1
|
Joyce W, He K, Zhang M, Ogunsola S, Wu X, Joseph KT, Bogomolny D, Yu W, Springer MS, Xie J, Signore AV, Campbell KL. Genetic excision of the regulatory cardiac troponin I extension in high-heart rate mammal clades. Science 2024; 385:1466-1471. [PMID: 39325895 DOI: 10.1126/science.adi8146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/18/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024]
Abstract
Mammalian cardiac troponin I (cTnI) contains a highly conserved amino-terminal extension harboring protein kinase A targets [serine-23 and -24 (Ser23/24)] that are phosphorylated during β-adrenergic stimulation to defend diastolic filling by means of an increased cardiomyocyte relaxation rate. In this work, we show that the Ser23/24-encoding exon 3 of TNNI3 was pseudoexonized multiple times in shrews and moles to mimic Ser23/24 phosphorylation without adrenergic stimulation, facilitating the evolution of exceptionally high resting heart rates (~1000 beats per minute). We further reveal alternative exon 3 splicing in distantly related bat families and confirm that both cTnI splice variants are incorporated into cardiac myofibrils. Because exon 3 of human TNNI3 exhibits a relatively low splice strength score, our findings offer an evolutionarily informed strategy to excise this exon to improve diastolic function during heart failure.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Mengdie Zhang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Samuel Ogunsola
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xini Wu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Kelvin T Joseph
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David Bogomolny
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wenhua Yu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Mark S Springer
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Anthony V Signore
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Dupas T, Vergnaud A, Pelé T, Blangy-Letheule A, Aillerie V, Bouaud M, Erraud A, Maillard A, Hassoun D, Persello A, Lecomte J, Rivière M, Tessier A, Leroux AA, Rozec B, Denis M, Lauzier B. O-GlcNAcylation levels remain stable regardless of the anaesthesia in healthy rats. Sci Rep 2024; 14:10669. [PMID: 38724577 PMCID: PMC11082205 DOI: 10.1038/s41598-024-61445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Anaesthetics are used daily in human and veterinary medicine as well as in scientific research. Anaesthetics have an impact on cell homeostasis especially through modulation of protein post-translational modifications. O-GlcNAcylation, a ubiquitous post-translational modification, plays a role in many biological processes. The aims of this study were to evaluate whether (1) anaesthesia influences O-GlcNAcylation and (2) its stimulation affects physiological parameters. Male Wistar rats (n = 38) were anaesthetized with ketamine-xylazine or isoflurane. They randomly received either an intravenous injection of Ringer's lactate or NButGT (10mg/kg) in order to increase O-GlcNAcylation levels. One hour after induction of anaesthesia, haemodynamic parameters and plasmatic markers were evaluated. Heart, brain and lungs were harvested and O-GlcNAcylation levels and O-GlcNAc-related enzymes were evaluated by western blot. Cardiac and pulmonary O-GlcNAcylation levels and cardiac, cerebral and pulmonary O-GlcNAc associated enzyme expression were not impacted with anaesthesia. Compared with ketamine-xylazine, isoflurane had a lower impact on blood pressure, heart rate and glycaemia. Pharmacological stimulation of O-GlcNAcylation by NButGT did not affect the physiological parameters. This study offers unprecedented insights into the regulation of O-GlcNAcylation and O-GlcNAc related enzymes during anaesthesia. Pharmacological stimulation of O-GlcNAcylation over a 1-h period did not disrupt the physiological balance in healthy anaesthetized rats.
Collapse
Affiliation(s)
- Thomas Dupas
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France.
| | - Amandine Vergnaud
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Thomas Pelé
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | | | - Virginie Aillerie
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Martin Bouaud
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Angélique Erraud
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Anaïs Maillard
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Dorian Hassoun
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Antoine Persello
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Jules Lecomte
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Matthieu Rivière
- Faculté des Sciences et des Techniques, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, CNRS, Université de Nantes, Nantes, France
| | - Arnaud Tessier
- Faculté des Sciences et des Techniques, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, CNRS, Université de Nantes, Nantes, France
| | - Aurélia A Leroux
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
- Oniris, 44300, Nantes, France
| | - Bertrand Rozec
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Manon Denis
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Benjamin Lauzier
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| |
Collapse
|
3
|
Herwig M, Begovic M, Budde H, Delalat S, Zhazykbayeva S, Sieme M, Schneider L, Jaquet K, Mügge A, Akin I, El-Battrawy I, Fielitz J, Hamdani N. Protein Kinase D Plays a Crucial Role in Maintaining Cardiac Homeostasis by Regulating Post-Translational Modifications of Myofilament Proteins. Int J Mol Sci 2024; 25:2790. [PMID: 38474037 DOI: 10.3390/ijms25052790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Protein kinase D (PKD) enzymes play important roles in regulating myocardial contraction, hypertrophy, and remodeling. One of the proteins phosphorylated by PKD is titin, which is involved in myofilament function. In this study, we aimed to investigate the role of PKD in cardiomyocyte function under conditions of oxidative stress. To do this, we used mice with a cardiomyocyte-specific knock-out of Prkd1, which encodes PKD1 (Prkd1loxP/loxP; αMHC-Cre; PKD1 cKO), as well as wild type littermate controls (Prkd1loxP/loxP; WT). We isolated permeabilized cardiomyocytes from PKD1 cKO mice and found that they exhibited increased passive stiffness (Fpassive), which was associated with increased oxidation of titin, but showed no change in titin ubiquitination. Additionally, the PKD1 cKO mice showed increased myofilament calcium (Ca2+) sensitivity (pCa50) and reduced maximum Ca2+-activated tension. These changes were accompanied by increased oxidation and reduced phosphorylation of the small myofilament protein cardiac myosin binding protein C (cMyBPC), as well as altered phosphorylation levels at different phosphosites in troponin I (TnI). The increased Fpassive and pCa50, and the reduced maximum Ca2+-activated tension were reversed when we treated the isolated permeabilized cardiomyocytes with reduced glutathione (GSH). This indicated that myofilament protein oxidation contributes to cardiomyocyte dysfunction. Furthermore, the PKD1 cKO mice exhibited increased oxidative stress and increased expression of pro-inflammatory markers interleukin (IL)-6, IL-18, and tumor necrosis factor alpha (TNF-α). Both oxidative stress and inflammation contributed to an increase in microtubule-associated protein 1 light chain 3 (LC3)-II levels and heat shock response by inhibiting the mammalian target of rapamycin (mTOR) in the PKD1 cKO mouse myocytes. These findings revealed a previously unknown role for PKD1 in regulating diastolic passive properties, myofilament Ca2+ sensitivity, and maximum Ca2+-activated tension under conditions of oxidative stress. Finally, we emphasized the importance of PKD1 in maintaining the balance of oxidative stress and inflammation in the context of autophagy, as well as cardiomyocyte function.
Collapse
Affiliation(s)
- Melissa Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Merima Begovic
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Heidi Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Simin Delalat
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Saltanat Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Marcel Sieme
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Luca Schneider
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Kornelia Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, UK RUB, Ruhr University Bochum, 44789 Bochum, Germany
| | - Ibrahim Akin
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Ibrahim El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, UK RUB, Ruhr University Bochum, 44789 Bochum, Germany
| | - Jens Fielitz
- Department of Molecular Cardiology, DZHK (German Center for Cardiovascular Research), Partner Site, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Physiology, University Maastricht, 6211 LK Maastricht, The Netherlands
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
4
|
Zou L, Zhang D, Ha CM, Wende AR, Chatham JC. Best practices in assessing cardiac protein O-GlcNAcylation by immunoblot. Am J Physiol Heart Circ Physiol 2023; 325:H601-H616. [PMID: 37539459 PMCID: PMC10642998 DOI: 10.1152/ajpheart.00104.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
The modification of serine and threonine amino acids of proteins by O-linked N-acetylglucosamine (O-GlcNAc) regulates the activity, stability, function, and subcellular localization of proteins. Dysregulation of O-GlcNAc homeostasis is well established as a hallmark of various cardiac diseases, including cardiac hypertrophy, heart failure, complications associated with diabetes, and responses to acute injuries such as oxidative stress and ischemia-reperfusion. Given the limited availability of site-specific O-GlcNAc antibodies, studies of changes in O-GlcNAcylation in the heart frequently use pan-O-GlcNAc antibodies for semiquantitative evaluation of overall O-GlcNAc levels. However, there is a high degree of variability in many published cardiac O-GlcNAc blots. For example, many blots often have regions that lack O-GlcNAc positive staining of proteins either below 50 or above 100 kDa. In some O-GlcNAc blots, only a few protein bands are detected, while in others, intense bands around 75 kDa dominate the gel due to nonspecific IgM band staining, making it difficult to visualize less intense bands. Therefore, the goal of this study was to develop a modifiable protocol that optimizes O-GlcNAc positive banding of proteins in cardiac tissue extracts. We showed that O-GlcNAc blots using CTD110.6 antibody of proteins ranging from <30 to ∼450 kDa could be obtained while also limiting nonspecific staining. We also show that some myofilament proteins are recognized by the CTD110.6 antibody. Therefore, by protocol optimization using the widely available CTD110.6 antibody, we found that it is possible to obtain pan-O-GlcNAc blots of cardiac tissue, which minimizes common limitations associated with this technique.NEW & NOTEWORTHY The post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc) is recognized as mediating cardiac pathophysiology. However, there is considerable variability in the quality of O-GlcNAc immunoblots used to evaluate changes in cardiac O-GlcNAc levels. Here we show that with relatively minor changes to a commonly used protocol it is possible to minimize the intensity of nonspecific bands while also reproducibly generating O-GlcNAc immunoblots covering a range of molecular weights from <30 to ∼450 kDa.
Collapse
Affiliation(s)
- Luyun Zou
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Chae-Myeong Ha
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
5
|
Rosas PC, Solaro RJ. Implications of S-glutathionylation of sarcomere proteins in cardiac disorders, therapies, and diagnosis. Front Cardiovasc Med 2023; 9:1060716. [PMID: 36762302 PMCID: PMC9902711 DOI: 10.3389/fcvm.2022.1060716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
The discovery that cardiac sarcomere proteins are substrates for S-glutathionylation and that this post-translational modification correlates strongly with diastolic dysfunction led to new concepts regarding how levels of oxidative stress affect the heartbeat. Major sarcomere proteins for which there is evidence of S-glutathionylation include cardiac myosin binding protein C (cMyBP-C), actin, cardiac troponin I (cTnI) and titin. Our hypothesis is that these S-glutathionylated proteins are significant factors in acquired and familial disorders of the heart; and, when released into the serum, provide novel biomarkers. We consider the molecular mechanisms for these effects in the context of recent revelations of how these proteins control cardiac dynamics in close collaboration with Ca2+ fluxes. These revelations were made using powerful approaches and technologies that were focused on thin filaments, thick filaments, and titin filaments. Here we integrate their regulatory processes in the sarcomere as modulated mainly by neuro-humoral control of phosphorylation inasmuch evidence indicates that S-glutathionylation and protein phosphorylation, promoting increased dynamics and modifying the Frank-Starling relation, may be mutually exclusive. Earlier studies demonstrated that in addition to cTnI as a well-established biomarker for cardiac disorders, serum levels of cMyBP-C are also a biomarker for cardiac disorders. We describe recent studies approaching the question of whether serum levels of S-glutathionylated-cMyBP-C could be employed as an important clinical tool in patient stratification, early diagnosis in at risk patients before HFpEF, determination of progression, effectiveness of therapeutic approaches, and as a guide in developing future therapies.
Collapse
Affiliation(s)
- Paola C. Rosas
- Department of Pharmacy Practice, College of Pharmacy, Chicago, IL, United States
| | - R. John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Huang AW, Janssen PML. The Case for, and Challenges of, Human Cardiac Tissue in Advancing Phosphoprotein Research. Front Physiol 2022; 13:853511. [PMID: 35399265 PMCID: PMC8984461 DOI: 10.3389/fphys.2022.853511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular disease (CVD) and stroke affect over 92 million Americans and account for nearly 1 out of 3 deaths in the US. The use of animal models in cardiovascular research has led to considerable advances in treatment and in our understanding of the pathophysiology of many CVDs. Still, animals may not fully recapitulate human disease states; species differences have long been postulated to be one of the main reasons for a failure of translation between animals and humans in drug discovery and development. Indeed, it has become increasingly clear over the past few decades that to answer certain biomedical questions, like the physiological mechanisms that go awry in many human CVDs, animal tissues may not always be the best option to use. While human cardiac tissue has long been used for laboratory research, published findings often contradict each other, leading to difficulties in interpretation. Current difficulties in utilizing human cardiac tissue include differences in acquisition time, varying tissue procurement protocols, and the struggle to define a human “control” sample. With the tremendous emphasis on translational research that continues to grow, research studies using human tissues are becoming more common. This mini review will discuss advantages, disadvantages, and considerations of using human cardiac tissue in the study of CVDs, paying specific attention to the study of phosphoproteins.
Collapse
|
7
|
Solaro RJ. Advances in understanding the state of titin truncation variants in dilated cardiomyopathy. Pflugers Arch 2022; 474:265-266. [PMID: 35020065 PMCID: PMC8837690 DOI: 10.1007/s00424-022-02664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/29/2022]
Affiliation(s)
- R John Solaro
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
8
|
Chowdhury SAK, Warren CM, Simon JN, Ryba DM, Batra A, Varga P, Kranias EG, Tardiff JC, Solaro RJ, Wolska BM. Modifications of Sarcoplasmic Reticulum Function Prevent Progression of Sarcomere-Linked Hypertrophic Cardiomyopathy Despite a Persistent Increase in Myofilament Calcium Response. Front Physiol 2020; 11:107. [PMID: 32210830 PMCID: PMC7075858 DOI: 10.3389/fphys.2020.00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/30/2020] [Indexed: 01/12/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in different genes mainly encoding myofilament proteins and therefore called a “disease of the sarcomere.” Despite the discovery of sarcomere protein mutations linked to HCM almost 30 years ago, the cellular mechanisms responsible for the development of this disease are not completely understood and likely vary among different mutations. Moreover, despite many efforts to develop effective treatments for HCM, these have largely been unsuccessful, and more studies are needed to better understand the cellular mechanisms of the disease. In experiments reported here, we investigated a mouse model expressing the mutant cTnT-R92Q, which is linked to HCM and induces an increase in myofilament Ca2+ sensitivity and diastolic dysfunction. We found that early correction of the diastolic dysfunction by phospholamban knockout (PLNKO) was able to prevent the development of the HCM phenotype in troponin T (TnT)-R92Q transgenic (TG) mice. Four groups of mice in FVB/N background were generated and used for the experiments: (1) non-transgenic (NTG)/PLN mice, which express wild-type TnT and normal level of PLN; (2) NTG/PLNKO mice, which express wild-type TnT and no PLN; (3) TG/PLN mice, which express TnT-R92Q and normal level of PLN; (4) TG/PLNKO mice, which express TnT-R92Q and no PLN. Cardiac function was determined using both standard echocardiographic parameters and speckle tracking strain measurements. We found that both atrial morphology and diastolic function were altered in TG/PLN mice but normal in TG/PLNKO mice. Histological analysis showed a disarray of myocytes and increased collagen deposition only in TG/PLN hearts. We also observed increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation only in TG/PLN hearts but not in TG/PLNKO hearts. The rescue of the HCM phenotype was not associated with differences in myofilament Ca2+ sensitivity between TG/PLN and TG/PLNKO mice. Moreover, compared to standard systolic echo parameters, such as ejection fraction (EF), speckle strain measurements provided a more sensitive approach to detect early systolic dysfunction in TG/PLN mice. In summary, our results indicate that targeting diastolic dysfunction through altering Ca2+ fluxes with no change in myofilament response to Ca2+ was able to prevent the development of the HCM phenotype and should be considered as a potential additional treatment for HCM patients.
Collapse
Affiliation(s)
- Shamim A K Chowdhury
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M Warren
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jillian N Simon
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - David M Ryba
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ashley Batra
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Peter Varga
- Department of Pediatrics, Section of Cardiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Jil C Tardiff
- Department of Medicine, Division of Cardiology, The University of Arizona, Tucson, AZ, United States
| | - R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Beata M Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|