1
|
Santana-Oliveira DA, Souza-Tavares H, Fernandes-da-Silva A, Marinho TS, Silva-Veiga FM, Daleprane JB, Souza-Mello V. Obesity prevention by different exercise protocols (HIIT or MICT) involves beige adipocyte recruitment and improved mitochondrial dynamics in high-fat-fed mice. Mol Cell Endocrinol 2025; 602:112533. [PMID: 40157711 DOI: 10.1016/j.mce.2025.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
AIM This study evaluated the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on UCP1-dependent and UCP1-independent thermogenic and mitochondrial dynamics markers in the inguinal sWAT of high-fat-fed mice. METHODS Sixty male C57BL/6 mice (3 months old) were divided into six experimental groups: control diet (C), C + HIIT (C-HIIT), C + MICT (C-MICT), high-fat diet (HF), HF + HIIT (HF-HIIT) and HF + MICT (HF-MICT). The diet and exercise protocols started simultaneously and lasted ten weeks. RESULTS HIIT and MICT prevented body mass gain and fat pad expansion, improved insulin sensitivity, and induced browning in C-fed and HF-fed animals. Chronic intake of a HF diet caused adipocyte hypertrophy with a proinflammatory adipokine profile and impaired the expression of thermogenic and mitochondrial dynamics markers. However, both exercise intensities increased anti-inflammatory adipokine concentrations and improved gene markers of mitochondrial dynamics, resulting in sustained UCP1-dependent and UCP1-independent thermogenic markers and maintenance of the beige phenotype in inguinal sWAT. The principal component analysis placed all trained groups opposite the HF group and near the C group, ensuring the effectiveness of HIIT and MICT to prevent metabolic alterations. CONCLUSIONS This study provides reliable evidence that, regardless of intensity, exercise is a strategy to prevent obesity by reducing body fat accumulation and inducing browning. The anti-inflammatory adipokine profile and the increased expression of UCP1-dependent and UCP1-independent thermogenic markers sustained active beige adipocytes and mitochondrial enhancement to halt metabolic disturbances due to HF-feeding in exercised mice.
Collapse
Affiliation(s)
- Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Henrique Souza-Tavares
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Thatiany Souza Marinho
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flavia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Arabzadeh E, Sarshin A, Feizolahi F, Mohabbat M, Soleiman-Fallah MA, Rahimi A, Petridou A, Emami Z, Tajik H, Bozorg Omid R, Maleki A, Ekrami Ogholbag H, Khademi A, Zargani M. Synergistic salvation: HIIT and herbal allies reverse NAFLD damage in rats. J Mol Histol 2025; 56:131. [PMID: 40186827 DOI: 10.1007/s10735-025-10413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Fatty liver disease is a build-up of fats in the liver that can damage the organ and lead to serious complications. This study aimed to investigate the effects of exercise training and supplementation (milk thistle, chicory and cumin) on liver metabolites related to its function and health in rats with non-alcoholic fatty liver disease (NAFLD). Forty adult male Wistar rats with an average weight of 215 ± 10 g were divided into a control group fed on the basal diet and four experimental groups fed with high-fat diet (HFD) for 6 weeks to induce non-alcoholic fatty liver disease (NAFLD). The 4 NAFLD groups were subdivided and treated with (a) plain HFD, (b) high-intensity interval training (HIIT), (c) supplement (milk thistle, chicory, and cumin), and (d) combined HIIT and supplementation for 4 weeks. The induction of NAFLD through HFD yielded dyslipidemia, liver tissue damage, increased malondialdehyde, uncoupling protein 2 (UCP2), and phosphatidylinositol-3 kinase (PI3K), as well as decreased superoxide dismutase (SOD) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) in liver tissue (p < 0.05). The 4 weeks intervention with either HIIT, supplement or especially the combined application of both, reversed these factors (p < 0.05) through changes in their concentrations in a direction indicative of enhanced liver health and function. HIIT beside supplementation (milk thistle, chicory, and cumin) improved indices related to oxidative stress, lipid profile, and the expression of PI3K, UCP2, PGC-1α genes expression and PGC-1α protein content, making it potentially promising in the treatment of liver damage caused by HFD.
Collapse
Affiliation(s)
- Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Foad Feizolahi
- Clinical Care and Health Promotion Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Majid Mohabbat
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | | | - Alireza Rahimi
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Anatoli Petridou
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science at Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Zahra Emami
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Helena Tajik
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Reza Bozorg Omid
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Amir Maleki
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | | - Ali Khademi
- PhD in Sport Management, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
3
|
Cano-Montoya J, Bentes A, Pavez Y, Rubilar P, Lavoz C, Ehrenfeld P, Sandoval V, Martínez-Huenchullán S. Metabolic Response After a Single Maximal Exercise Session in Physically Inactive Young Adults (EASY Study): Relevancy of Adiponectin Isoforms. Biomolecules 2025; 15:314. [PMID: 40149850 PMCID: PMC11940768 DOI: 10.3390/biom15030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
The metabolic response to a maximal exercise test in physically inactive adults remains poorly understood, particularly regarding the role of adiponectin, an adipokine with insulin-sensitizing and anti-inflammatory properties. Adiponectin circulates in three isoforms-low (LMW), medium (MMW), and high-molecular-weight (HMW)-with differing bioactivities. While exercise is known to influence adiponectin levels, evidence is conflicting, and few studies have explored isoform-specific changes. This study aimed to evaluate the effects of a single maximal exercise session on circulating adiponectin isoforms and their associations with metabolic and kidney function markers in physically inactive young adults. In this quasi-experimental study, twenty-one physically inactive participants (mean age 24.6 ± 2.1 years, 85.7% women) completed a progressive cycle ergometer test. Circulating levels of LMW and MMW adiponectin, metabolic outcomes (e.g., cholesterol, triglycerides, fibroblast growth factor 21 (FGF21)), and kidney function markers (e.g., creatinine, proteinuria) were assessed before and after exercise using biochemical assays and Western blotting. Comparisons between pre- and post-exercise values were made with the Wilcoxon test. Exercise increased lipid metabolism markers (total cholesterol, triglycerides, HDL) and kidney stress indicators (albuminuria, proteinuria) (p < 0.05). LMW and MMW adiponectin levels showed no significant overall changes, but LMW adiponectin positively correlated with changes in total cholesterol and FGF21, while MMW adiponectin negatively correlated with creatinine and proteinuria (p < 0.05). HMW adiponectin was undetectable by our methods. A single maximal exercise session revealed isoform-specific associations between adiponectin and metabolic or kidney stress markers, emphasizing the complex role of adiponectin in exercise-induced metabolic responses. Future research should explore mechanisms underlying these differential associations to optimize exercise interventions for metabolic health improvement.
Collapse
Affiliation(s)
- Johnattan Cano-Montoya
- Carrera de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Valdivia 5090000, Chile;
| | - Amanda Bentes
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.B.); (P.E.)
| | - Yanara Pavez
- Carrera de Tecnología Médica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5090000, Chile; (Y.P.); (P.R.)
| | - Paola Rubilar
- Carrera de Tecnología Médica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5090000, Chile; (Y.P.); (P.R.)
| | - Carolina Lavoz
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.B.); (P.E.)
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Viviana Sandoval
- Carrera de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile
| | - Sergio Martínez-Huenchullán
- Carrera de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Valdivia 5090000, Chile;
| |
Collapse
|
4
|
Wang X, Kang Y, Yao J, Gao X, Feng Z, Song Y, Di X, Zhang Q, Zhang J. Effects of Exercises of Different Intensities on Bone Microstructure and Cardiovascular Risk Factors in Ovariectomized Mice. Int J Mol Sci 2025; 26:1005. [PMID: 39940771 PMCID: PMC11817207 DOI: 10.3390/ijms26031005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Postmenopausal women face increased risks of osteoporosis and cardiovascular diseases due to estrogen decline. This study investigated the effects of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on bone microstructure and cardiovascular risk factors in ovariectomized (OVX) mice. Results showed that both exercise regimens improved blood lipid profiles and vascular structure, reducing systolic blood pressure (-11.81% and -10.89%) and undercarboxylated osteocalcin (ucOCN) levels (-52.14% and -52.05%). However, moderate-intensity exercise was more effective in enhancing bone mineral density (+82.38% and +45.02%) and microstructure recovery. No significant correlation was found between ucOCN and cardiovascular disease risk factors, such as lipid parameters, systolic blood pressure, and vascular wall thickness. This study suggests that both exercise intensities can mitigate cardiovascular risks in OVX mice, which is independent of OCN. MICT is superior for promoting osteoporosis recovery.
Collapse
Affiliation(s)
- Xiaoni Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (Y.K.); (J.Y.); (X.G.); (Z.F.); (Y.S.); (X.D.); (Q.Z.)
| | - Yiting Kang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (Y.K.); (J.Y.); (X.G.); (Z.F.); (Y.S.); (X.D.); (Q.Z.)
| | - Jie Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (Y.K.); (J.Y.); (X.G.); (Z.F.); (Y.S.); (X.D.); (Q.Z.)
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaohang Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (Y.K.); (J.Y.); (X.G.); (Z.F.); (Y.S.); (X.D.); (Q.Z.)
| | - Zeguo Feng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (Y.K.); (J.Y.); (X.G.); (Z.F.); (Y.S.); (X.D.); (Q.Z.)
| | - Yifei Song
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (Y.K.); (J.Y.); (X.G.); (Z.F.); (Y.S.); (X.D.); (Q.Z.)
| | - Xiaohui Di
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (Y.K.); (J.Y.); (X.G.); (Z.F.); (Y.S.); (X.D.); (Q.Z.)
| | - Qianyu Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (Y.K.); (J.Y.); (X.G.); (Z.F.); (Y.S.); (X.D.); (Q.Z.)
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (X.W.); (Y.K.); (J.Y.); (X.G.); (Z.F.); (Y.S.); (X.D.); (Q.Z.)
| |
Collapse
|
5
|
Lin S, Hu Y, Ding S, Hu Y. Effects of different pre-conditioning exercise on leptin synthesis and its downstream signalling pathway in T2DM rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:31-37. [PMID: 39877628 PMCID: PMC11771330 DOI: 10.22038/ijbms.2024.77774.16828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 01/31/2025]
Abstract
Objectives This study aimed to evaluate the effects of pre-conditioning exercise on body lipid metabolism, leptin secretion, and the downstream pathways at the early stage of type 2 diabetes mellitus (T2DM). Materials and Methods The T2DM model was established using an 8-week high-sugar, high-fat diet combined. The T2DM model was established using an 8-week high-sugar, high-fat diet combined with streptozocin (STZ) injection. Two exercise interventions, high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) were performed during the model-building process. One week following the STZ injection, rats were euthanized. Blood, gastrocnemius muscle, and epididymal fat pad were collected. Plasma leptin content was measured by ELISA. The expression of leptin-mRNA in epididymal adipose tissue was measured using RT-qPCR, and its protein expression was detected by a western blot. Leptin, leptin-R, and AMPK (AMP-activated protein kinase) - ACC (Acetyl-CoA carboxylase) expression in gastrocnemius muscle was also detected by western blot. Free fatty acids (FFA) and triglycerides (TG) contents in gastrocnemius muscle were measured using a biochemical assay. Results In the HIIT group, glucose tolerance and leptin receptor expression increased, as did the expression and phosphorylation of AMPK protein. At the early stage of T2DM, it increased significantly in the gastrocnemius muscle in the MICT group. Conclusion At the early stage of T2DM, pre-conditioning exercise in the form of HIIT was found to inhibit the leptin-mRNA expression in adipose tissue, suppress leptin synthesis, up-regulate AMPK-ACC signaling pathway, and promote lipid decomposition in skeletal muscle tissue. Pre-conditioning of MICT led to the accumulation of FFA and TG in skeletal muscle, likely due to exercise adaptation rather than ectopic deposition of lipids.
Collapse
Affiliation(s)
- Sen Lin
- School of Sports Science and Technology, Department of Sports Health, Wuhan Sports University, Wuhan, 430079, China
| | - Yuzhi Hu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Shuqiao Ding
- School of Physical Education, Department of Sports Health, Central China Normal University, Wuhan, 430079, China
| | - Yazhe Hu
- School of Physical Education, Department of Sports Health, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
6
|
Eid SA, Elzinga SE, Kim B, Rumora AE, Hayes JM, Carter A, Pacut C, Allouch AM, Koubek EJ, Feldman EL. High-Intensity Interval Training, Caloric Restriction, or Their Combination Have Beneficial Effects on Metabolically Acquired Peripheral Neuropathy. Diabetes 2024; 73:1895-1907. [PMID: 39163551 PMCID: PMC11493763 DOI: 10.2337/db23-0997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Peripheral neuropathy (PN) is a prevalent and debilitating complication of obesity, prediabetes, and type 2 diabetes, which remains poorly understood and lacks disease-modifying therapies. Fortunately, diet and/or exercise have emerged as effective treatment strategies for PN. Here, we examined the impact of caloric restriction (CR) and high-intensity interval training (HIIT) interventions, alone or combined (HIIT-CR), on metabolic and PN outcomes in high-fat diet (HFD) mice. HFD feeding alone resulted in obesity, impaired glucose tolerance, and PN. Peripheral nerves isolated from these mice also developed insulin resistance (IR). CR and HIIT-CR, but not HIIT alone, improved HFD-induced metabolic dysfunction. However, all interventions improved PN to similar extents. When examining the underlying neuroprotective mechanisms in whole nerves, we found that CR and HIIT-CR activate the fuel-sensing enzyme AMPK. We then performed complimentary in vitro work in Schwann cells, the glia of peripheral nerves. Treating primary Schwann cells with the saturated fatty acid palmitate to mimic prediabetic conditions caused IR, which was reversed by the AMPK activator, AICAR. Together, these results enhance our understanding of PN pathogenesis, the differential mechanisms by which diet and exercise may improve PN, and Schwann cell-specific contributions to nerve insulin signaling and PN progression. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
| | | | - Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI
- Department of Neurology, Columbia University, New York, NY
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Andrew Carter
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Crystal Pacut
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Adam M. Allouch
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
7
|
Souza-Tavares H, Santana-Oliveira DA, Vasques-Monteiro IML, Silva-Veiga FM, Mandarim-de-Lacerda CA, Souza-Mello V. Exercise enhances hepatic mitochondrial structure and function while preventing endoplasmic reticulum stress and metabolic dysfunction-associated steatotic liver disease in mice fed a high-fat diet. Nutr Res 2024; 126:180-192. [PMID: 38759501 DOI: 10.1016/j.nutres.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has attracted increasing attention from the scientific community because of its severe but silent progression and the lack of specific treatment. Glucolipotoxicity triggers endoplasmic reticulum (ER) stress with decreased beta-oxidation and enhanced lipogenesis, promoting the onset of MASLD, whereas regular physical exercise can prevent MASLD by preserving ER and mitochondrial function. Thus, the hypothesis of this study was that high-intensity interval training (HIIT) could prevent the development of MASLD in high-fat (HF)-fed C57BL/6J mice by maintaining insulin sensitivity, preventing ER stress, and promoting beta-oxidation. Forty male C57BL/6J mice (3 months old) comprised 4 experimental groups: the control (C) diet group, the C diet + HIIT (C-HIIT) group, the HF diet group, and the HF diet + HIIT (HF-HIIT) group. HIIT sessions lasted 12 minutes and were performed 3 times weekly by trained mice. The diet and exercise protocols lasted for 10 weeks. The HIIT protocol prevented weight gain and maintained insulin sensitivity in the HF-HIIT group. A chronic HF diet increased ER stress-related gene and protein expression, but HIIT helped to maintain ER homeostasis, preserve mitochondrial ultrastructure, and maximize beta-oxidation. The increased sirtuin-1/peroxisome proliferator-activated receptor-gamma coactivator 1-alpha expression implies that HIIT enhanced mitochondrial biogenesis and yielded adequate mitochondrial dynamics. High hepatic fibronectin type III domain containing 5/irisin agreed with the antilipogenic and anti-inflammatory effects observed in the HF-HIIT group, reinforcing the antisteatotic effects of HIIT. Thus, we confirmed that practicing HIIT 3 times per week maintained insulin sensitivity, prevented ER stress, and enhanced hepatic beta-oxidation, impeding MASLD development in this mouse model even when consuming high energy intake from saturated fatty acids.
Collapse
Affiliation(s)
- Henrique Souza-Tavares
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Isabela Macedo Lopes Vasques-Monteiro
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flavia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Ruíz-Uribe M, Enríquez-Schmidt J, Monrroy-Uarac M, Mautner-Molina C, Kalazich-Rosales M, Muñoz M, Fuentes-Leal F, Cárcamo-Ibaceta C, Fazakerley DJ, Larance M, Ehrenfeld P, Martínez-Huenchullán S. Moderate-Intensity Constant and High-Intensity Interval Training Confer Differential Metabolic Benefits in Skeletal Muscle, White Adipose Tissue, and Liver of Candidates to Undergo Bariatric Surgery. J Clin Med 2024; 13:3273. [PMID: 38892984 PMCID: PMC11172953 DOI: 10.3390/jcm13113273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: Bariatric surgery candidates require presurgical physical training, therefore, we compared the metabolic effects of a constant moderate-intensity training program (MICT) vs. a high-intensity interval training (HIIT) in this population. Methods: Seventeen participants performed MICT (n = 9, intensity of 50% of heart rate reserve (HRR) and/or 4-5/10 subjective sensation of effort (SSE)) or HIIT (n = 8, 6 cycles of 2.5 min at 80% of the HRR and/or 7-8/10 of SSE, interspersed by 6 cycles of active rest at 20% of the FCR) for 10 sessions for 4 weeks. After training, tissue samples (skeletal muscle, adipose tissue, and liver) were extracted, and protein levels of adiponectin, GLUT4, PGC1α, phospho-AMPK/AMPK, collagen 1 and TGFβ1 were measured. Results: Participants who performed MICT showed higher protein levels of PGC-1α in skeletal muscle samples (1.1 ± 0.27 vs. 0.7 ± 0.4-fold change, p < 0.05). In the liver samples of the people who performed HIIT, lower protein levels of phospho-AMPK/AMPK (1.0 ± 0.37 vs. 0.52 ± 0.22-fold change), PGC-1α (1.0 ± 0.18 vs. 0.69 ± 0.15-fold change), and collagen 1 (1.0 ± 0.26 vs. 0.59 ± 0.28-fold change) were observed (all p < 0.05). In subcutaneous adipose tissue, higher adiponectin levels were found only after HIIT training (1.1 ± 0.48 vs. 1.9 ± 0.69-fold change, p < 0.05). Conclusions: Our results show that both MICT and HIIT confer metabolic benefits in candidates undergoing bariatric surgery; however, most of these benefits have a program-specific fashion. Future studies should aim to elucidate the mechanisms behind these differences.
Collapse
Affiliation(s)
- Matías Ruíz-Uribe
- Cardiorespiratory and Metabolic Function Laboratory–Neyün, Valdivia 5090000, Chile;
| | - Javier Enríquez-Schmidt
- Exercise Physiology Laboratory, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; (J.E.-S.); (M.M.-U.)
- Physical Therapy Unit, Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Manuel Monrroy-Uarac
- Exercise Physiology Laboratory, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; (J.E.-S.); (M.M.-U.)
- Physical Therapy Unit, Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Camila Mautner-Molina
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; (C.M.-M.); (M.K.-R.); (M.M.); (F.F.-L.); (C.C.-I.)
| | - Mariana Kalazich-Rosales
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; (C.M.-M.); (M.K.-R.); (M.M.); (F.F.-L.); (C.C.-I.)
| | - Maximiliano Muñoz
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; (C.M.-M.); (M.K.-R.); (M.M.); (F.F.-L.); (C.C.-I.)
| | - Francisca Fuentes-Leal
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; (C.M.-M.); (M.K.-R.); (M.M.); (F.F.-L.); (C.C.-I.)
| | - Carlos Cárcamo-Ibaceta
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; (C.M.-M.); (M.K.-R.); (M.M.); (F.F.-L.); (C.C.-I.)
- Surgery Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Daniel J. Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Mark Larance
- Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Pamela Ehrenfeld
- Cellular Pathology Laboratory, Anatomy, Histology, and Pathology Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Sergio Martínez-Huenchullán
- Cardiorespiratory and Metabolic Function Laboratory–Neyün, Valdivia 5090000, Chile;
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
- School of Physical Therapy, Universidad San Sebastián, Valdivia 5090000, Chile
| |
Collapse
|
9
|
Tincknell JB, Kugler BA, Spicuzza H, Berger N, Yan H, You T, Zou K. High-intensity interval training attenuates impairment in regulatory protein machinery of mitochondrial quality control in skeletal muscle of diet-induced obese mice. Appl Physiol Nutr Metab 2024; 49:236-249. [PMID: 37852013 DOI: 10.1139/apnm-2023-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Mitochondrial quality control processes are essential in governing mitochondrial integrity and function. The purpose of the study was to examine the effects of 10 weeks of high-intensity interval training (HIIT) on the regulatory protein machinery of skeletal muscle mitochondrial quality control and whole-body glucose homeostasis in diet-induced obese mice. Male C57BL/6 mice were assigned to low-fat diet (LFD) or high-fat diet (HFD) group. After 10 weeks, HFD-fed mice were divided into sedentary and HIIT (HFD + HIIT) groups for another 10 weeks (n = 9/group). Graded exercise test, glucose and insulin tolerance tests, mitochondrial respiration, and protein markers of mitochondrial quality control processes were determined. HFD-fed mice exhibited lower ADP-stimulated mitochondrial respiration (p < 0.05). However, 10 weeks of HIIT prevented this impairment (p < 0.05). Importantly, the ratio of Drp1(Ser616) over Drp1(Ser637) phosphorylation, an indicator of mitochondrial fission, was significantly higher in HFD-fed mice (p < 0.05), but such increase was attenuated in HFD-HIIT compared to HFD (-35.7%, p < 0.05). Regarding autophagy, skeletal muscle p62 content was lower in the HFD group than the LFD group (-35.1%, p < 0.05); however, such reduction was disappeared in the HFD + HIIT group. In addition, LC3B II/I ratio was higher in the HFD group than the LFD group (15.5%, p < 0.05) but was ameliorated in the HFD + HIIT group (-29.9%, p < 0.05). Overall, our study demonstrated that 10 weeks of HIIT was effective in improving skeletal muscle mitochondrial respiration and the regulatory protein machinery of mitochondrial quality control in diet-induced obese mice through the alterations of mitochondrial fission protein Drp1 phosphorylations and p62/LC3B-mediated regulatory machinery of autophagy.
Collapse
Affiliation(s)
- James B Tincknell
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Benjamin A Kugler
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Haley Spicuzza
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Nicolas Berger
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Huimin Yan
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Tongjian You
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kai Zou
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
10
|
Vatashchuk MV, Bayliak MM, Hurza VV, Demianchuk OI, Gospodaryov DV, Lushchak VI. Alpha-ketoglutarate partially alleviates effects of high-fat high-fructose diet in mouse muscle. EXCLI JOURNAL 2023; 22:1264-1277. [PMID: 38234967 PMCID: PMC10792174 DOI: 10.17179/excli2023-6608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024]
Abstract
Consumption of high-calorie diets leads to excessive accumulation of storage lipids in adipose tissue. Metabolic changes occur not only in adipose tissue but in other tissues, too, such as liver, heart, muscle, and brain. This study aimed to explore the effects of high-fat high-fructose diet (HFFD) alone and in the combination with alpha-ketoglutarate (AKG), a well-known cellular metabolite, on energy metabolism in the skeletal muscle of C57BL/6J mice. Five-month-old male mice were divided into four groups - the control one fed a standard diet (10 % kcal fat), HFFD group fed a high-fat high-fructose diet (45 % kcal fat, 15 % kcal fructose), AKG group fed a standard diet with 1 % sodium AKG in drinking water, and HFFD + AKG group fed HFFD and water with 1 % sodium AKG. The dietary regimens lasted 8 weeks. Mice fed HFFD had higher levels of storage triacylglycerides, lower levels of glycogen, and total water-soluble protein, and higher activities of key glycolytic enzymes, namely hexokinase, phosphofructokinase, and pyruvate kinase, as compared with the control group. The results suggest that muscles of HFFD mice may suffer from lipotoxicity. In HFFD + AKG mice, levels of the metabolites and activities of glycolytic enzymes did not differ from the respective values in the control group, except for the activity of pyruvate kinase, which was significantly lower in HFFD + AKG group compared with the control. Thus, metabolic changes in mouse skeletal muscles, caused by HFFD, were alleviated by AKG, indicating a protective role of AKG regarding lipotoxicity.
Collapse
Affiliation(s)
- Myroslava V. Vatashchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Maria M. Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Viktoriia V. Hurza
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Oleh I. Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Dmytro V. Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
- Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk, 76018, Ukraine
| |
Collapse
|
11
|
Jiang N, Wang Z, Guo X, Peng Z, He Y, Wang Q, Wu H, Cui Y. Hepatic Runx1t1 improves body fat index after endurance exercise in obese mice. Sci Rep 2023; 13:19427. [PMID: 37940636 PMCID: PMC10632374 DOI: 10.1038/s41598-023-46302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Endurance exercise could attenuate obesity induced by high fat diet (HFD). Thus, the purpose of this study was to explore the crucial targets that play key roles in the improvement of body fat index (BFI) in obese mice by endurance exercise. Firstly, we constructed murine obesity models: High fat diet control (HFD) group, HFD exercise (HFE) group, normal chow diet control (NC) group, and normal chow diet exercise (NE) group. Next, we identified the BFI improvement related genes using differential gene analysis, and investigated these genes' functional pathways using functional enrichment analysis. The qRT-PCR and western blot assays were used to determine the gene expression and protein expression, respectively. Gene set enrichment analysis was used to explore the potential pathways associated with endurance exercise in obese mice and Mitochondrial respiratory control ratio (RCR) assay was applied to determine the RCR in the liver tissues of mice. We discovered that endurance exercise remarkably reduced the body weights and BFI of HFD-induced obese mice. Runx1t1 was related to the improvement of BFI by endurance exercise in HFD-induced obese mice. Runx1t1 mRNA and protein levels in liver tissues were observably decreased in HFD mice compared to mice in HFE, NC and NE groups. Moreover, Glucagon signaling pathway that was associated with mitochondrial function was significantly activated in HFE mice. The Runx1t1 expression exhibited an observable negative correlation with Acaca in HFD mice. Moreover, the mitochondrial RCR level was significantly increased in HFE mice than that in HFD mice. In HFD-induced obese mice, Runx1t1 was implicated in the improvement of BFI via endurance exercise. Endurance exercise could improve mitochondrial dysfunction in obese mice by activating the Runx1t1.
Collapse
Affiliation(s)
- Ning Jiang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Zhe Wang
- Department of Basic Teaching of Military Common Subjects, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Xiangying Guo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Zifu Peng
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Yimin He
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Qian Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Huaduo Wu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Yunlong Cui
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Huanhu West Road, Hexi District, Tianjin, 300061, China.
| |
Collapse
|
12
|
Rojas GA, Saavedra N, Morales C, Saavedra K, Lanas F, Salazar LA. Modulation of the Cardiovascular Effects of Polycyclic Aromatic Hydrocarbons: Physical Exercise as a Protective Strategy. TOXICS 2023; 11:844. [PMID: 37888695 PMCID: PMC10610936 DOI: 10.3390/toxics11100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) present in air pollution increases cardiovascular risk. On the contrary, physical exercise is a widely used therapeutic approach to mitigate cardiovascular risk, but its efficacy in an environment of air pollution, particularly with PAHs, remains unclear. This study investigates the effects of exercise on inflammation, endothelial dysfunction, and REDOX imbalance due to PAH exposure using a mouse model. Twenty male BALB/c mice were subjected to a mixture of PAHs (phenanthrene, fluoranthene, pyrene) in conjunction with aerobic exercise. The investigation evaluated serum levels of inflammatory cytokines, gene expression linked to inflammatory markers, endothelial dysfunction, and REDOX imbalance in aortic tissues. Furthermore, the study evaluated the expression of the ICAM-1 and VCAM-1 proteins. Exercise led to notable changes in serum inflammatory cytokines, as well as the modulation of genes associated with endothelial dysfunction and REDOX imbalance in aortic tissue. In turn, exercise produced a modulation in the protein expression of ICAM-1 and VCAM-1. The findings implicate the potential of exercise to counter PAH-induced damage, as demonstrated by changes in markers. In conclusion, exercise could mitigate the adverse effects related to exposure to PAHs present in air pollution, as evidenced by changes in inflammatory markers, endothelial dysfunction, and REDOX imbalance.
Collapse
Affiliation(s)
- Gabriel A. Rojas
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
- PhD Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Escuela Kinesiología, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| | - Cristian Morales
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
- PhD Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Temuco 4811230, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| | - Fernando Lanas
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Luis A. Salazar
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| |
Collapse
|
13
|
Zdziechowski A, Gluba-Sagr A, Rysz J, Woldańska-Okońska M. Why Does Rehabilitation Not (Always) Work in Osteoarthritis? Does Rehabilitation Need Molecular Biology? Int J Mol Sci 2023; 24:ijms24098109. [PMID: 37175818 PMCID: PMC10179350 DOI: 10.3390/ijms24098109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Osteoarthritis (OA) is a common disease among the human population worldwide. OA causes functional impairment, leads to disability and poses serious socioeconomic burden. The rehabilitation offers a function-oriented method to reduce the disability using diverse interventions (kinesiotherapy, physical therapy, occupational therapy, education, and pharmacotherapy). OA as a widespread disease among elderly patients is often treated by rehabilitation specialists and physiotherapists, however the results of rehabilitation are sometimes unsatisfactory. The understanding of molecular mechanisms activated by rehabilitation may enable the development of more effective rehabilitation procedures. Molecular biology methods may prove crucial in rehabilitation as the majority of rehabilitation procedures cannot be estimated in double-blinded placebo-controlled trials commonly used in pharmacotherapy. This article attempts to present and estimate the role of molecular biology in the development of modern rehabilitation. The role of clinicians in adequate molecular biology experimental design is also described.
Collapse
Affiliation(s)
- Adam Zdziechowski
- Department of Internal Diseases, Rehabilitation and Physical Medicine, Medical University, 90-700 Łódź, Poland
| | - Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Łódź, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Łódź, Poland
| | - Marta Woldańska-Okońska
- Department of Internal Diseases, Rehabilitation and Physical Medicine, Medical University, 90-700 Łódź, Poland
| |
Collapse
|
14
|
Bayat Z, Damirchi A, Hasannejad-Bibalan M, Babaei P. Metabotropic Effect of Probiotic Supplementation and High-Intensity Interval Training in Menopause-Induced Metabolic Syndrome in Rats. J Menopausal Med 2023; 29:29-39. [PMID: 37160300 PMCID: PMC10183765 DOI: 10.6118/jmm.22037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 05/11/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the interactive effect of supplementation with a native potential probiotic lactobacillus and 8-week high-intensity interval training (HIIT) on insulin resistance and dyslipidemia in a menopause-induced metabolic syndrome. METHODS A total of 40 ovariectomized (OVX) Wistar rats were divided into five groups: control (OVX + Vehicle), exercise (EXE) (OVX + Exe), probiotic (Prob) (OVX + Prob), exercise and probiotic (OVX + Exe + Prob), and sham surgery. After the end of the treatment interventions, body weight, body mass index (BMI), waist circumference (WC), visceral fat, and serum concentrations of glucose, insulin, lipid profile, and adiponectin were measured using colorimetric analysis and enzyme-linked immunosorbent assay, respectively. RESULTS Data revealed a significant decrease in weight, waist circumference , visceral fat, BMI, and levels of glucose, insulin, homeostasis model assessment of insulin resistance, triacylglyceride, total cholesterol, and low-density lipoprotein (LDL), but an increase in high-density lipoprotein and adiponectin levels (P = 0.001), in OVX + Exe + Prob compared with the OVX + Vehicle group. CONCLUSIONS The present study indicates that native probiotic lactobacillus combined with HIIT effectively reduces body weight, visceral fat, and levels of LDL, glucose, and insulin and increases adiponectin level, although exercise contributes more to fat reduction and probiotics to insulin resistance.
Collapse
Affiliation(s)
- Zeinab Bayat
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Damirchi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
| | - Meysam Hasannejad-Bibalan
- Department of Medical Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
15
|
Martínez-Huenchullán SF, Fox SL, Tam CS, Maharjan BR, Olaya-Agudo LF, Ehrenfeld P, Williams PF, Mclennan SV, Twigg SM. Constant-moderate versus high-intensity interval training on heart adiponectin levels in high-fat fed mice: a preventive and treatment approach. Arch Physiol Biochem 2023; 129:41-45. [PMID: 32715774 DOI: 10.1080/13813455.2020.1797098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Research has described that adiponectin plays a key role in cardiomyocytes metabolism, however, the effects of exercise during obesity on cardiac adiponectin levels is unclear. OBJECTIVE To investigate the effects of constant-moderate endurance (END) and high-intensity interval training (HIIT), on heart adiponectin levels in mice. MATERIAL AND METHODS Two experiments were conducted: (1) preventive (EX1): 10 week-old male mice were fed standard (CHOW) or high-fat diet (HFD;45% fat) and simultaneously trained with END and HIIT for 10 weeks; (2) Treatment (EX2): after 10 weeks of dietary intervention, another cohort of 10 week-old mice were trained by both programmes for 10 weeks. RESULTS In EX1, END and HIIT decreased low-molecular weight adiponectin (∼0.5-fold; p < 0.05) and increased GLUT4 levels (∼2-fold; p < .05). In EX2, HFD significantly decreased high-molecular weight adiponectin (∼0.7-fold; p < .05), and END reversed this change.Discussion and conclusion: HFD and exercise influence heart adiponectin isoforms and therefore might impact cardiomyocyte metabolism.
Collapse
Affiliation(s)
- Sergio F Martínez-Huenchullán
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- School of Physical Therapy, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Sarah L Fox
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Charmaine S Tam
- Northern Clinical School and Centre for Translational Data Science, University of Sydney, Sydney, Australia
| | - Babu Raja Maharjan
- Department of Biochemistry, School of Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Luisa F Olaya-Agudo
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology. Institute of Anatomy, Histology & Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Valdivia, Chile
| | - Paul F Williams
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Susan V Mclennan
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- New South Wales Health Pathology, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
16
|
Gómez-Barroso M, Vargas-Vargas MA, Peña-Montes DJ, Cortés-Rojo C, Saavedra-Molina A, Sánchez-Duarte E, Rodríguez-Orozco AR, Montoya-Pérez R. Comparative Effect of Three Different Exercise Intensities in Combination with Diazoxide on Contraction Capacity and Oxidative Stress of Skeletal Muscle in Obese Rats. BIOLOGY 2022; 11:1367. [PMID: 36138845 PMCID: PMC9495795 DOI: 10.3390/biology11091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Obesity is a chronic disease that impairs skeletal muscle function, affects the ability to contract, and promotes the development of fatigue. For this reason, the study of treatments that seek to reduce the harmful effects of obesity on muscle tissue has been deepened. Diazoxide treatment and various exercise protocols have been proposed to protect skeletal muscle against oxidative stress and its effects. However, the intensity and duration of exercise combined with diazoxide that would obtain the best results for improving skeletal muscle function in obese rats is unknown. To this end, this study evaluated the effects of three different exercise intensities combined with diazoxide on contraction capacity, resistance to fatigue, markers of oxidative stress, lipid peroxidation, ROS, and glutathione redox status of skeletal muscle. The results showed that treatments with diazoxide and exercise at different intensities improved muscle contraction capacity by reducing oxidative stress during obesity, with the best results being obtained with low-intensity exercise in combination with diazoxide. Therefore, these results suggest that diazoxide and low-intensity exercise improve muscle function during obesity by decreasing oxidative stress with the same efficiency as a moderate-intensity exercise protocol.
Collapse
Affiliation(s)
- Mariana Gómez-Barroso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Manuel A. Vargas-Vargas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Elizabeth Sánchez-Duarte
- Departamento de Ciencias Aplicadas al Trabajo, Universidad de Guanajuato, Campus León, Eugenio Garza Sada 572, Lomas del Campestre Sección 2, León 37150, Mexico
| | - Alain R. Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chavez”, Universidad Michoacana de San Nicolás de Hidalgo Av. Dr. Rafael Carrillo S/N Esq. Dr. Salvador González Herrejon, Bosque Cuauhtémoc, Morelia 58020, Mexico
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| |
Collapse
|
17
|
Sordi AF, Silva BF, Furlan JP, Moraes SMFD, Guariglia DA, Peres SB. The effectiveness of high-intensity interval training on body composition of rodent models of obesity: A systematic review and meta-analysis. Physiol Int 2022. [PMID: 36057102 DOI: 10.1556/2060.2022.00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 02/18/2024]
Abstract
The present systematic review was compiled to analyze the effectiveness of High-intensity interval training (HIIT) protocols on the body composition of rodents with obesity. Databases were searched until February 2021 for experimental trials in rodents with a minimum duration of four weeks of HIIT and endpoints associated with obesity. The data were analyzed by meta-analysis performed for comparisons of body composition. Sensitivity analysis was performed to investigate the consistency of individual researches. Of all of the 524 studies found, only 14 were included. The analysis showed a significant reduction in body weight ([CI 95%: -8.35; -1.98] P ≤ 0.01), adiposity index ([IC 95%: -1.04; -0.80] P ≤ 0.01), and fat pads ([IC 95%: -0.59; -0.06] P ≤ 0.01). HIIT performed on treadmill or water was effective to reduce body weight (P < 0.05). In conclusion, HIIT attenuated both body weight and adiposity induced either by HFD (high-fat diet) or by GOM (genetic obese model), thereby inducing positive changes in body composition.
Collapse
Affiliation(s)
- Ana Flávia Sordi
- 1 Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| | - Bruno Ferrari Silva
- 3 UniCesumar University, Maringá, Brazil
- 4 Department of Physical Education, State University of Maringá, Maringá, Brazil
| | - Julia Pedrosa Furlan
- 1 Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| | | | | | - Sidney Barnabé Peres
- 1 Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| |
Collapse
|
18
|
Wang D, Zhang X, Li Y, Jia L, Zhai L, Wei W, Zhang L, Jiang H, Bai Y. Exercise-Induced Browning of White Adipose Tissue and Improving Skeletal Muscle Insulin Sensitivity in Obese/Non-obese Growing Mice: Do Not Neglect Exosomal miR-27a. Front Nutr 2022; 9:940673. [PMID: 35782940 PMCID: PMC9248804 DOI: 10.3389/fnut.2022.940673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise is considered as a favorable measure to prevent and treat childhood obesity. However, the underlying mechanisms of exercise-induced beneficial effects and the difference between obese and non-obese individuals are largely unclear. Recently, miR-27a is recognized as a central upstream regulator of proliferator-activated receptor γ (PPAR-γ) in contributing to various physiological and pathological processes. This study aims to explore the possible cause of exercise affecting white adipose tissue (WAT) browning and reversing skeletal muscle insulin resistance in obese/non-obese immature bodies. For simulating the process of childhood obesity, juvenile mice were fed with a basal diet or high-fat diet (HFD) and took 1 or 2 h swimming exercise simultaneously for 10 weeks. The obese animal model was induced by the HFD. We found that exercise hindered HFD-induced body fat development in growing mice. Exercise modified glucolipid metabolism parameters differently in the obese/non-obese groups, and the changes of the 2 h exercise mice were not consistent with the 1 h exercise mice. The level of serum exosomal miR-27a in the non-exercise obese group was increased obviously, which was reduced in the exercise obese groups. Results from bioinformatics analysis and dual-luciferase reporter assay showed that miR-27a targeted PPAR-γ. Exercise stimulated WAT browning; however, the response of obese WAT lagged behind normal WAT. In the HFD-fed mice, 2 h exercise activated the IRS-1/Akt/GLUT-4 signaling pathway in the skeletal muscles. In summary, our findings confirmed that exercise-induced beneficial effects are associated with exercise duration, and the response of obese and non-obese bodies is different. Exosomal miR-27a might be a crucial node for the process of exercise-induced browning of WAT and improving skeletal muscle insulin sensitivity.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
- The Second People’s Hospital of Jiashan, Jiaxing, China
| | - Xihuan Zhang
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
- Xinzhou District Center for Disease Control and Prevention, Wuhan, China
| | - Yibai Li
- The First Division of Clinical Medicine, China Medical University, Shenyang, China
| | - Lihong Jia
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
| | - Lingling Zhai
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
| | - Wei Wei
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
| | - Li Zhang
- Department of Dermatology, First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Hongkun Jiang
- Department of Pediatrics, First Hospital of China Medical University, Shenyang, China
| | - Yinglong Bai
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
- *Correspondence: Yinglong Bai,
| |
Collapse
|
19
|
Ren Q, Li H, Xu F, Zhu Y, Zhang X, Fan T, Wei Z, Yuan F, Han F, Cong R. Effect of high-concentrate diets on mRNA expression of genes related to muscle fiber type and metabolism of psoas major muscle in goats. Anim Sci J 2022; 93:e13725. [PMID: 35508764 DOI: 10.1111/asj.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022]
Abstract
In the process of modern breeding, high-concentrate diets are widely used to meet the high energy nutritional requirements of animals but change the form of access to energy and nutrients and the way the organism metabolizes them. Goat psoas major (PM) muscle is a hybrid skeletal muscle whose characteristics are important for the motility and meat quality of goats. However, there are few studies on the effects of high-concentrate diets on the muscle type and metabolic characteristics of PM in goats. In this study, two treatment groups were set up: high concentrate group (HC) and control group (C). The expression of genes related to muscle type and metabolism of the PM was examined by quantitative PCR. The results showed that high concentrate promoted the conversion of PM fibers from intermediate to slow type at the mRNA level, improved the absorption, transport, and oxidation of fat by PM, and upregulated the expression of calpain system. These changes may be regulated by the involvement of differential expression of MSTN, Myf-5, and IGF-2. These results suggest that high concentrate may exert a positive effect on skeletal muscle function, metabolism, and meat quality in goats by affecting the expression of muscle type and metabolism-related genes.
Collapse
Affiliation(s)
- Qijun Ren
- Northwest A&F University, Xianyang, China
| | - Hanmei Li
- Northwest A&F University, Xianyang, China
| | | | - Yihan Zhu
- Northwest A&F University, Xianyang, China
| | | | | | | | | | - Fei Han
- Yangling Vocational & Technical College, Xianyang, China
| | - Rihua Cong
- Northwest A&F University, Xianyang, China
| |
Collapse
|
20
|
Su H, Wen T, Liu D, Shao J, Zhao L, Gao Q. Effect of 32-Weeks High-Intensity Interval Training and Resistance Training on Delaying Sarcopenia: Focus on Endogenous Apoptosis. Front Physiol 2022; 13:811369. [PMID: 35574455 PMCID: PMC9095960 DOI: 10.3389/fphys.2022.811369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia caused by aging is an important factor leading to a decline in the quality of life of older people. Apoptosis in muscle atrophy accelerates the process of muscle loss in older populations. The present study aimed to investigate the effects of 32 weeks of high-intensity interval training (HIIT) and resistance training (RT) on the skeletal muscle-related indices and provide a theoretical basis for regulating the mitochondrial-mediated pathway to delay sarcopenia. We randomly selected 10 from eight-month-old male SD rats (N = 130) as the baseline group; after 1 week of adaptive feeding, the rats were sacrificed. The remaining rats were randomly assigned to one of three groups: control group (C, N = 40, natural aging for 32 weeks), HIIT group (H, N = 40, performed six loops of 3 min at 90% and 3 min at 50% VO2 max speed treadmill running, with 5 min at 70% VO2 max speed at the beginning and the end of the training, 3 times a week for 32 weeks), and resistance group (R, n = 40, 46 min per day, 3 days per week, with a 30% maximum load on a treadmill with a slope of 35°, 15 m/min). The soleus muscles were collected for analysis at baseline and every 8 weeks. Aging resulted in decreased soleus muscle mass and Bcl-2 levels in the mitochondria, while the levels of reactive oxygen species (ROS) and Bax did not change. HIIT reversed the age-associated activation of pro-apoptotic processes, but RT did not. In addition, when rats were aged from 8 to 16 months, the level of Cyt-C did not change, the Caspase-9 levels and Caspase-3 levels decreased gradually in the soleus muscles, the rats of both the HIIT and RT groups had these indices decreased at 32 weeks. The results suggest that the age-associated loss of muscle mass was reversed by training, and the effect of RT was better than that of HIIT. Both the HIIT and RT rats showed a decrease in the apoptosis of skeletal muscle cells after 32 weeks of intervention. HIIT performed better for long-term intervention regarding the pro-apoptotic factors. This study warranted further research to delineate the underlying mechanism of effects of different exercise methods on the changes of aging skeletal muscle at in vivo level.
Collapse
Affiliation(s)
- Hao Su
- Department of Exercise Biochemistry, Beijing Sport University, Beijing, China
| | - Tianhao Wen
- Military Common Subject Teaching and Research Section, PLA Rocket Force University of Engineering, Xi’an, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Dongsen Liu
- Sport physical therapy and therapeutic exercise, sports health, Beijing Sport University, Beijing, China
| | - Jia Shao
- School of Sport Science, Beijing Sport University, Beijing, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Lei Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Qi Gao
- Sport physical therapy and therapeutic exercise, sports health, Beijing Sport University, Beijing, China
- *Correspondence: Qi Gao,
| |
Collapse
|
21
|
Effects of Physical Training in Different Modes on Cognitive Function and GNDF Level in Old Mice. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Maharjan BR, McLennan SV, Yee C, Twigg SM, Williams PF. The Effect of a Sustained High-Fat Diet on the Metabolism of White and Brown Adipose Tissue and Its Impact on Insulin Resistance: A Selected Time Point Cross-Sectional Study. Int J Mol Sci 2021; 22:ijms222413639. [PMID: 34948432 PMCID: PMC8706763 DOI: 10.3390/ijms222413639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
(1) Background: studies on the long-term dynamic changes in fat depot metabolism in response to a high-fat diet (HFD) on hepatic lipid deposition and insulin resistance are sparse. This study investigated the dynamic changes produced by HFD and the production of dysfunctional fat depots on insulin resistance and liver lipid metabolism. (2) Methods: mice fed a chow or HFD (45% kcal fat) diet had three fat depots, liver, and blood collected at 6, 10, 20, and 30 weeks. Anthropometric changes and gene markers for adipogenesis, thermogenesis, ECM remodeling, inflammation, and tissue insulin resistance were measured. (3) Results: early responses to the HFD were increased body weight, minor deposition of lipid in liver, increased adipocyte size, and adipogenesis. Later changes were dysfunctional adipose depots, increased liver fat, insulin resistance (shown by changes in ITT) accompanied by increased inflammatory markers, increased fibrosis (fibrosis > 2-fold, p < 0.05 from week 6), and the presence of crown cells in white fat depots. Later, changes did not increase thermogenic markers in response to the increased calories and decreased UCP1 and PRDM16 proteins in WAT. (4) Conclusions: HFD feeding initially increased adipocyte diameter and number, but later changes caused adipose depots to become dysfunctional, restricting adipose tissue expansion, changing the brown/beige ratios in adipose depots, and causing ectopic lipid deposition and insulin resistance.
Collapse
Affiliation(s)
- Babu Raja Maharjan
- Greg Brown Diabetes & Endocrinology Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (S.V.M.); (C.Y.); (S.M.T.)
- Department of Biochemistry, School of Medicine, Patan Academy of Health Sciences, Lalitpur 44700, Nepal
- Correspondence: (B.R.M.); (P.F.W.); Tel.: +61-2-8627-1889 (B.R.M.)
| | - Susan V. McLennan
- Greg Brown Diabetes & Endocrinology Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (S.V.M.); (C.Y.); (S.M.T.)
- New South Wales Health Pathology, Sydney, NSW 2050, Australia
| | - Christine Yee
- Greg Brown Diabetes & Endocrinology Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (S.V.M.); (C.Y.); (S.M.T.)
| | - Stephen M. Twigg
- Greg Brown Diabetes & Endocrinology Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (S.V.M.); (C.Y.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2006, Australia
| | - Paul F. Williams
- Greg Brown Diabetes & Endocrinology Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (S.V.M.); (C.Y.); (S.M.T.)
- Correspondence: (B.R.M.); (P.F.W.); Tel.: +61-2-8627-1889 (B.R.M.)
| |
Collapse
|
23
|
Maharjan BR, Martinez‐Huenchullan SF, Mclennan SV, Twigg SM, Williams PF. Exercise induces favorable metabolic changes in white adipose tissue preventing high-fat diet obesity. Physiol Rep 2021; 9:e14929. [PMID: 34405572 PMCID: PMC8371352 DOI: 10.14814/phy2.14929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
Diet and/or exercise are cost effective interventions to treat obesity. However, it is unclear if the type of exercise undertaken can prevent the onset of obesity and if it can act through different effects on fat depots. In this study we did not allow obesity to develop so we commenced the high-fat diet (HFD) and exercise programs concurrently and investigated the effect of endurance exercise (END) and high-intensity interval training (HIIT) on changes in cellular adipogenesis, thermogenesis, fibrosis, and inflammatory markers in three different fat depots, on a HFD and a chow diet. This was to assess the effectiveness of exercise to prevent the onset of obesity-induced changes. Mice fed with chow or HFD (45% kcal fat) were trained and performed either END or HIIT for 10 weeks (3 x 40 min sessions/week). In HFD mice, both exercise programs significantly prevented the increase in body weight (END: 17%, HIIT: 20%), total body fat mass (END: 46%, HIIT: 50%), increased lean mass as a proportion of body weight (Lean mass/BW) by 14%, and improved insulin sensitivity by 22%. Further evidence of the preventative effect of exercise was seen significantly decreased markers for adipogenesis, inflammation, and extracellular matrix accumulation in both subcutaneous adipose tissue (SAT) and epididymal adipose tissue (EPI). In chow, no such marked effects were seen with both the exercise programs on all the three fat depots. This study establishes the beneficial effect of both HIIT and END exercise in preventing metabolic deterioration, collagen deposition, and inflammatory responses in fat depots, resulting in an improved whole body insulin resistance in HFD mice.
Collapse
Affiliation(s)
- Babu R. Maharjan
- Greg Brown Diabetes & Endocrinology LaboratorySydney Medical SchoolUniversity of SydneySydneyAustralia
- Department of BiochemistryPatan Academy of Health SciencesSchool of MedicineLalitpurNepal
| | - Sergio F. Martinez‐Huenchullan
- Greg Brown Diabetes & Endocrinology LaboratorySydney Medical SchoolUniversity of SydneySydneyAustralia
- Faculty of MedicineSchool of Physical TherapyUniversidad Austral de ChileValdiviaChile
| | - Susan V. Mclennan
- Greg Brown Diabetes & Endocrinology LaboratorySydney Medical SchoolUniversity of SydneySydneyAustralia
- New South Wales Health PathologySydneyAustralia
- Department of EndocrinologyRoyal Prince Alfred HospitalSydneyAustralia
| | - Stephen M. Twigg
- Greg Brown Diabetes & Endocrinology LaboratorySydney Medical SchoolUniversity of SydneySydneyAustralia
- Department of EndocrinologyRoyal Prince Alfred HospitalSydneyAustralia
| | - Paul F. Williams
- Greg Brown Diabetes & Endocrinology LaboratorySydney Medical SchoolUniversity of SydneySydneyAustralia
- New South Wales Health PathologySydneyAustralia
- Department of EndocrinologyRoyal Prince Alfred HospitalSydneyAustralia
| |
Collapse
|
24
|
Jiang X, Zhang Y, Hu W, Liang Y, Zheng L, Zheng J, Wang B, Guo X. Different Effects of Leucine Supplementation and/or Exercise on Systemic Insulin Sensitivity in Mice. Front Endocrinol (Lausanne) 2021; 12:651303. [PMID: 34054726 PMCID: PMC8150005 DOI: 10.3389/fendo.2021.651303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Obesity-related diseases such as diabetes, hypertension, dyslipidemia, and cardiovascular diseases have increased due to the obesity epidemic. Early intervention for obesity through lifestyle and nutrition plays an important role in preventing obesity-related diseases. Therefore, the purpose of this study is to explore the role of leucine and exercise in adiposity, systemic insulin resistance, and inflammation to provide theoretical and guiding basis for the early prevention and treatment of obesity. Methods C57BL/6J male mice were randomly divided into HFD or LFD-fed mice group. After 9 weeks, glucose tolerance test (GTT) was performed to detect their systemic insulin sensitivity. Starting from week 10, mice were divided into eight groups and treated with moderate exercise or/and 1.5% leucine. At week 13, systemic insulin sensitivity was detected by GTT. At week 14, mice were dissected to analyze adiposity and inflammation. Results In LFD mice, exercise significantly increased systemic insulin sensitivity by increasing GLUT4 expression in the muscle and decreasing adiposity through increasing AMPK phosphorylation in adipose tissue. In HFD mice, the simultaneous intervention of exercise and leucine increases systemic insulin sensitivity by reducing liver and adipose tissue inflammation via decreasing NF-κB p65 phosphorylation, and increasing the expression of adiponectin in adipose tissue. Conclusion There are different mechanisms underlying the effects of exercise and leucine on insulin resistance and inflammation in LFD-fed mice or HFD-fed mice.
Collapse
Affiliation(s)
- Xiaofan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuwei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weichao Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxiu Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
25
|
Costa LR, de Castro CA, Marine DA, Fabrizzi F, Furino VDO, Malavazi I, Anibal FDF, Duarte ACGDO. High-Intensity Interval Training Does Not Change Vaspin and Omentin and Does Not Reduce Visceral Adipose Tissue in Obese Rats. Front Physiol 2021; 12:564862. [PMID: 33716759 PMCID: PMC7952996 DOI: 10.3389/fphys.2021.564862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
This study aimed to determine the expression of omentin and vaspin, inflammatory markers, body composition, and lipid profile in diet-induced obese rats and high-intensity interval training (HIIT). Forty Wistar rats were divided into four groups: untrained normal diet, trained normal diet (T-ND), untrained high-fat diet (Unt-HFD), and trained high-fat diet (T-HFD). For the animals of the Unt-HFD and T-HFD groups, a high-fat diet was offered for 4 weeks. After that, all the animals in the T-ND and T-HFD groups were submitted to HITT, three times per week, for 10 weeks (2 weeks of adaptation and 8 weeks of HIIT). Muscle (gastrocnemius), liver, epididymal adipose tissue, retroperitoneal adipose tissue, visceral adipose tissue (VAT), and serum were collected to analyze TNF-α, IL-6, PCR, IL-8, IL-10, IL-4, vaspin, and omentin. A body composition analysis was performed before adaptation to HIIT protocol and after the last exercise session using dual-energy X-ray absorptiometry. Omentin and vaspin in the VAT were quantified using Western blotting. The results showed that, when fed a high-fat diet, the animals obtained significant gains in body fat and elevated serum concentrations of vaspin and blood triglycerides. The HIIT was able to minimize body fat gain but did not reduce visceral fat despite the increase in maximum exercise capacity. Moreover, there was a reduction in the serum levels of adiponectin, IL-6, and IL-10. Finally, we concluded that, although the training protocol was able to slow down the weight gain of the animals, there was no reduction in visceral fat or an improvement in the inflammatory profile, including no changes in omentin and vaspin.
Collapse
Affiliation(s)
- Leandro Ribeiro Costa
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Cynthia Aparecida de Castro
- Department of Morphology and Pathology – Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Diego Adorna Marine
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Fernando Fabrizzi
- Faculty of Philosophy, Sciences and Letters of Penápolis-Brazil, Penápolis, Brazil
| | - Vanessa de Oliveira Furino
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Iran Malavazi
- Department of Genetics and Evolution – Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Fernanda de Freitas Anibal
- Department of Morphology and Pathology – Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Ana Cláudia Garcia de Oliveira Duarte
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| |
Collapse
|
26
|
Lee TH, Christie BR, van Praag H, Lin K, Siu PMF, Xu A, So KF, Yau SY. AdipoRon Treatment Induces a Dose-Dependent Response in Adult Hippocampal Neurogenesis. Int J Mol Sci 2021; 22:2068. [PMID: 33669795 PMCID: PMC7922380 DOI: 10.3390/ijms22042068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
AdipoRon, an adiponectin receptor agonist, elicits similar antidiabetic, anti-atherogenic, and anti-inflammatory effects on mouse models as adiponectin does. Since AdipoRon can cross the blood-brain barrier, its chronic effects on regulating hippocampal function are yet to be examined. This study investigated whether AdipoRon treatment promotes hippocampal neurogenesis and spatial recognition memory in a dose-dependent manner. Adolescent male C57BL/6J mice received continuous treatment of either 20 mg/kg (low dose) or 50 mg/kg (high dose) AdipoRon or vehicle intraperitoneally for 14 days, followed by the open field test to examine anxiety and locomotor activity, and the Y maze test to examine hippocampal-dependent spatial recognition memory. Immunopositive cell markers of neural progenitor cells, immature neurons, and newborn cells in the hippocampal dentate gyrus were quantified. Immunosorbent assays were used to measure the serum levels of factors that can regulate hippocampal neurogenesis, including adiponectin, brain-derived neurotrophic factor (BDNF), and corticosterone. Our results showed that 20 mg/kg AdipoRon treatment significantly promoted hippocampal cell proliferation and increased serum levels of adiponectin and BDNF, though there were no effects on spatial recognition memory and locomotor activity. On the contrary, 50 mg/kg AdipoRon treatment impaired spatial recognition memory, suppressed cell proliferation, neuronal differentiation, and cell survival associated with reduced serum levels of BDNF and adiponectin. The results suggest that a low-dose AdipoRon treatment promotes hippocampal cell proliferation, while a high-dose AdipoRon treatment is detrimental to the hippocampus function.
Collapse
Affiliation(s)
- Thomas H. Lee
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong;
| | - Brian R. Christie
- Division of Biomedical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Henriette van Praag
- FAU Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33431, USA;
| | - Kangguang Lin
- Department of Affective Disorder, Guangzhou Brain Hospital, The Brain Affiliated Hospital of Guangzhou Medical University, Guangzhou 510370, China;
| | - Parco Ming-Fai Siu
- Division of Kinesiology, School of Public Health, The University of Hong Kong, Hong Kong;
| | - Aimin Xu
- Department of Medicine, The University of Hong Kong, Hong Kong;
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong
- The State Key Laboratory of Pharmacology, The University of Hong Kong, Hong Kong
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China;
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
- Department of Ophthalmology, The University of Hong Kong, Hong Kong
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong;
| |
Collapse
|
27
|
Martinez-Huenchullan SF, Shipsey I, Hatchwell L, Min D, Twigg SM, Larance M. Blockade of High-Fat Diet Proteomic Phenotypes Using Exercise as Prevention or Treatment. Mol Cell Proteomics 2020; 20:100027. [PMID: 33594989 PMCID: PMC7950115 DOI: 10.1074/mcp.tir120.002343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 11/06/2022] Open
Abstract
The increasing consumption of high-fat foods combined with a lack of exercise is a major contributor to the burden of obesity in humans. Aerobic exercise such as running is known to provide metabolic benefits, but how the overconsumption of a high-fat diet (HFD) and exercise interact is not well characterized at the molecular level. Here, we examined the plasma proteome in mice for the effects of aerobic exercise as both a treatment and as a preventative regimen for animals on either a HFD or a healthy control diet. This analysis detected large changes in the plasma proteome induced by the HFD, such as increased abundance of SERPINA7, ALDOB, and downregulation of SERPINA1E and complement factor D (CFD; adipsin). Some of these changes were significantly reverted using exercise as a preventative measure but not as a treatment regimen. To determine if either the intensity or duration of exercise influenced the outcome, we compared high-intensity interval training and endurance running. Endurance running slightly outperformed high-intensity interval training exercise, but overall, both provided similar reversion in abundance of plasma proteins modulated by the HFD, including SERPINA7, apolipoprotein E, SERPINA1E, and CFD. Finally, we compared the changes induced by overconsumption of a HFD with previous data from mice fed on an isocaloric high-saturated fatty acid or polyunsaturated fatty acid diet. This identified several common changes, including not only increased apolipoprotein C-II and apolipoprotein E but also highlighted changes specific for overconsumption of a HFD (fructose-bisphosphate aldolase B, SERPINA7, and CFD), saturated fatty acid-based diets (SERPINA1E), or polyunsaturated fatty acid-based diets (haptoglobin). Together, these data highlight the importance of early intervention with exercise to revert HFD-induced phenotypes and suggest some of the molecular mechanisms leading to the changes in the plasma proteome generated by HFD consumption. Web-based interactive visualizations are provided for this dataset (larancelab.com/hfd-exercise), which give insight into diet and exercise phenotypic interactions on the plasma proteome.
Collapse
Affiliation(s)
- Sergio F Martinez-Huenchullan
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health, Central Clinical School, University of Sydney, New South Wales, Australia; Faculty of Medicine, School of Physical Therapy, Austral University of Chile, Valdivia, Chile
| | - Isaac Shipsey
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Luke Hatchwell
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Danqing Min
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health, Central Clinical School, University of Sydney, New South Wales, Australia
| | - Stephen M Twigg
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health, Central Clinical School, University of Sydney, New South Wales, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, New South Wales, Australia.
| | - Mark Larance
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia.
| |
Collapse
|
28
|
Gómez-Barroso M, Moreno-Calderón KM, Sánchez-Duarte E, Cortés-Rojo C, Saavedra-Molina A, Rodríguez-Orozco AR, Montoya-Pérez R. Diazoxide and Exercise Enhance Muscle Contraction during Obesity by Decreasing ROS Levels, Lipid Peroxidation, and Improving Glutathione Redox Status. Antioxidants (Basel) 2020; 9:1232. [PMID: 33291828 PMCID: PMC7762033 DOI: 10.3390/antiox9121232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity causes insulin resistance and hyperinsulinemia which causes skeletal muscle dysfunction resulting in a decrease in contraction force and a reduced capacity to avoid fatigue, which overall, causes an increase in oxidative stress. KATP channel openers such as diazoxide and the implementation of exercise protocols have been reported to be actively involved in protecting skeletal muscle against metabolic stress; however, the effects of diazoxide and exercise on muscle contraction and oxidative stress during obesity have not been explored. This study aimed to determine the effect of diazoxide in the contraction of skeletal muscle of obese male Wistar rats (35 mg/kg), and with an exercise protocol (five weeks) and the combination from both. Results showed that the treatment with diazoxide and exercise improved muscular contraction, showing an increase in maximum tension and total tension due to decreased ROS and lipid peroxidation levels and improved glutathione redox state. Therefore, these results suggest that diazoxide and exercise improve muscle function during obesity, possibly through its effects as KATP channel openers.
Collapse
Affiliation(s)
- Mariana Gómez-Barroso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Koré M. Moreno-Calderón
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Elizabeth Sánchez-Duarte
- Departamento de Ciencias Aplicadas al Trabajo, Universidad de Guanajuato Campus León, Eugenio Garza Sada 572, Lomas del Campestre Sección 2, León, Guanajuato 37150, Mexico;
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Alain R. Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo Av. Dr. Rafael Carrillo S/N, Esq. Dr. Salvador González Herrejón, Bosque Cuauhtémoc, Morelia, Michoacán 58020, Mexico;
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| |
Collapse
|
29
|
Chen W, Wang L, You W, Shan T. Myokines mediate the cross talk between skeletal muscle and other organs. J Cell Physiol 2020; 236:2393-2412. [PMID: 32885426 DOI: 10.1002/jcp.30033] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Myokines are muscle-derived cytokines and chemokines that act extensively on organs and exert beneficial metabolic functions in the whole-body through specific signal networks. Myokines as mediators provide the conceptual basis for a whole new paradigm useful for understanding how skeletal muscle communicates with other organs. In this review, we summarize and discuss classes of myokines and their physiological functions in mediating the regulatory roles of skeletal muscle on other organs and the regulation of the whole-body energy metabolism. We review the mechanisms involved in the interaction between skeletal muscle and nonmuscle organs through myokines. Moreover, we clarify the connection between exercise, myokines and disease development, which may contribute to the understanding of a potential mechanism by which physical inactivity affects the process of metabolic diseases via myokines. Based on the current findings, myokines are important factors that mediate the effect of skeletal muscle on other organ functions and whole-body metabolism.
Collapse
Affiliation(s)
- Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| |
Collapse
|
30
|
Wilson RA, Stathis CG, Hayes A, Cooke MB. Intermittent Fasting and High-Intensity Exercise Elicit Sexual-Dimorphic and Tissue-Specific Adaptations in Diet-Induced Obese Mice. Nutrients 2020; 12:nu12061764. [PMID: 32545529 PMCID: PMC7353251 DOI: 10.3390/nu12061764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The molecular adaptations that underpin body composition changes and health benefits of intermittent fasting (IF) and high-intensity interval training (HIIT) are unclear. The present study investigated these adaptations within the hypothalamus, white adipose and skeletal muscle tissue following 12 weeks of IF and/or HIIT in diet-induced obese mice. Mice (C57BL/6, 8-week-old, males/females) were fed high-fat (59%) and sugar (30%) water (HF/S) for 12 weeks followed by an additional 12 weeks of HF/S plus either IF, HIIT, combination (IF+HIIT) or HF/S only control (CON). Tissues were harvested at 12 and 24 weeks and analysed for various molecular markers. Hypothalamic NPY expression was significantly lower following IF+HIIT compared to CON in females. In adipose tissue, leptin expression was significantly lower following IF and IF+HIIT compared to CON in males and females. Males demonstrated increased markers of fat oxidation (HADH, FABP4) following IF+HIIT, whereas females demonstrated reduced markers of adipocyte differentiation/storage (CIDEC and FOXO1) following IF and/or IF+HIIT. In muscle, SIRT1, UCP3, PGC1α, and AS160 expression was significantly lower following IF compared to CON in males and/or females. This investigation suggests that males and females undertaking IF and HIIT may prevent weight gain via different mechanisms within the same tissue.
Collapse
Affiliation(s)
- Robin A. Wilson
- Institute for Health and Sport, Victoria University, Footscray, VIC 3011, Australia; (R.A.W.); (C.G.S.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, VIC 3021, Australia
| | - Christos G. Stathis
- Institute for Health and Sport, Victoria University, Footscray, VIC 3011, Australia; (R.A.W.); (C.G.S.); (A.H.)
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Footscray, VIC 3011, Australia; (R.A.W.); (C.G.S.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, VIC 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC 3021, Australia
| | - Matthew B. Cooke
- Institute for Health and Sport, Victoria University, Footscray, VIC 3011, Australia; (R.A.W.); (C.G.S.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, VIC 3021, Australia
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Correspondence: ; Tel.: +61-3-9214-5560
| |
Collapse
|
31
|
Martinez-Huenchullan SF, Tam CS, Ban LA, Ehrenfeld-Slater P, Mclennan SV, Twigg SM. Skeletal muscle adiponectin induction in obesity and exercise. Metabolism 2020; 102:154008. [PMID: 31706980 DOI: 10.1016/j.metabol.2019.154008] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Recent scientific efforts have focused on the detrimental effects that obesity has on the metabolic function of skeletal muscles and whether exercise can improve this dysfunction. In this regard, adiponectin, with important metabolic functions (e.g. insulin-sensitizer and anti-inflammatory), has been recently described as a myokine that acts in an autocrine/paracrine manner. Earlier studies reported that muscle adiponectin could be induced by pro-inflammatory mediators (e.g. lipopolysaccharide), cytokines, and high-fat diets, providing a protective mechanism of this tissue against metabolic insults. However, when metabolic insults such as high-fat diets are sustained this protective response becomes dysregulated, making the skeletal muscle susceptible to metabolic impairments. Recent studies have suggested that exercise could prevent or even reverse this process. Considering that most scientific knowledge on adiponectin dysregulation in obesity is from the study of adipose tissue, the present review summarizes and discusses the literature available to date regarding the effects of obesity on skeletal muscle adiponectin induction, along with the potential effects of different exercise prescriptions on this response in an obesity context.
Collapse
Affiliation(s)
- Sergio F Martinez-Huenchullan
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Physical Therapy, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
| | - Charmaine S Tam
- Northern Clinical School and Centre for Translational Data Science, University of Sydney, Sydney, Australia
| | - Linda A Ban
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Pamela Ehrenfeld-Slater
- Laboratory of Cellular Pathology. Institute of Anatomy, Histology & Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Chile
| | - Susan V Mclennan
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; New South Wales Health Pathology, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
32
|
Effects of quercetin on the neuromotor function and behavioral responses of Wistar and Zucker rats fed a high-fat and high-carbohydrate diet. Behav Brain Res 2019; 378:112270. [PMID: 31585131 DOI: 10.1016/j.bbr.2019.112270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/10/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022]
Abstract
Quercetin can affect some pathological manifestations in obesity. The mechanism underlying the presumed therapeutic effect of quercetin is probably related to the influence on the central processes regulating energy homeostasis. Thus, the purpose of this study was to examine the effect of quercetin on the neuromotor and behavioral functions in Zucker (Z) and Wistar (W) rats with genetically and/or diet-induced obesity. Rats of both strains received balanced or high fat and fructose diet (HFCD) in a 62-day experiment or the same diets supplemented with quercetin at the dose of 50 mg/kg body weight per day. The neuromotor function and behavioral responses were examined using the grip strength test, open field test, elevated plus maze test and conditioned passive avoidance response (CPAR) test. The quercetin potentiated a decrease in anxiety in W rats consumed HFCD and this effect was absent in Z rats with a defect in the leptin receptor gene. In contrast, quercetin increased locomotor activity and impaired short-term memory in the CPAR test only in Z rats with the absence of normal leptin reception. Against the background of the identified changes quercetin exerted significant effects on the lipid and nitrogen metabolism indices such as HDL cholesterol, AsAT/AlAT activities ratio, urea level as well as body and fat mass that were different in Z and W rats. The data obtained show that the effects of quercetin on behavior vary significantly between two strains of rat and consequently are mediated by processes of leptin reception.
Collapse
|
33
|
High-intensity interval training prevents cognitive-motor impairment and serum BDNF level reduction in parkinson mice model. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-019-00586-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Martinez-Huenchullan SF, Ban LA, Olaya-Agudo LF, Maharjan BR, Williams PF, Tam CS, Mclennan SV, Twigg SM. Constant-Moderate and High-Intensity Interval Training Have Differential Benefits on Insulin Sensitive Tissues in High-Fat Fed Mice. Front Physiol 2019; 10:459. [PMID: 31105582 PMCID: PMC6494961 DOI: 10.3389/fphys.2019.00459] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
In a mouse model of diet-induced obesity, this study determined if two exercise prescriptions with equivalent time and distance covered, [constant-moderate endurance (END) and high intensity interval training (HIIT)], exert differential metabolic benefits on insulin sensitive tissues. Male 10 week old C57BL/6 mice were fed a high fat diet (HFD; 45% kcal fat) ad libitum for 10 weeks and for a further 10 weeks they underwent END or HIIT training (3 × 40 min sessions/wk). Untrained HFD and chow-fed mice acted as controls. At 30 weeks of age, mice were sacrificed and quadriceps muscle, subcutaneous adipose tissue (SAT) and liver were excised. Neither END nor HIIT altered body weight or composition in HFD mice. In quadriceps, HFD decreased high-molecular weight adiponectin protein, which was normalized by END and HIIT. In contrast, HIIT but not END reversed the HFD-driven decrease in the adiponectin receptor 1 (AdipoR1). In SAT, both programs tended to decrease collagen VI protein (p = 0.07–0.08) in HFD, whereas only HIIT induced an increase in the mRNA (3-fold vs. HFD untrained) and protein (2-fold vs. HFD untrained) of UCP1. In liver, only END reversed collagen I accumulation seen in HFD untrained mice. Our results suggest that HIIT may promote better systemic metabolic changes, compared to END, which may be the result of the normalization of muscle AdipoR1 and increased UCP1 seen in SAT. However, END was more effective in normalizing liver changes, suggesting differential metabolic effects of END and HIIT in different tissues during obesity.
Collapse
Affiliation(s)
- Sergio F Martinez-Huenchullan
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,School of Physical Therapy, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Linda A Ban
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Luisa F Olaya-Agudo
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Babu Raja Maharjan
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Department of Biochemistry, School of Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Paul F Williams
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Charmaine S Tam
- Northern Clinical School and Centre for Translational Data Science, University of Sydney, Sydney, NSW, Australia
| | - Susan V Mclennan
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,NSW Health Pathology, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
35
|
Krause MP, Milne KJ, Hawke TJ. Adiponectin-Consideration for its Role in Skeletal Muscle Health. Int J Mol Sci 2019; 20:ijms20071528. [PMID: 30934678 PMCID: PMC6480271 DOI: 10.3390/ijms20071528] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Adiponectin regulates metabolism through blood glucose control and fatty acid oxidation, partly mediated by downstream effects of adiponectin signaling in skeletal muscle. More recently, skeletal muscle has been identified as a source of adiponectin expression, fueling interest in the role of adiponectin as both a circulating adipokine and a locally expressed paracrine/autocrine factor. In addition to being metabolically responsive, skeletal muscle functional capacity, calcium handling, growth and maintenance, regenerative capacity, and susceptibility to chronic inflammation are all strongly influenced by adiponectin stimulation. Furthermore, physical exercise has clear links to adiponectin expression and circulating concentrations in healthy and diseased populations. Greater physical activity is generally related to higher adiponectin expression while lower adiponectin levels are found in inactive obese, pre-diabetic, and diabetic populations. Exercise training typically restores plasma adiponectin and is associated with improved insulin sensitivity. Thus, the role of adiponectin signaling in skeletal muscle has expanded beyond that of a metabolic regulator to include several aspects of skeletal muscle function and maintenance critical to muscle health, many of which are responsive to, and mediated by, physical exercise.
Collapse
Affiliation(s)
- Matthew P Krause
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| | - Kevin J Milne
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
36
|
Apryatin SA, Shipelin VA, Trusov NV, Mzhelskaya KV, Evstratova VS, Kirbaeva NV, Soto JS, Fesenko ZS, Gainetdinov RR, Gmoshinski IV. Comparative analysis of the influence of a high-fat/high-carbohydrate diet on the level of anxiety and neuromotor and cognitive functions in Wistar and DAT-KO rats. Physiol Rep 2019; 7:e13987. [PMID: 30784211 PMCID: PMC6381039 DOI: 10.14814/phy2.13987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 01/15/2023] Open
Abstract
We compared anxiety, neuromotor, and cognitive functions in mutant rats with different allelic variants of dopamine transporter DAT knockout receiving balanced or excess in fat and fructose diet. The experiments were performed in DAT-/- homozygotes, DAT+/- heterozygotes, and DAT+/+ wild type rats. The genotype of DAT-KO rats was confirmed by restriction analysis of DAT gene compared to behavioral responses in the open field test (OF). Animals in the first groups of each strain were fed a balanced AIN93M diet; and those in the second groups with a high-fat/high-fructose diet. Neuromotor function was studied as grip strength, and behavioral responses were assessed in the elevated plus maze and conditioned passive avoidance response tests. The mass of the internal organs and white and brown fat, as well as selected lipid and nitrogen metabolism parameters in blood plasma were determined at the end of the experiment. DAT-/- had the highest specific grip strength, and showed an increase in initial exploratory activity in comparison with DAT+/- and DAT +/+. The exploratory activity was significantly reduced in the second test compared to the first one in DAT-/- and DAT+/- of first but not second group. Anxiety decreased with age in the second groups of DAT+/- and DAT+/+ (but not in DAT-/-) and was higher in DAT+/+ than in DAT+/- and DAT-/-. Excess fat and fructose resulted in the deterioration of short-term memory in DAT+/+. Lipidomic indices of blood plasma were less responsive to diet in DAT-/- and DAT-/+ in comparison to DAT+/+. The increased AsAT/AlAT activity ratio in DAT-/- compared with those in DAT+/+ suggests the activation of catabolism activity in the mutants. The consumption of excess fat and fructose significantly modified the effects produced by DAT gene allelic variants presumably due to the influence on the processes of dopamine metabolism.
Collapse
Affiliation(s)
| | | | - Nikita V. Trusov
- Federal Research Centre of Nutrition and BiotechnologyMoscowRussia
| | | | | | | | - Jorge S. Soto
- Federal Research Centre of Nutrition and BiotechnologyMoscowRussia
| | - Zoia S. Fesenko
- Institute of Translational BiomedicineSt. Petersburg State UniversityPetersburgRussia
| | - Raul R. Gainetdinov
- Institute of Translational BiomedicineSt. Petersburg State UniversityPetersburgRussia
| | | |
Collapse
|
37
|
Martinez‐Huenchullan SF, Maharjan BR, Williams PF, Tam CS, Mclennan SV, Twigg SM. Skeletal muscle adiponectin induction depends on diet, muscle type/activity, and exercise modality in C57BL/6 mice. Physiol Rep 2018; 6:e13848. [PMID: 30338665 PMCID: PMC6194215 DOI: 10.14814/phy2.13848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Changes in skeletal muscle adiponectin induction have been described in obesity and exercise. However, whether changes are consistent across muscle types and with different exercise modalities, remain unclear. This study compared the effects of diet and two isocaloric training programs on adiponectin induction and its regulators in three muscles: quadriceps (exercising/glycolytic-oxidative), gastrocnemius (exercising/glycolytic), and masseter (nonexercising/glycolytic). Ten-week-old male C57BL/6 mice were fed a high-fat diet (HFD) (45% fat) or standard CHOW diet (12% fat) ad libitum and underwent one of two training regimes: (1) constant-moderate training (END), or (2) high intensity interval training (HIIT) for 10 weeks (3 × 40 min sessions/week). Chow and HFD-fed untrained mice were used as control. Compared with Chow, HFD induced an increase in protein levels of low-molecular weight (LMW) adiponectin in gastrocnemius and masseter (~2-fold; P < 0.05), and a decrease of high-molecular weight adiponectin (HMW-most bioactive form) in quadriceps (~0.5-fold; P < 0.05). Only END prevented these changes (P < 0.05). HFD induced a decrease of adiponectin receptor 1 (AdipoR1) protein in exercising muscles of untrained mice (~0.5-0.8-fold; P < 0.05); notably, END also decreased AdipoR1 protein levels in lean and HFD mice. This type of training also normalized HFD-driven mRNA changes found in some adiponectin downstream factors (sirtuin 1, Pgc-1a, and Ucp2) in the three muscles tested. Our results indicate that diet, muscle type/activity, and exercise modality influences muscle adiponectin profile, and some of its mediators. These parameters should be taken into consideration when investigating this endocrine response of the skeletal muscle, particularly in the context of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Sergio F. Martinez‐Huenchullan
- Greg Brown Diabetes & Endocrinology LaboratoryCentral Clinical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- School of Physical TherapyFaculty of MedicineUniversidad Austral de ChileValdiviaChile
| | - Babu R. Maharjan
- Greg Brown Diabetes & Endocrinology LaboratoryCentral Clinical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Department of BiochemistrySchool of MedicinePatan Academy of Health SciencesLalitpurNepal
| | - Paul F. Williams
- Greg Brown Diabetes & Endocrinology LaboratoryCentral Clinical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- New South Wales PathologyNewcastleAustralia
- Department of EndocrinologyRoyal Prince Alfred HospitalSydneyAustralia
| | - Charmaine S. Tam
- Northern Clinical School and Centre for Translational Data ScienceUniversity of SydneySydneyAustralia
| | - Susan V. Mclennan
- Greg Brown Diabetes & Endocrinology LaboratoryCentral Clinical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- New South Wales PathologyNewcastleAustralia
- Department of EndocrinologyRoyal Prince Alfred HospitalSydneyAustralia
| | - Stephen M. Twigg
- Greg Brown Diabetes & Endocrinology LaboratoryCentral Clinical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Department of EndocrinologyRoyal Prince Alfred HospitalSydneyAustralia
| |
Collapse
|
38
|
Si H, Wang X, Zhang L, Parnell LD, Admed B, LeRoith T, Ansah TA, Zhang L, Li J, Ordovás JM, Si H, Liu D, Lai CQ. Dietary epicatechin improves survival and delays skeletal muscle degeneration in aged mice. FASEB J 2018; 33:965-977. [PMID: 30096038 PMCID: PMC6355074 DOI: 10.1096/fj.201800554rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We recently reported that epicatechin, a bioactive compound that occurs naturally in various common foods, promoted general health and survival of obese diabetic mice. It remains to be determined whether epicatechin extends health span and delays the process of aging. In the present study, epicatechin or its analogue epigallocatechin gallate (EGCG) (0.25% w/v in drinking water) was administered to 20-mo-old male C57BL mice fed a standard chow. The goal was to determine the antiaging effect. The results showed that supplementation with epicatechin for 37 wk strikingly increased the survival rate from 39 to 69%, whereas EGCG had no significant effect. Consistently, epicatechin improved physical activity, delayed degeneration of skeletal muscle (quadriceps), and shifted the profiles of the serum metabolites and skeletal muscle general mRNA expressions in aging mice toward the profiles observed in young mice. In particular, we found that dietary epicatechin significantly reversed age-altered mRNA and protein expressions of extracellular matrix and peroxisome proliferator–activated receptor pathways in skeletal muscle, and reversed the age-induced declines of the nicotinate and nicotinamide pathway both in serum and skeletal muscle. The present study provides evidence that epicatechin supplementation can exert an antiaging effect, including an increase in survival, an attenuation of the aging-related deterioration of skeletal muscles, and a protection against the aging-related decline in nicotinate and nicotinamide metabolism.—Si, H., Wang, X., Zhang, L., Parnell, L. D., Ahmed, B., LeRoith, T., Ansah, T.-A., Zhang, L., Li, J., Ordovás, J. M., Si, H., Liu, D., Lai, C.-Q. Dietary epicatechin improves survival and delays skeletal muscle degeneration in aged mice.
Collapse
Affiliation(s)
- Hongwei Si
- Department of Human Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Xiaoyong Wang
- Department of Human Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Longyun Zhang
- Department of Human Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Laurence D Parnell
- United States Department of Agriculture (USDA) Agricultural Research Service, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Bulbul Admed
- Department of Human Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Twum-Ampofo Ansah
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Lijuan Zhang
- Department of Human Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Jianwei Li
- Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA.,Research Institute on Food and Health Sciences, Madrid Institute of Advanced Studies (IMDEA), Campus of Universal Excellence (CEI), Autonomous University of Madrid (UAM), Madrid, Spain.,Superior Council of Scientific Investigations (CSIC), Madrid, Spain
| | - Hongzong Si
- Institute of Computational Science and Engineering, Qingdao University, Qingdao, China; and
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia, USA
| | - Chao-Qiang Lai
- United States Department of Agriculture (USDA) Agricultural Research Service, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| |
Collapse
|