1
|
Yang C, Harafuji N, O'Connor AK, Kesterson RA, Watts JA, Majmundar AJ, Braun DA, Lek M, Laricchia KM, Fathy HM, Mane S, Shril S, Hildebrandt F, Guay-Woodford LM. Cystin genetic variants cause autosomal recessive polycystic kidney disease associated with altered Myc expression. Sci Rep 2021; 11:18274. [PMID: 34521872 PMCID: PMC8440558 DOI: 10.1038/s41598-021-97046-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/22/2021] [Indexed: 11/08/2022] Open
Abstract
Mutation of the Cys1 gene underlies the renal cystic disease in the Cys1cpk/cpk (cpk) mouse that phenocopies human autosomal recessive polycystic kidney disease (ARPKD). Cystin, the protein product of Cys1, is expressed in the primary apical cilia of renal ductal epithelial cells. In previous studies, we showed that cystin regulates Myc expression via interaction with the tumor suppressor, necdin. Here, we demonstrate rescue of the cpk renal phenotype by kidney-specific expression of a cystin-GFP fusion protein encoded by a transgene integrated into the Rosa26 locus. In addition, we show that expression of the cystin-GFP fusion protein in collecting duct cells down-regulates expression of Myc in cpk kidneys. Finally, we report the first human patient with an ARPKD phenotype due to homozygosity for a deleterious splicing variant in CYS1. These findings suggest that mutations in Cys1/CYS1 cause an ARPKD phenotype in mouse and human, respectively, and that the renal cystic phenotype in the mouse is driven by overexpression of the Myc proto-oncogene.
Collapse
Affiliation(s)
- Chaozhe Yang
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Naoe Harafuji
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Amber K O'Connor
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jacob A Watts
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Amar J Majmundar
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanan M Fathy
- Alexandria Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, CT, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lisa M Guay-Woodford
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA.
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|