1
|
Niu N, Miao H, Ren H. Transcriptome Analysis of Myocardial Ischemic-Hypoxic Injury in Rats and Hypoxic H9C2 Cells. ESC Heart Fail 2024; 11:3775-3795. [PMID: 39010664 PMCID: PMC11631282 DOI: 10.1002/ehf2.14903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 07/17/2024] Open
Abstract
AIMS This study aimed to address inconsistencies in results between the H9C2 myocardial hypoxia (MH) cell line and myocardial infarction (MI) rat models used in MI research. We identified differentially expressed genes (DEGs) and underlying molecular mechanisms using RNA sequencing technology. METHODS RNA sequencing was used to analyse DEGs in MI rat tissues and H9C2 cells exposed to hypoxia for 24 h. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to identify key biological processes and pathways. Weighted correlation network analysis [weighted gene co-expression network analysis (WGCNA)] was used to construct gene co-expression networks, and hub genes were compared with published MI datasets [Gene Expression Omnibus (GEO)] for target identification. RESULTS GO analysis revealed enrichment of immune inflammation and mitochondrial respiration processes among 5139 DEGs in MI tissues and 2531 in H9C2 cells. KEGG analysis identified 537 overlapping genes associated with metabolism and oxidative stress pathways. Cross-analyses using the published GSE35088 and GSE47495 datasets identified 40 and 16 overlapping genes, respectively, with nine genes overlapping across all datasets and our models. WGCNA identified a key module in the MI model enriched for mRNA processing and protein binding. GO analysis revealed enrichment of mRNA processing, protein binding and mitochondrial respiratory chain complex I assembly in MI and H9C2 MH models. Five relevant hub genes were identified via a cross-analysis between the 92 hub genes that showed a common expression trend in both models. CONCLUSIONS This study reveals both shared and distinct transcriptomic responses in the MI and H9C2 models, highlighting the importance of model selection for studying myocardial ischaemia and hypoxia.
Collapse
Affiliation(s)
- Nan Niu
- Department of Cardiovascular MedicinePeople's Hospital of Ningxia Hui Autonomous RegionYinchuanChina
| | - Huangtai Miao
- Coronary Heart Disease Center,Beijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Hongmei Ren
- Department of Cardiovascular MedicinePeople's Hospital of Ningxia Hui Autonomous RegionYinchuanChina
| |
Collapse
|
2
|
Inverse salt sensitivity: an independent risk factor for cardiovascular damage in essential hypertension. J Hypertens 2022; 40:1504-1512. [PMID: 35881450 DOI: 10.1097/hjh.0000000000003174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Salt sensitivity is a powerful risk factor for cardiovascular (CV) disease and mortality in both normotensive and hypertensive patients. We investigated the predictive value of the salt sensitivity phenotype in the development of CV events and hypertensive target organ damage (TOD) among essential hypertensive patients. METHODS Eight hundred forty-four naive hypertensive patients were recruited and underwent an acute saline test during which blood pressure (BP) displayed either no substantial variation (salt-resistant, SR individuals), an increase (salt-sensitive, SS), or a paradoxical decrease (inverse salt-sensitive, ISS). Sixty-one patients with the longest monitored follow-up (median 16 years) for blood pressure and organ damage were selected for the present study. A clinical score for TOD development based on the severity and the age of onset was set up by considering hypertensive heart disease, cerebrovascular damage, microalbuminuria, and vascular events. RESULTS CV events were significantly higher among SS and ISS than in SR patients. The relative risk of developing CV events was 12.67 times higher in SS than SR and 5.94 times higher in ISS than SR patients. The development of moderate to severe TOD was 10-fold higher in SS and over 15-fold higher in ISS than in SR patients. Among the three phenotypes, changes in plasma endogenous ouabain were linked with the blood pressure effects of saline. CONCLUSIONS Salt sensitivity and inverse salt sensitivity appear to be equivalent risk factors for CV events. The response to an acute saline test is predictive of CV damage for newly identified ISS individuals.
Collapse
|
3
|
Modification of Ischemia/Reperfusion-Induced Alterations in Subcellular Organelles by Ischemic Preconditioning. Int J Mol Sci 2022; 23:ijms23073425. [PMID: 35408783 PMCID: PMC8998910 DOI: 10.3390/ijms23073425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
It is now well established that ischemia/reperfusion (I/R) injury is associated with the compromised recovery of cardiac contractile function. Such an adverse effect of I/R injury in the heart is attributed to the development of oxidative stress and intracellular Ca2+-overload, which are known to induce remodeling of subcellular organelles such as sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils. However, repeated episodes of brief periods of ischemia followed by reperfusion or ischemic preconditioning (IP) have been shown to improve cardiac function and exert cardioprotective actions against the adverse effects of prolonged I/R injury. This protective action of IP in attenuating myocardial damage and subcellular remodeling is likely to be due to marked reductions in the occurrence of oxidative stress and intracellular Ca2+-overload in cardiomyocytes. In addition, the beneficial actions of IP have been attributed to the depression of proteolytic activities and inflammatory levels of cytokines as well as the activation of the nuclear factor erythroid factor 2-mediated signal transduction pathway. Accordingly, this review is intended to describe some of the changes in subcellular organelles, which are induced in cardiomyocytes by I/R for the occurrence of oxidative stress and intracellular Ca2+-overload and highlight some of the mechanisms for explaining the cardioprotective effects of IP.
Collapse
|
4
|
Kutz LC, Cui X, Xie JX, Mukherji ST, Terrell KC, Huang M, Wang X, Wang J, Martin AJ, Pessoa MT, Cai L, Zhu H, Heiny JA, Shapiro JI, Blanco G, Xie Z, Pierre SV. The Na/K-ATPase α1/Src interaction regulates metabolic reserve and Western diet intolerance. Acta Physiol (Oxf) 2021; 232:e13652. [PMID: 33752256 PMCID: PMC8570534 DOI: 10.1111/apha.13652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
AIM Highly prevalent diseases such as insulin resistance and heart failure are characterized by reduced metabolic flexibility and reserve. We tested whether Na/K-ATPase (NKA)-mediated regulation of Src kinase, which requires two NKA sequences specific to the α1 isoform, is a regulator of metabolic capacity that can be targeted pharmacologically. METHODS Metabolic capacity was challenged functionally by Seahorse metabolic flux analyses and glucose deprivation in LLC-PK1-derived cells expressing Src binding rat NKA α1, non-Src-binding rat NKA α2 (the most abundant NKA isoform in the skeletal muscle), and Src binding gain-of-function mutant rat NKA α2. Mice with skeletal muscle-specific ablation of NKA α1 (skα1-/-) were generated using a MyoD:Cre-Lox approach and were subjected to treadmill testing and Western diet. C57/Bl6 mice were subjected to Western diet with or without pharmacological inhibition of NKA α1/Src modulation by treatment with pNaKtide, a cell-permeable peptide designed by mapping one of the sites of NKA α1/Src interaction. RESULTS Metabolic studies in mutant cell lines revealed that the Src binding regions of NKA α1 are required to maintain metabolic reserve and flexibility. Skα1-/- mice had decreased exercise endurance and mitochondrial Complex I dysfunction. However, skα1-/- mice were resistant to Western diet-induced insulin resistance and glucose intolerance, a protection phenocopied by pharmacological inhibition of NKA α1-mediated Src regulation with pNaKtide. CONCLUSIONS These results suggest that NKA α1/Src regulatory function may be targeted in metabolic diseases. Because Src regulatory capability by NKA α1 is exclusive to endotherms, it may link the aerobic scope hypothesis of endothermy evolution to metabolic dysfunction.
Collapse
Affiliation(s)
- Laura C Kutz
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Jeffrey X. Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Shreya T Mukherji
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Kayleigh C Terrell
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Minqi Huang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Jiayan Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Adam J Martin
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Marco T Pessoa
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Hua Zhu
- Department of Surgery, Wexner Medical Center, Ohio State University, Columbus, OH
| | - Judith A Heiny
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| |
Collapse
|
5
|
Effects of Ischemia-Reperfusion on Tubular Cell Membrane Transporters and Consequences in Kidney Transplantation. J Clin Med 2020; 9:jcm9082610. [PMID: 32806541 PMCID: PMC7464608 DOI: 10.3390/jcm9082610] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion (IR)-induced acute kidney injury (IRI) is an inevitable event in kidney transplantation. It is a complex pathophysiological process associated with numerous structural and metabolic changes that have a profound influence on the early and the late function of the transplanted kidney. Proximal tubular cells are particularly sensitive to IRI. These cells are involved in renal and whole-body homeostasis, detoxification processes and drugs elimination by a transporter-dependent, transcellular transport system involving Solute Carriers (SLCs) and ATP Binding Cassettes (ABCs) transporters. Numerous studies conducted mainly in animal models suggested that IRI causes decreased expression and activity of some major tubular transporters. This could favor uremic toxins accumulation and renal metabolic alterations or impact the pharmacokinetic/toxicity of drugs used in transplantation. It is of particular importance to understand the underlying mechanisms and effects of IR on tubular transporters in order to improve the mechanistic understanding of IRI pathophysiology, identify biomarkers of graft function or promote the design and development of novel and effective therapies. Modulation of transporters’ activity could thus be a new therapeutic opportunity to attenuate kidney injury during IR.
Collapse
|
6
|
Abstract
Ouabain preconditioning (OPC) initiated by low concentrations of the cardiac glycoside (CG) ouabain binding to Na/K-ATPase is relayed by a unique intracellular signaling and protects cardiac myocytes against ischemia/reperfusion injury. To explore more clinically applicable protocols based on CG properties, we tested whether the FDA-approved CG digoxin could trigger cardioprotective effects comparable with those of ouabain using PC, preconditioning and PostC, postconditioning protocols in the Langendorff-perfused mouse heart subjected to global ischemia and reperfusion. Ouabain or digoxin at 10 μmol/L inhibited Na/K-ATPase activity by approximately 30% and activated PKCε translocation by approximately 50%. Digoxin-induced PC (DigPC), initiated by a transient exposure before 40 minutes of ischemia, was as effective as OPC as suggested by the recovery of left ventricular developed pressure, end-diastolic pressure, and cardiac Na/K-ATPase activity after 30 minutes of reperfusion. DigPC also significantly decreased lactate dehydrogenase release and reduced infarct size, comparable with OPC. PostC protocols consisting of a single bolus injection of 100 nmoles of ouabain or digoxin in the coronary tree at the beginning of reperfusion both improved significantly the recovery of left ventricular developed pressure and decreased lactate dehydrogenase release, demonstrating a functional and structural protection comparable with the one provided by OPC. Given the unique signaling triggered by OPC, these results suggest that DigPostC could be considered for patients with risk factors and/or concurrent treatments that may limit effectiveness of ischemic PostC.
Collapse
|
7
|
Marck PV, Pierre SV. Na/K-ATPase Signaling and Cardiac Pre/Postconditioning with Cardiotonic Steroids. Int J Mol Sci 2018; 19:ijms19082336. [PMID: 30096873 PMCID: PMC6121447 DOI: 10.3390/ijms19082336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The first reports of cardiac Na/K-ATPase signaling, published 20 years ago, have opened several major fields of investigations into the cardioprotective action of low/subinotropic concentrations of cardiotonic steroids (CTS). This review focuses on the protective cardiac Na/K-ATPase-mediated signaling triggered by low concentrations of ouabain and other CTS, in the context of the enduring debate over the use of CTS in the ischemic heart. Indeed, as basic and clinical research continues to support effectiveness and feasibility of conditioning interventions against ischemia/reperfusion injury in acute myocardial infarction (AMI), the mechanistic information available to date suggests that unique features of CTS-based conditioning could be highly suitable, alone /or as a combinatory approach.
Collapse
Affiliation(s)
- Pauline V Marck
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, WV 25701, USA.
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, WV 25701, USA.
| |
Collapse
|
8
|
Kutz LC, Mukherji ST, Wang X, Bryant A, Larre I, Heiny JA, Lingrel JB, Pierre SV, Xie Z. Isoform-specific role of Na/K-ATPase α1 in skeletal muscle. Am J Physiol Endocrinol Metab 2018; 314:E620-E629. [PMID: 29438630 PMCID: PMC6032065 DOI: 10.1152/ajpendo.00275.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The distribution of Na/K-ATPase α-isoforms in skeletal muscle is unique, with α1 as the minor (15%) isoform and α2 comprising the bulk of the Na/K-ATPase pool. The acute and isoform-specific role of α2 in muscle performance and resistance to fatigue is well known, but the isoform-specific role of α1 has not been as thoroughly investigated. In vitro, we reported that α1 has a role in promoting cell growth that is not supported by α2. To assess whether α1 serves this isoform-specific trophic role in the skeletal muscle, we used Na/K-ATPase α1-haploinsufficient (α1+/-) mice. A 30% decrease of Na/K-ATPase α1 protein expression without change in α2 induced a modest yet significant decrease of 10% weight in the oxidative soleus muscle. In contrast, the mixed plantaris and glycolytic extensor digitorum longus weights were not significantly affected, likely because of their very low expression level of α1 compared with the soleus. The soleus mass reduction occurred without change in total Na/K-ATPase activity or glycogen metabolism. Serum analytes including K+, fat tissue mass, and exercise capacity were not altered in α1+/- mice. The impact of α1 content on soleus muscle mass is consistent with a Na/K-ATPase α1-specific role in skeletal muscle growth that cannot be fulfilled by α2. The preserved running capacity in α1+/- is in sharp contrast with previously reported consequences of genetic manipulation of α2. Taken together, these results lend further support to the concept of distinct isoform-specific functions of Na/K-ATPase α1 and α2 in skeletal muscle.
Collapse
Affiliation(s)
- Laura C Kutz
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Shreya T Mukherji
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Amber Bryant
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Isabel Larre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Judith A Heiny
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| |
Collapse
|
9
|
Hu Y, Wang Z, Ge N, Huang T, Zhang M, Wang H. Sodium pump alpha-2 subunit (ATP1A2) alleviates cardiomyocyte anoxia-reoxygenation injury via inhibition of endoplasmic reticulum stress-related apoptosis. Can J Physiol Pharmacol 2018; 96:515-520. [PMID: 29394489 DOI: 10.1139/cjpp-2017-0349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have found decreased functional capacity of the sodium pump (Na+-K+-ATPase) alpha and beta subunits and recovery of Na+-K+-ATPase activity significantly decreased myocyte apoptosis in myocardial ischemia-reperfusion (I/R) injury. However, the potential role of the Na+-K+-ATPase α-2 subunit (ATP1A2) in cardiomyocyte anoxia-reoxygenation (A/R) injury has not been elucidated. Rat myocardial cells were subjected to siRNA transfection followed by A/R injury. Apoptosis and expression of endoplasmic reticulum (ER) stress proteins CHOP, GRP78, and caspase-12 were detected in 4 groups of cells: ATP1A2 siRNA + A/R, control siRNA + A/R, control, and A/R injury model. We found that apoptosis was significantly elevated in the ATP1A2 siRNA + A/R group as compared with control siRNA + A/R, control, and A/R injury model groups (p < 0.05, p < 0.01, and p < 0.05). Furthermore, expression of CHOP, GRP78, and caspase-12 were significantly elevated in the ATP1A2 siRNA + A/R group as compared with control siRNA + A/R, control, and A/R injury model groups (p < 0.05, p < 0.01, and p < 0.05). Our findings suggest that cardiomyocyte ATP1A2 is a target of A/R injury, and its cardioprotective function may be mediated via inhibiting the ER-stress-related apoptosis.
Collapse
Affiliation(s)
- Yulong Hu
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zheng Wang
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Nannan Ge
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Ting Huang
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Mingchao Zhang
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hegui Wang
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
10
|
Belliard A, Gulati GK, Duan Q, Alves R, Brewer S, Madan N, Sottejeau Y, Wang X, Kalisz J, Pierre SV. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+-ATPase: protection by ouabain preconditioning. Physiol Rep 2017; 4:4/19/e12991. [PMID: 27702882 PMCID: PMC5064143 DOI: 10.14814/phy2.12991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Cardiac glycosides (CG) are traditionally known as positive cardiac inotropes that inhibit Na+/K+‐ATPase‐dependent ion transport. CG also trigger‐specific signaling pathways through the cardiac Na+/K+‐ATPase, with beneficial effects in ischemia/reperfusion (I/R) injury (e.g., ouabain preconditioning, known as OPC) and hypertrophy. Our current understanding of hypersensitivity to CG and subsequent toxicity in the ischemic heart is mostly based on specific I/R‐induced alterations of the Na+/K+‐ATPase enzymatic function and has remained incomplete. The primary goal of this study was to investigate and compare the impact of I/R on Na+/K+‐ATPase enzymatic and signaling functions. Second, we assessed the impact of OPC on both functions. Langendorff‐perfused rat hearts were exposed to 30 min of ischemia and 30 min of reperfusion. At the inotropic concentration of 50 μmol/L, ouabain increased ERK and Akt phosphorylation in control hearts. In I/R hearts, this concentration did not induced positive inotropy and failed to induce Akt or ERK phosphorylation. The inotropic response to dobutamine as well as insulin signaling persisted, suggesting specific alterations of Na+/K+‐ATPase. Indeed, Na+/K+‐ATPase protein expression was intact, but the enzyme activity was decreased by 60% and the enzymatic function of the isoform with high affinity for ouabain was abolished following I/R. Strikingly, OPC prevented all I/R‐induced alterations of the receptor. Further studies are needed to reveal the respective roles of I/R‐induced modulations of Na+/K+‐ATPase enzymatic and signaling functions in cardiomyocyte death.
Collapse
Affiliation(s)
- Aude Belliard
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, Ohio
| | - Gaurav K Gulati
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, Ohio
| | - Qiming Duan
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, Ohio
| | - Rosana Alves
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, Ohio Marshall Institute for Interdisciplinary Research, Huntington, West Virginia
| | - Shannon Brewer
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, Ohio
| | - Namrata Madan
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia
| | - Yoann Sottejeau
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, Ohio
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia
| | - Jennifer Kalisz
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, Ohio
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia
| |
Collapse
|
11
|
Petrushanko IY, Mitkevich VA, Lakunina VA, Anashkina AA, Spirin PV, Rubtsov PM, Prassolov VS, Bogdanov NB, Hänggi P, Fuller W, Makarov AA, Bogdanova A. Cysteine residues 244 and 458-459 within the catalytic subunit of Na,K-ATPase control the enzyme's hydrolytic and signaling function under hypoxic conditions. Redox Biol 2017; 13:310-319. [PMID: 28601781 PMCID: PMC5470536 DOI: 10.1016/j.redox.2017.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/16/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022] Open
Abstract
Our previous findings suggested that reversible thiol modifications of cysteine residues within the actuator (AD) and nucleotide binding domain (NBD) of the Na,K-ATPase may represent a powerful regulatory mechanism conveying redox- and oxygen-sensitivity of this multifunctional enzyme. S-glutathionylation of Cys244 in the AD and Cys 454-458-459 in the NBD inhibited the enzyme and protected cysteines' thiol groups from irreversible oxidation under hypoxic conditions. In this study mutagenesis approach was used to assess the role these cysteines play in regulation of the Na,K-ATPase hydrolytic and signaling functions. Several constructs of mouse α1 subunit of the Na,K-ATPase were produced in which Cys244, Cys 454-458-459 or Cys 244-454-458-459 were replaced by alanine. These constructs were expressed in human HEK293 cells. Non-transfected cells and those expressing murine α1 subunit were exposed to hypoxia or treated with oxidized glutathione (GSSG). Both conditions induced inhibition of the wild type Na,K-ATPase. Enzymes containing mutated mouse α1 lacking Cys244 or all four cysteines (Cys 244-454-458-459) were insensitive to hypoxia. Inhibitory effect of GSSG was observed for wild type murine Na,K-ATPase, but was less pronounced in Cys454-458-459Ala mutant and completely absent in the Cys244Ala and Cys 244-454-458-459Ala mutants. In cells, expressing wild type enzyme, ouabain induced activation of Src and Erk kinases under normoxic conditions, whereas under hypoxic conditions this effect was inversed. Cys454-458-459Ala substitution abolished Src kinase activation in response to ouabain treatment, uncoupled Src from Erk signaling, and interfered with O2-sensitivity of Na,K-ATPase signaling function. Moreover, modeling predicted that S-glutathionylation of Cys 458 and 459 should prevent inhibitory binding of Src to NBD. Our data indicate for the first time that cysteine residues within the AD and NBD influence hydrolytic as well as receptor function of the Na,K-ATPase and alter responses of the enzyme to hypoxia or upon treatment with cardiotonic steroids.
Collapse
Affiliation(s)
- Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valentina A Lakunina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia A Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel V Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Peter M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir S Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay B Bogdanov
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Pascal Hänggi
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - William Fuller
- Cardiovascular and Diabetes Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
On the Many Actions of Ouabain: Pro-Cystogenic Effects in Autosomal Dominant Polycystic Kidney Disease. Molecules 2017; 22:molecules22050729. [PMID: 28467389 PMCID: PMC5688955 DOI: 10.3390/molecules22050729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/19/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023] Open
Abstract
Ouabain and other cardenolides are steroidal compounds originally discovered in plants. Cardenolides were first used as poisons, but after finding their beneficial cardiotonic effects, they were rapidly included in the medical pharmacopeia. The use of cardenolides to treat congestive heart failure remained empirical for centuries and only relatively recently, their mechanisms of action became better understood. A breakthrough came with the discovery that ouabain and other cardenolides exist as endogenous compounds that circulate in the bloodstream of mammals. This elevated these compounds to the category of hormones and opened new lines of investigation directed to further study their biological role. Another important discovery was the finding that the effect of ouabain was mediated not only by inhibition of the activity of the Na,K-ATPase (NKA), but by the unexpected role of NKA as a receptor and a signal transducer, which activates a complex cascade of intracellular second messengers in the cell. This broadened the interest for ouabain and showed that it exerts actions that go beyond its cardiotonic effect. It is now clear that ouabain regulates multiple cell functions, including cell proliferation and hypertrophy, apoptosis, cell adhesion, cell migration, and cell metabolism in a cell and tissue type specific manner. This review article focuses on the cardenolide ouabain and discusses its various in vitro and in vivo effects, its role as an endogenous compound, its mechanisms of action, and its potential use as a therapeutic agent; placing especial emphasis on our findings of ouabain as a pro-cystogenic agent in autosomal dominant polycystic kidney disease (ADPKD).
Collapse
|
13
|
Jung IP, Ha NR, Kim AR, Kim SH, Yoon MY. Mutation analysis of the interactions between Mycobacterium tuberculosis caseinolytic protease C1 (ClpC1) and ecumicin. Int J Biol Macromol 2017; 101:348-357. [PMID: 28342755 DOI: 10.1016/j.ijbiomac.2017.03.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
Ecumicin is a well-known and potent inhibitor of Mycobacterium tuberculosis. Although the target of ecumicin is caseinolytic protease C1 (ClpC1), the exact mechanism by which ecumicin inhibits ClpC1 has not been identified. To analyze ecumicin's action on ClpC1, site-directed mutagenesis was performed on its binding site. The estimated binding residues within ClpC1 to ecumicin were selected via in silico analysis using molecular docking. The selected residues were mutated by site-directed mutagenesis and the effects on ecumicin binding were analyzed. Mutation at the R83 residue, especially the R83A mutation, in ClpC1 resulted in strong resistance to ATPase activation and inhibition of proteolytic activity. In addition, binding of ecumicin to the R83A ClpC1 N-terminal domain (residues 1-145) was not observed in native gel analysis. These results reveal that the R83 residue plays an important role in the binding of ecumicin. This result provides a basis for the development of an anti-tuberculosis agent based on ecumicin derivatives.
Collapse
Affiliation(s)
- In-Pil Jung
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Na-Reum Ha
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - A-Ru Kim
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Sang-Heon Kim
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Moon-Young Yoon
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
14
|
Screening, verification, and analysis of biomarkers for drug-induced cardiac toxicity in vitro based on RTCA coupled with PCR Array technology. Toxicol Lett 2017; 268:17-25. [PMID: 28099878 DOI: 10.1016/j.toxlet.2017.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/23/2022]
Abstract
Cardiotoxicity is one of the most serious side effects of new drugs. Early detection of the drug induced cardiotoxicity based on the biomarkers provides an important preventative strategy for detecting potential cardiotoxicity of candidate drugs. In this study, we aim to identify the predictive genomics biomarkers for drug-induced cardiac toxicity based on the RTCA coupled with PCR Array technology in primary cells. Three prototypical cardiotoxic compounds (doxorubicin, isoproterenol, ouabain) with different mechanisms were firstly real-time monitored to diagnose the cytotoxicity by using the RTCA, while the functional alterations of cardiomyocytes were also monitored by analyzing the beating frequency of cardiomyocytes. Then cardiac specific toxicity gene expression changes were studied by using the technology of PCR Array, which can detect the changes of 84 cardiac functions related genes. Rps6kb1 was identified to be the common cardiac biomarkers by using multivariate statistical and integration analyses. The biomarker was further verified by selecting other drugs with or without cardiotoxicity, and the results showed that the gene exhibited specific changes in cardiac toxicity. Moreover, IPA was applied to combine relevant pathways of Rps6kb1, and identify the main types of cardiac toxicity. These results would further enrich the evaluating strategy of drug-induced cardiotoxicity in vitro, and Rps6kb1 could be used as the specific biomarker of cardiotoxcity during safety assessment of the novel drug candidates.
Collapse
|