1
|
Liu G, Jia G, Ren Y, Yin C, Xiao X, Wu H, Liu J, Chen M. Mechanism of lncRNA gadd7 regulating mitofusin 1 expression by recruiting LSD1 to down-regulate H3K9me3 level, and mediating mitophagy in alveolar type II epithelial cell apoptosis in hyperoxia-induced acute lung injury. Cell Biol Toxicol 2025; 41:77. [PMID: 40301157 PMCID: PMC12041145 DOI: 10.1007/s10565-025-10021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/13/2025] [Indexed: 05/01/2025]
Abstract
OBJECTIVE Hyperoxic exposure induces acute lung injury (ALI). We analyzed the mechanism of long non-coding RNA (lncRNA) growth-arrested DNA damage-inducible gene 7 (gadd7) regulating mitofusin 1 (MFN1) in Hyperoxia-induced ALI (HALI) type II alveolar epithelial cell (AEC II) apoptosis. METHODS The HALI rat model was generated using hyperoxic induction and treated with shRNA-gadd7 and rapamycin (Rapa), with ALI, apoptotic level, total protein concentration and total cell, neutrophil and macrophage counts assessed. The HALI cell model was developed on hyperoxia-induced RLE-6TN cells and processed with oe-MFN1, si-gadd7 and Rapa. Cell viability, apoptosis, TOM20/LC3BII co-localization, mitochondrial membrane potential (MMP), superoxide dismutase activity, malonaldehyde, reactive oxygen species (ROS), tumor necrosis factor-α, interleukin (IL)-10, IL-6, IL-1β, gadd7, MFN1, Cleaved caspase-3, Cleaved poly (ADP-ribose) polymerase, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X, LC3BI/II, lysine-specific demethylase 1 (LSD1), p62, and H3K9me3 protein levels were measured. gadd7-LSD1 interaction was predicted and verified by RPISeq database, RIP, and RNA pull-down assay. RESULTS In HALI rats, gadd7 was up-regulated in lung tissues, and gadd7 silencing alleviated oxidative stress, ALI and apoptosis. gadd7 knockdown inhibited oxidative stress and apoptosis though MFN1, and mediated mitophagy (evidenced by diminished LC3BII/LC3BI ratio, TOM20/LC3BII co-localization and ROS level, and elevated p62 level and MMP), which were reversed by mitophagy activation. By recruiting LSD1 to down-regulate H3K9me3 level and promote MFN1 expression, gadd7-mediated mitophagy affected ALI and apoptosis in HALI rats. CONCLUSION LncRNA gadd7 regulated MFN1 expression by recruiting LSD1 to down-regulate H3K9me3 level and mediate mitophagy, thereby promoting AEC II apoptosis in HALI.
Collapse
Affiliation(s)
- Guoyue Liu
- Intensive Care Unit, The Second Affiliated Hospital of Zunyi Medical University, Intersection of Xinlong Avenue and Xinpu Avenue, Xinpu New District, Zunyi, 563000, Guizhou, China
- Graduate School, Zunyi Medical University, No. 6, Xuefu West Road, Xinpu New District, Zunyi, 563000, Guizhou, China
| | - Guiyang Jia
- Intensive Care Unit, The Second Affiliated Hospital of Zunyi Medical University, Intersection of Xinlong Avenue and Xinpu Avenue, Xinpu New District, Zunyi, 563000, Guizhou, China
- Graduate School, Zunyi Medical University, No. 6, Xuefu West Road, Xinpu New District, Zunyi, 563000, Guizhou, China
| | - Yingcong Ren
- Graduate School, Zunyi Medical University, No. 6, Xuefu West Road, Xinpu New District, Zunyi, 563000, Guizhou, China
| | - Cunzhi Yin
- Intensive Care Unit, The Second Affiliated Hospital of Zunyi Medical University, Intersection of Xinlong Avenue and Xinpu Avenue, Xinpu New District, Zunyi, 563000, Guizhou, China
| | - Xuan Xiao
- Intensive Care Unit, The Second Affiliated Hospital of Zunyi Medical University, Intersection of Xinlong Avenue and Xinpu Avenue, Xinpu New District, Zunyi, 563000, Guizhou, China
| | - Hang Wu
- Intensive Care Unit, The Second Affiliated Hospital of Zunyi Medical University, Intersection of Xinlong Avenue and Xinpu Avenue, Xinpu New District, Zunyi, 563000, Guizhou, China
| | - Jun Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, No. 6, Xuefu West Road, Xinpu New District, Zunyi, 563000, Guizhou, China.
| | - Miao Chen
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, No.149, Dalian Road, Huichuan District, Zunyi, Guizhou, China.
| |
Collapse
|
2
|
Xia S, Vila Ellis L, Winkley K, Menden H, Mabry SM, Venkatraman A, Louiselle D, Gibson M, Grundberg E, Chen J, Sampath V. Neonatal hyperoxia induces activated pulmonary cellular states and sex-dependent transcriptomic changes in a model of experimental bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L123-L140. [PMID: 36537711 PMCID: PMC9902224 DOI: 10.1152/ajplung.00252.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Hyperoxia disrupts lung development in mice and causes bronchopulmonary dysplasia (BPD) in neonates. To investigate sex-dependent molecular and cellular programming involved in hyperoxia, we surveyed the mouse lung using single cell RNA sequencing (scRNA-seq), and validated our findings in human neonatal lung cells in vitro. Hyperoxia-induced inflammation in alveolar type (AT) 2 cells gave rise to damage-associated transient progenitors (DATPs). It also induced a new subpopulation of AT1 cells with reduced expression of growth factors normally secreted by AT1 cells, but increased mitochondrial gene expression. Female alveolar epithelial cells had less EMT and pulmonary fibrosis signaling in hyperoxia. In the endothelium, expansion of Car4+ EC (Cap2) was seen in hyperoxia along with an emergent subpopulation of Cap2 with repressed VEGF signaling. This regenerative response was increased in females exposed to hyperoxia. Mesenchymal cells had inflammatory signatures in hyperoxia, with a new distal interstitial fibroblast subcluster characterized by repressed lipid biosynthesis and a transcriptomic signature resembling myofibroblasts. Hyperoxia-induced gene expression signatures in human neonatal fibroblasts and alveolar epithelial cells in vitro resembled mouse scRNA-seq data. These findings suggest that neonatal exposure to hyperoxia programs distinct sex-specific stem cell progenitor and cellular reparative responses that underpin lung remodeling in BPD.
Collapse
Affiliation(s)
- Sheng Xia
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Lisandra Vila Ellis
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Konner Winkley
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri
| | - Heather Menden
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Sherry M Mabry
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Aparna Venkatraman
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Daniel Louiselle
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri
| | - Margaret Gibson
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri
| | - Elin Grundberg
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri
- Children's Mercy Research Institute, Kansas City, Missouri
| | - Jichao Chen
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Venkatesh Sampath
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
- Children's Mercy Research Institute, Kansas City, Missouri
| |
Collapse
|
3
|
Jia L, Hao H, Wang C, Wei J. Etomidate attenuates hyperoxia-induced acute lung injury in mice by modulating the Nrf2/HO-1 signaling pathway. Exp Ther Med 2021; 22:785. [PMID: 34055084 PMCID: PMC8145798 DOI: 10.3892/etm.2021.10217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the protective effects of etomidate on hyperoxia-induced acute lung injury in mice, particularly on the nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. Fifty specific pathogen-free mice were randomly divided into the blank control, model, high oxygen exposure + low etomidate dose (0.3 mg·kg-1), a high oxygen exposure + moderate etomidate dose (3 mg·kg-1), and a high oxygen exposure + high etomidate dose (10 mg·kg-1) groups, with ten mice allotted per group. After 72 h, the mice were sacrificed and the lung tissues were harvested, and the wet-to-dry (W/D) ratio of the tissues was calculated. Hematoxylin-eosin staining was performed to observe the pathological changes in the lung tissues, and the lung injury score (LIS) was calculated. The mRNA and protein expression levels of Nrf2 and HO-1 were measured. The malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) levels were also measured, and interleukin (IL)-1β, IL-6, tumor necrosis factor alpha (TNF-α) and IL-10 concentrations in the bronchoalveolar lavage fluid were determined. At low and moderate doses, etomidate decreased pathological damage in the lung tissue, decreased the LIS and W/D ratio, upregulated Nrf2 and HO-1 mRNA and protein expression, decreased IL-1β, IL-6, and TNF-α concentrations, increased MPO activity and IL-10 levels, suppressed the production of the oxidation product MDA, and enhanced the activities of the antioxidant enzymes CAT and SOD. Within a certain dose range, etomidate enhanced antioxidant and anti-inflammatory effects in mice, thereby decreasing lung injury induced by the chronic inhalation of oxygen at high concentrations. Furthermore, the underlying mechanism may be associate with the upregulation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Liming Jia
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Hongzhong Hao
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Chunyu Wang
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Jianfeng Wei
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
4
|
Qi A, Wang T, Li W, Wang Y, Chai Y. The effect of miR-21-5p on the MAP2K3 expressions and cellular apoptosis in the lung tissues of neonatal rats with hyperoxia-induced lung injuries. Am J Transl Res 2021; 13:2784-2793. [PMID: 34017441 PMCID: PMC8129236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To explore the effect of miR-21-5p on the MAP2K3 expressions and cellular apoptosis in the lung tissues of neonatal rats with hyperoxia-induced lung injuries (HILI). METHODS Twenty Sprague-Dawley neonatal rats were assigned to the normal group, and 120 rats were used to create a HILI model and were divided into the following six groups of 20 rats each: the model group, the miR-21-5p NC group, the miR-21-5p agomir group, the oe-NC group (MAP2K3 overexpression NC), the oe-MAP2K3 group, and the miR-21-5p agomir+oe-MAP2K3 group. RESULTS miR-21-5p can target MAP2K3. Compared with the normal rats, the rats with HILI had lower miR-21-5p expression levels and higher MAP2K3 expression levels in the lung tissues (both P<0.05). Unlike the normal group, the other groups all presented different degrees of lung injuries, lower Bcl-2 expression levels, higher cellular apoptosis rates, and higher expression levels of cleaved caspase-3, Bax, IL-6, and TNF-α (all P<0.05). Compared with the model and the miR-21-5p NC groups, the miR-21-5p agomir group had better results in terms of the aforementioned markers; compared with the oe-NC group, the oe-MAP2K3 group had worse results in terms of these markers (all P<0.05). Moreover, we found that the protective effects of miR-21-5p overexpression on the lung tissues of HILI rats can be partially blocked by MAP2K3 overexpression. CONCLUSION miR-21-5p can inhibit MAP2K3 expression and reduce cellular apoptosis in HILI, thereby exerting protective effects on neonatal rats with HILI.
Collapse
Affiliation(s)
- Anlong Qi
- Department of Emergency Medicine, Tianjin Medical University General HospitalTianjin City, China
- Tianjin Medical UniversityTianjin City, China
| | - Tong Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of EndocrinologyTianjin City, China
| | - Wang Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of EndocrinologyTianjin City, China
| | - Yongtao Wang
- Department of Emergency Medicine, Tianjin Medical University General HospitalTianjin City, China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General HospitalTianjin City, China
| |
Collapse
|
5
|
miR-21-5p Suppresses Mitophagy to Alleviate Hyperoxia-Induced Acute Lung Injury by Directly Targeting PGAM5. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4807254. [PMID: 33681349 PMCID: PMC7907750 DOI: 10.1155/2020/4807254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022]
Abstract
Hyperoxia-induced acute lung injury (HALI) is a severe side effect of refractory hypoxemia treatment, for which no effective therapeutic strategy is available. Here, we found that the lung miR-21-5p level was significantly decreased in the rats subjected to hyperoxia. Further, we presented evidence that miR-21-5p was a crucial regulator of mitophagy and mitochondrial dysfunction. Moreover, it proved that miR-21-5p regulated hyperoxia-induced mitophagy and mitochondrial dysfunction by directly binding to the target gene PGAM5. In conclusion, for the first time, we found that miR-21-5p could directly suppress mitophagy and mitochondrial damage during HALI formation.
Collapse
|
6
|
Qin S, Wang H, Liu G, Mei H, Chen M. miR‑21‑5p ameliorates hyperoxic acute lung injury and decreases apoptosis of AEC II cells via PTEN/AKT signaling in rats. Mol Med Rep 2019; 20:4953-4962. [PMID: 31702805 PMCID: PMC6854583 DOI: 10.3892/mmr.2019.10779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Inhibiting apoptosis of type II alveolar epithelial cells (AEC II) is an effective way to decrease hyperoxic acute lung injury (HALI); however, the specific underlying molecular mechanisms have not yet been fully elucidated. Although miRNA‑21‑5p has previously been reported to decrease H2O2‑induced AEC II apoptosis by targeting PTEN in vitro, whether miR‑21‑5p can decrease HALI in vivo and the downstream molecular mechanisms remain unclear. In the present study, rats were endotracheally administered with an miR‑21‑5p‑encoding (AAV‑6‑miR‑21‑5p) or a negative control adenovirus vector, and then a HALI model was established by exposure to hyperoxia. At 3 weeks following the administration of AAV‑6‑miR‑21‑5p, the severity of HALI was decreased, as evidenced by the improved outcome of the oxygenation index, respiratory index, wet/dry weight ratio and pathological scores of the HALI lungs. To further investigate the underlying mechanisms, AEC II cells were isolated from the lungs of the experimental rats and cultured. The expression levels of miR‑21‑5p and its target gene, PTEN, were detected, as well as the levels of phosphorylated and total AKT. In addition, the apoptosis rate of AEC II was detected by flow cytometry. The results demonstrated that AAV‑6‑miR‑21‑5p administration increased the miR‑21‑5p levels in primary AEC II cells, while it decreased the expression levels of PTEN. miR‑21‑5p overexpression also increased AKT phosphorylation in AEC II cells from the HALI lungs compared with that of the HALI alone group and the control virus group. The present study indicated that miR‑21‑5p ameliorated HALI in vivo, which may have resulted from the inhibition of PTEN/AKT‑induced apoptosis of AEC II cells. These findings suggest that miR‑21‑5p and PTEN/AKT signaling might serve as potential targets for HALI treatment.
Collapse
Affiliation(s)
- Song Qin
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hongliang Wang
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guoyue Liu
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hong Mei
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Miao Chen
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
7
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
8
|
Liu G, Mei H, Chen M, Qin S, Li K, Zhang W, Chen T. Protective effect of agmatine against hyperoxia-induced acute lung injury via regulating lncRNA gadd7. Biochem Biophys Res Commun 2019; 516:68-74. [PMID: 31196629 DOI: 10.1016/j.bbrc.2019.04.164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 01/07/2023]
Abstract
Hyperoxia-induced acute lung injury (HALI) is a kind of iatrogenic pulmonary dysfunction caused by the prolonged exposure to high concentrations of oxygen, which is commonly seen in the treatment of refractory hypoxemia. Agmatine (AGM), a biogenic amine metabolite of l-arginine, induces a variety of physiological and pharmacological effects in the body. In this study, we investigated the protective effect of AGM on hyperoxia-induced lung injury and explored the underlying mechanism. A series of methods were used including flow cytometry, tunnel assay, dual-luciferase reporter assay, qRT-PCR and Western blotting. The results indicate that AGM can protect hyperoxia-induced lung injury. Further studies suggest that AGM decreased the upregulated expression of lncRNA gadd7 caused by hyperoxia and due to the presence of the competitive binding of lncRNA gadd7 and MFN1 to miR-125a, AGM indirectly decreased MFN1 protein expression to inhibit the cells apoptosis. In conclusion, AGM protects hyperoxia-induced lung injury by decreasing the expression of lncRNA gadd7 to regulate MFN1 expression.
Collapse
Affiliation(s)
- Guoyue Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Hong Mei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| | - Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Kang Li
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Wei Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Tao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| |
Collapse
|
9
|
Bezerra FS, Ramos CDO, Castro TDF, Araújo NPDS, de Souza ABF, Bandeira ACB, Costa GDP, Cartelle CT, Talvani A, Cangussú SD, Brochard L, Nagato AC. Exogenous surfactant prevents hyperoxia-induced lung injury in adult mice. Intensive Care Med Exp 2019; 7:19. [PMID: 30919149 PMCID: PMC6437243 DOI: 10.1186/s40635-019-0233-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/05/2019] [Indexed: 01/04/2023] Open
Abstract
Background In addition to the risk of developing ventilator-induced lung injury, patients with ARDS are at risk of developing hyperoxic injury due the supra-physiological oxygen supplementation clinically required to reverse hypoxemia. Alterations of endogenous surfactant system participate in the pulmonary dysfunction observed in ARDS. Administration of exogenous surfactant could have protective effects during hyperoxia. Methods Male BALB/c mice (8–10 weeks), a strain highly sensitive to hyperoxia, received the exogenous surfactant-containing protein SP-B and SP-C by intranasal instillation 12 h before starting 24 h of exposure to hyperoxia in an inhalation chamber and were compared to mice receiving hyperoxia alone and to controls subjected to normoxia. Results Compared to the hyperoxia group, the administration of exogenous surfactant was able to reduce lung inflammation through a reduction in the influx of neutrophils and inflammatory biomarkers such as TNF, IL-17, and HMGB1 expression. The antioxidant activity prevented oxidative damage by reducing lipid peroxidation and protein carbonylation and increasing superoxide dismutase activity when compared to the hyperoxia group. Conclusion Our results offer new perspectives on the effects and the mechanism of exogenous surfactant in protecting the airway and lungs, in oxygen-rich lung microenvironment, against oxidative damage and aggravation of acute inflammation induced by hyperoxia.
Collapse
Affiliation(s)
- Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil. .,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada. .,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada. .,Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of exact and biological sciences (ICEB), Federal University of Ouro Preto (UFOP), Campus Universitário s/n, Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil.
| | - Camila de Oliveira Ramos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Natália Pereira da Silva Araújo
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Ana Carla Balthar Bandeira
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Christiane Teixeira Cartelle
- Laboratory of Neuro Immuno experimental pathology (NIPE), Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Akinori Cardozo Nagato
- Laboratory of Immunopathology and Experimental Pathology, Center for Reproductive Biology-CRB, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.,Physiology Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
10
|
Chen XX, Tang L, Han ZH, Wang WJ, Meng JG. Coculture with bone marrow‑derived mesenchymal stem cells attenuates inflammation and apoptosis in lipopolysaccharide‑stimulated alveolar epithelial cells via enhanced secretion of keratinocyte growth factor and angiopoietin‑1 modulating the Toll‑like receptor‑4 signal pathway. Mol Med Rep 2019; 19:1891-1902. [PMID: 30628710 DOI: 10.3892/mmr.2019.9836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/11/2018] [Indexed: 11/06/2022] Open
Abstract
Acute lung injury (ALI) is a common, costly and potentially lethal disease with characteristics of alveolar‑capillary membrane disruption, pulmonary edema and impaired gas exchange due to increased apoptosis and pulmonary inflammation. There is no effective and specific therapy for ALI; however, mesenchymal stem cells (MSCs) have been demonstrated to be a potential option. Lipopolysaccharide (LPS) is a highly proinflammatory molecule that is used to mimic an in vivo inflammatory and damaged state in vitro. The present study investigated the effect of bone marrow‑derived MSCs on an LPS‑induced alveolar epithelial cell (A549 cell line) injury and its underlying mechanisms by a Transwell system. It was identified that a high LPS concentration caused a decrease in cell viability, increases in apoptosis, inflammatory cytokine release and NF‑κB activity, disruption of the caspase‑3/Bcl‑2 ratio, upregulation of Toll‑like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and toll‑interleukin‑1 receptor domain‑containing adaptor inducing interferon (TRIF) expression, and facilitation of TLR4/MyD88 and TLR4/TRIF complex formation in A549 cells. Coculture with MSCs attenuated all of these activities induced by LPS in A549 cells. In addition, an increased level of keratinocyte growth factor (KGF) and angiopoietin‑1 (ANGPT1) secretion from MSCs was observed under inflammatory stimulation. KGF and/or ANGPT1 neutralizing antibodies diminished the beneficial effect of MSC conditioned medium. These data suggest that MSCs alleviate inflammatory damage and cellular apoptosis induced by LPS in A549 cells by modulating TLR4 signals. These changes may be partly associated with an increased secretion of KGF and ANGPT1 from MSCs under inflammatory conditions. These data provide the basis for development of MSC‑based therapies for ALI.
Collapse
Affiliation(s)
- Xu-Xin Chen
- Department of Respiratory Medicine, Navy General Hospital of The People's Liberation Army, Beijing 100037, P.R. China
| | - Lu Tang
- Department of Neurology, The First Hospital of Changsha, Changsha, Hunan 430100, P.R. China
| | - Zhi-Hai Han
- Department of Respiratory Medicine, Navy General Hospital of The People's Liberation Army, Beijing 100037, P.R. China
| | - Wen-Jing Wang
- Cardiothoracic Surgery Intensive Care Unit, Anqing Municipal Hospital, Anqing, Anhui 246003, P.R. China
| | - Ji-Guang Meng
- Department of Respiratory Medicine, Navy General Hospital of The People's Liberation Army, Beijing 100037, P.R. China
| |
Collapse
|