decrease the level of DNA damage in primary cultured hepatocytes. In addition, we also show that blocking the ERK and GSK-3β pathways can inhibit the dedifferentiation of hepatocytes to a certain extent. Lowering the oxygen tension in cell culture is easily achievable, we believe it could be combined with other methods, such as the use of small molecule cocktails and 3D culture, to maintain proliferation and functions of primary hepatocytes in vitro.
Collapse
|
15
|
Destefani AC, Sirtoli GM, Nogueira BV. Advances in the Knowledge about Kidney Decellularization and Repopulation. Front Bioeng Biotechnol 2017; 5:34. [PMID: 28620603 PMCID: PMC5451511 DOI: 10.3389/fbioe.2017.00034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
End-stage renal disease (ESRD) is characterized by the progressive deterioration of renal function that may compromise different tissues and organs. The major treatment indicated for patients with ESRD is kidney transplantation. However, the shortage of available organs, as well as the high rate of organ rejection, supports the need for new therapies. Thus, the implementation of tissue bioengineering to organ regeneration has emerged as an alternative to traditional organ transplantation. Decellularization of organs with chemical, physical, and/or biological agents generates natural scaffolds, which can serve as basis for tissue reconstruction. The recellularization of these scaffolds with different cell sources, such as stem cells or adult differentiated cells, can provide an organ with functionality and no immune response after in vivo transplantation on the host. Several studies have focused on improving these techniques, but until now, there is no optimal decellularization method for the kidney available yet. Herein, an overview of the current literature for kidney decellularization and whole-organ recellularization is presented, addressing the pros and cons of the actual techniques already developed, the methods adopted to evaluate the efficacy of the procedures, and the challenges to be overcome in order to achieve an optimal protocol.
Collapse
Affiliation(s)
- Afrânio Côgo Destefani
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Postgraduate Program in Biotechnology/RENORBIO, Vitória, Brazil
| | - Gabriela Modenesi Sirtoli
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Breno Valentim Nogueira
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Postgraduate Program in Biotechnology/RENORBIO, Vitória, Brazil
| |
Collapse
|
16
|
Nonaka PN, Uriarte JJ, Campillo N, Oliveira VR, Navajas D, Farré R. Lung bioengineering: physical stimuli and stem/progenitor cell biology interplay towards biofabricating a functional organ. Respir Res 2016; 17:161. [PMID: 27894293 PMCID: PMC5126992 DOI: 10.1186/s12931-016-0477-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/22/2016] [Indexed: 01/18/2023] Open
Abstract
A current approach to obtain bioengineered lungs as a future alternative for transplantation is based on seeding stem cells on decellularized lung scaffolds. A fundamental question to be solved in this approach is how to drive stem cell differentiation onto the different lung cell phenotypes. Whereas the use of soluble factors as agents to modulate the fate of stem cells was established from an early stage of the research with this type of cells, it took longer to recognize that the physical microenvironment locally sensed by stem cells (e.g. substrate stiffness, 3D architecture, cyclic stretch, shear stress, air-liquid interface, oxygenation gradient) also contributes to their differentiation. The potential role played by physical stimuli would be particularly relevant in lung bioengineering since cells within the organ are physiologically subjected to two main stimuli required to facilitate efficient gas exchange: air ventilation and blood perfusion across the organ. The present review focuses on describing how the cell mechanical microenvironment can modulate stem cell differentiation and how these stimuli could be incorporated into lung bioreactors for optimizing organ bioengineering.
Collapse
Affiliation(s)
- Paula N Nonaka
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Juan J Uriarte
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Noelia Campillo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Vinicius R Oliveira
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,CIBER Enfermedades Respiratorias, Madrid, Spain.,Institut de Bioenginyeria de Catalunya, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain. .,CIBER Enfermedades Respiratorias, Madrid, Spain. .,Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain.
| |
Collapse
|
17
|
Prickaerts P, Adriaens ME, Beucken TVD, Koch E, Dubois L, Dahlmans VEH, Gits C, Evelo CTA, Chan-Seng-Yue M, Wouters BG, Voncken JW. Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3K27me3. Epigenetics Chromatin 2016; 9:46. [PMID: 27800026 PMCID: PMC5080723 DOI: 10.1186/s13072-016-0086-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022] Open
Abstract
Background Trimethylation at histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) controls gene activity during development and differentiation. Whether H3K4me3 and H3K27me3 changes dynamically in response to altered microenvironmental conditions, including low-oxygen conditions commonly present in solid tumors, is relatively unknown. Demethylation of H3K4me3 and H3K27me3 is mediated by oxygen and 2-oxoglutarate dioxygenases enzymes, suggesting that oxygen deprivation (hypoxia) may influence histone trimethylation. Using the MCF7 breast epithelial adenocarcinoma cell model, we have determined the relationship between epigenomic and transcriptomic reprogramming as a function of fluctuating oxygen tension. Results We find that in MCF7, H3K4me3 and H3K27me3 marks rapidly increase at specific locations throughout the genome and are largely reversed upon reoxygenation. Whereas dynamic changes are relatively highest for H3K27me3 marking under hypoxic conditions, H3K4me3 occupation is identified as the defining epigenetic marker of transcriptional control. In agreement with the global increase of H3K27 trimethylation, we provide direct evidence that the histone H3K27me3 demethylase KDM6B/JMJD3 is inactivated by limited oxygen. In situ immunohistochemical analysis confirms a marked rise of histone trimethylation in hypoxic tumor areas. Acquisition of H3K27me3 at H3K4me3-marked loci results in a striking increase in “bivalent” epigenetic marking. Hypoxia-induced bivalency substantially overlaps with embryonal stem cell-associated genic bivalency and is retained at numerous loci upon reoxygenation. Transcriptional activity is selectively and progressively dampened at bivalently marked loci upon repeated exposure to hypoxia, indicating that this subset of genes uniquely maintains the potential for epigenetic regulation by KDM activity. Conclusions These data suggest that dynamic regulation of the epigenetic state within the tumor environment may have important consequences for tumor plasticity and biology. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0086-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peggy Prickaerts
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michiel E Adriaens
- Department of Bioinformatics (BiGCaT), Maastricht University Medical Centre, Maastricht, The Netherlands.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Twan van den Beucken
- Maastricht Radiation Oncology (MaastRO) Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands.,Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON Canada
| | - Elizabeth Koch
- Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Ludwig Dubois
- Maastricht Radiation Oncology (MaastRO) Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Vivian E H Dahlmans
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Caroline Gits
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Chris T A Evelo
- Department of Bioinformatics (BiGCaT), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michelle Chan-Seng-Yue
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, ON Canada
| | - Bradly G Wouters
- Maastricht Radiation Oncology (MaastRO) Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands.,Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON Canada
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
18
|
Campillo N, Jorba I, Schaedel L, Casals B, Gozal D, Farré R, Almendros I, Navajas D. A Novel Chip for Cyclic Stretch and Intermittent Hypoxia Cell Exposures Mimicking Obstructive Sleep Apnea. Front Physiol 2016; 7:319. [PMID: 27524971 PMCID: PMC4965455 DOI: 10.3389/fphys.2016.00319] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/13/2016] [Indexed: 11/13/2022] Open
Abstract
Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication, and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS) and consists of a cylindrical well-covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time ~6 s). Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs) exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α) expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.
Collapse
Affiliation(s)
- Noelia Campillo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain
| | - Ignasi Jorba
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain
| | - Laura Schaedel
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain
| | - Blai Casals
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain
| | - David Gozal
- Biological Sciences Division, Department of Pediatrics, Pritzker School of Medicine, The University of Chicago Chicago, IL, USA
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain; Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain; Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain
| |
Collapse
|
19
|
Jagannathan L, Jose CC, Arita A, Kluz T, Sun H, Zhang X, Yao Y, Kartashov AV, Barski A, Costa M, Cuddapah S. Nuclear Factor κB1/RelA Mediates Inflammation in Human Lung Epithelial Cells at Atmospheric Oxygen Levels. J Cell Physiol 2015; 231:1611-20. [PMID: 26588041 DOI: 10.1002/jcp.25262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/04/2023]
Abstract
Oxygen levels range from 2% to 9% in vivo. Atmospheric O2 levels (21%) are known to induce cell proliferation defects and cellular senescence in primary cell cultures. However, the mechanistic basis of the deleterious effects of higher O2 levels is not fully understood. On the other hand, immortalized cells including cancer cell lines, which evade cellular senescence are normally cultured at 21% O2 and the effects of higher O2 on these cells are understudied. Here, we addressed this problem by culturing immortalized human bronchial epithelial (BEAS-2B) cells at ambient atmospheric, 21% O2 and lower, 10% O2. Our results show increased inflammatory response at 21% O2 but not at 10% O2. We found higher RelA binding at the NF-κB1/RelA target gene promoters as well as upregulation of several pro-inflammatory cytokines in cells cultured at 21% O2. RelA knockdown prevented the upregulation of the pro-inflammatory cytokines at 21% O2, suggesting NF-κB1/RelA as a major mediator of inflammatory response in cells cultured at 21% O2. Interestingly, unlike the 21% O2 cultured cells, exposure of 10% O2 cultured cells to H2O2 did not elicit inflammatory response, suggesting increased ability to tolerate oxidative stress in cells cultured at lower O2 levels.
Collapse
Affiliation(s)
- Lakshmanan Jagannathan
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Cynthia C Jose
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Adriana Arita
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Thomas Kluz
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Xiaoru Zhang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Yixin Yao
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Andrey V Kartashov
- Division of Allergy and Immunology and Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Artem Barski
- Division of Allergy and Immunology and Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| |
Collapse
|