1
|
Khemraj P, Kuznyetsova A, Hood DA. Adaptations in mitochondrial quality control and interactions with innate immune signaling within skeletal muscle: A narrative review. JOURNAL OF SPORT AND HEALTH SCIENCE 2025:101049. [PMID: 40318804 DOI: 10.1016/j.jshs.2025.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/14/2025] [Accepted: 03/17/2025] [Indexed: 05/07/2025]
Abstract
Skeletal muscle health and function are essential determinants of metabolic health, physical performance, and overall quality of life. The quality of skeletal muscle is heavily dependent on the complex mitochondrial reticulum that contributes toward its unique adaptability. It is now recognized that mitochondrial perturbations can activate various innate immune pathways, such as the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome complex by propagating inflammatory signaling in response to damage-associated molecular patterns (DAMPs). The NLRP3 inflammasome is a multimeric protein complex and is a prominent regulator of innate immunity and cell death by mediating the activation of caspase-1, pro-inflammatory cytokines interleukin-1β and interleukin-18 and pro-pyroptotic protein gasdermin-D. While several studies have begun to demonstrate the relationship between various mitochondrial DAMPs (mtDAMPs) and NLRP3 inflammasome activation, the influence of various metabolic states on the production of these DAMPs and subsequent inflammatory profile remains poorly understood. This narrative review aimed to address this by highlighting the effects of skeletal muscle use and disuse on mitochondrial quality mechanisms including mitochondrial biogenesis, fusion, fission and mitophagy. Secondly, this review summarized the impact of alterations in mitochondrial quality control mechanisms following muscle denervation, aging, and exercise training in relation to NLRP3 inflammasome activation. By consolidating the current body of literature, this work aimed to further the understanding of innate immune signaling within skeletal muscle, which can highlight areas for future research and therapeutic strategies to regulate NLRP3 inflammasome activation during divergent metabolic conditions.
Collapse
Affiliation(s)
- Priyanka Khemraj
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto M3J 1P3, Canada
| | - Anastasiya Kuznyetsova
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto M3J 1P3, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto M3J 1P3, Canada.
| |
Collapse
|
2
|
Penna C, Pagliaro P. Endothelial Dysfunction: Redox Imbalance, NLRP3 Inflammasome, and Inflammatory Responses in Cardiovascular Diseases. Antioxidants (Basel) 2025; 14:256. [PMID: 40227195 PMCID: PMC11939635 DOI: 10.3390/antiox14030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
Endothelial dysfunction (ED) is characterized by an imbalance between vasodilatory and vasoconstrictive factors, leading to impaired vascular tone, thrombosis, and inflammation. These processes are critical in the development of cardiovascular diseases (CVDs) such as atherosclerosis, hypertension and ischemia/reperfusion injury (IRI). Reduced nitric oxide (NO) production and increased oxidative stress are key contributors to ED. Aging further exacerbates ED through mitochondrial dysfunction and increased oxidative/nitrosative stress, heightening CVD risk. Antioxidant systems like superoxide-dismutase (SOD), glutathione-peroxidase (GPx), and thioredoxin/thioredoxin-reductase (Trx/TXNRD) pathways protect against oxidative stress. However, their reduced activity promotes ED, atherosclerosis, and vulnerability to IRI. Metabolic syndrome, comprising insulin resistance, obesity, and hypertension, is often accompanied by ED. Specifically, hyperglycemia worsens endothelial damage by promoting oxidative stress and inflammation. Obesity leads to chronic inflammation and changes in perivascular adipose tissue, while hypertension is associated with an increase in oxidative stress. The NLRP3 inflammasome plays a significant role in ED, being triggered by factors such as reactive oxygen and nitrogen species, ischemia, and high glucose, which contribute to inflammation, endothelial injury, and exacerbation of IRI. Treatments, such as N-acetyl-L-cysteine, SGLT2 or NLRP3 inhibitors, show promise in improving endothelial function. Yet the complexity of ED suggests that multi-targeted therapies addressing oxidative stress, inflammation, and metabolic disturbances are essential for managing CVDs associated with metabolic syndrome.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy;
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy;
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
3
|
Chen J, Jia S, Xue X, Guo C, Dong K. Gut microbiota: a novel target for exercise-mediated regulation of NLRP3 inflammasome activation. Front Microbiol 2025; 15:1476908. [PMID: 39834360 PMCID: PMC11743191 DOI: 10.3389/fmicb.2024.1476908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) is a key pattern recognition receptor in the innate immune system. Its overactivation leads to the production of pro-inflammatory cytokines, such as IL-1β and IL-18, which contribute to the development and progression of various diseases. In recent years, evidence has shown that gut microbiota plays an important role in regulating the activation of NLRP3 inflammasome. Variations in the function and composition of gut microbiota can directly or indirectly influence NLRP3 inflammasome activation by influencing bacterial components and gut microbiota metabolites. Additionally, exercise has been shown to effectively reduce NLRP3 inflammasome overactivation while promoting beneficial changes in gut microbiota. This suggests that gut microbiota may play a key role in mediating the effects of exercise on NLRP3 inflammasome regulation. This review explores the impact of exercise on gut microbiota and NLRP3 inflammasome activation, and examines the mechanisms through which gut microbiota mediates the anti-inflammatory effects of exercise, providing new avenues for research.
Collapse
Affiliation(s)
- Jun Chen
- School of Graduate of Wuhan Sports University, Wuhan, China
| | - Shaohui Jia
- School of Sports Medicine of Wuhan Sports University, Wuhan, China
| | - Xinxuan Xue
- School of Sports Training of Wuhan Sports University, Wuhan, China
| | - Chenggeng Guo
- School of Sports Training of Wuhan Sports University, Wuhan, China
| | - Kunwei Dong
- School of Art of Wuhan Sports University, Wuhan, China
| |
Collapse
|
4
|
Suthivanich P, Boonhoh W, Sumneang N, Punsawad C, Cheng Z, Phungphong S. Aerobic Exercise Attenuates Doxorubicin-Induced Cardiomyopathy by Suppressing NLRP3 Inflammasome Activation in a Rat Model. Int J Mol Sci 2024; 25:9692. [PMID: 39273638 PMCID: PMC11395441 DOI: 10.3390/ijms25179692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent with well-documented dose-dependent cardiotoxicity. Regular exercise is recognized for its cardioprotective effects against DOX-induced cardiac inflammation, although the precise mechanisms remain incompletely understood. The activation of inflammasomes has been implicated in the pathogenesis and treatment of DOX-induced cardiotoxicity, with the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome emerging as a key mediator in cardiovascular inflammation. This study aimed to investigate the role of exercise in modulating the NLRP3 inflammasome to protect against DOX-induced cardiac inflammation. Male Sprague-Dawley rats were randomly assigned to receive a 10-day course of DOX or saline injections, with or without a preceding 10-week treadmill running regimen. Cardiovascular function and histological changes were subsequently evaluated. DOX-induced cardiotoxicity was characterized by cardiac atrophy, systolic dysfunction, and hypotension, alongside activation of the NLRP3 inflammasome. Our findings revealed that regular exercise preserved cardiac mass and hypertrophic indices and prevented DOX-induced cardiac dysfunction, although it did not fully preserve blood pressure. These results underscore the significant cardioprotective effects of exercise against DOX-induced cardiotoxicity. While regular exercise did not entirely prevent DOX-induced hypotension, our findings demonstrate that it confers protection against DOX-induced cardiotoxicity by suppressing NLRP3 inflammasome activation in the heart, underscoring its anti-inflammatory role. Further research should explore the temporal dynamics and interactions among exercise, pyroptosis, and other pathways in DOX-induced cardiotoxicity to enhance translational applications in cardiovascular medicine.
Collapse
Affiliation(s)
- Phichaya Suthivanich
- Doctor of Philosophy Program in Physiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worakan Boonhoh
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Natticha Sumneang
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Sukanya Phungphong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
5
|
Ding P, Song Y, Yang Y, Zeng C. NLRP3 inflammasome and pyroptosis in cardiovascular diseases and exercise intervention. Front Pharmacol 2024; 15:1368835. [PMID: 38681198 PMCID: PMC11045953 DOI: 10.3389/fphar.2024.1368835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that possesses NACHT, leucine-rich repeat, and pyrin domain, playing a crucial role in innate immunity. Activation of the NLRP3 inflammasome leads to the production of pro-inflammatory cellular contents, such as interleukin (IL)-1β and IL-18, and induction of inflammatory cell death known as pyroptosis, thereby amplifying or sustaining inflammation. While a balanced inflammatory response is beneficial for resolving damage and promoting tissue healing, excessive activation of the NLRP3 inflammasome and pyroptosis can have harmful effects. The involvement of the NLRP3 inflammasome has been observed in various cardiovascular diseases (CVD). Indeed, the NLRP3 inflammasome and its associated pyroptosis are closely linked to key cardiovascular risk factors including hyperlipidemia, diabetes, hypertension, obesity, and hyperhomocysteinemia. Exercise compared with medicine is a highly effective measure for both preventing and treating CVD. Interestingly, emerging evidence suggests that exercise improves CVD and inhibits the activity of NLRP3 inflammasome and pyroptosis. In this review, the activation mechanisms of the NLRP3 inflammasome and its pathogenic role in CVD are critically discussed. Importantly, the purpose is to emphasize the crucial role of exercise in managing CVD by suppressing NLRP3 inflammasome activity and proposes it as the foundation for developing novel treatment strategies.
Collapse
Affiliation(s)
- Ping Ding
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuanming Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Yang
- Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, China
| | - Cheng Zeng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Nițulescu IM, Ciulei G, Cozma A, Procopciuc LM, Orășan OH. From Innate Immunity to Metabolic Disorder: A Review of the NLRP3 Inflammasome in Diabetes Mellitus. J Clin Med 2023; 12:6022. [PMID: 37762961 PMCID: PMC10531881 DOI: 10.3390/jcm12186022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The role of the NLRP3 inflammasome is pivotal in the pathophysiology and progression of diabetes mellitus (DM), encompassing both type 1 (T1D), or type 2 (T2D). As part of the innate immune system, NLRP3 is also responsible for the chronic inflammation triggered by hyperglycemia. In both conditions, NLRP3 facilitates the release of interleukin-1β and interleukin-18. For T1D, NLRP3 perpetuates the autoimmune cascade, leading to the destruction of pancreatic islet cells. In T2D, its activation is associated with the presence of insulin resistance. NLRP3 activation is also instrumental for the presence of numerous complications associated with DM, microvascular and macrovascular. A considerable number of anti-diabetic drugs have demonstrated the ability to inhibit the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Iris Maria Nițulescu
- Department 4 of Internal Medicine, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.M.N.); (A.C.); (O.H.O.)
| | - George Ciulei
- Department 4 of Internal Medicine, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.M.N.); (A.C.); (O.H.O.)
| | - Angela Cozma
- Department 4 of Internal Medicine, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.M.N.); (A.C.); (O.H.O.)
| | - Lucia Maria Procopciuc
- Department 2 of Molecular Sciences, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Olga Hilda Orășan
- Department 4 of Internal Medicine, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.M.N.); (A.C.); (O.H.O.)
| |
Collapse
|
7
|
Herrera-Martínez AD, Herrero-Aguayo V, Pérez-Gómez JM, Gahete MD, Luque RM. Inflammasomes: Cause or consequence of obesity-associated comorbidities in humans. Obesity (Silver Spring) 2022; 30:2351-2362. [PMID: 36415999 DOI: 10.1002/oby.23581] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Inflammasomes are multiprotein intracellular complexes composed of innate immune system receptors and sensors; they activate the inflammatory cascade in response to infectious microbes and/or molecules derived from host proteins. Because of cytokine secretion, inflammasomes can induce amplified systemic responses, its dysregulation can exacerbate symptoms in infectious diseases, and it has been related to the development of autoimmune diseases, inflammatory disorders, and even cancer. Obesity is associated with a chronic low-grade inflammation, in which circulating proinflammatory cytokines are elevated. Some publications describe changes in inflammation markers as a consequence of obesity, but others suggest that chronic inflammation might cause obesity (e.g., C-reactive protein): these assumptions reflect the difficulty of identifying the appropriate role of inflammation as cause or consequence of obesity and its related complications. Obesity is recognized as a clinical risk factor for developing cardiovascular diseases including atherosclerosis, metabolic syndrome, insulin resistance, and diabetes mellitus. Changes in the expression of inflammasomes are described in some of these obesity-related complications, and moreover, its modulation might exert a beneficial effect in some cases. Despite some contradictory results, most publications suggest a promising clinical effect based on in vitro and in vivo experiments. In this review, we summarized recent publications about inflammasome dysregulation in humans and its relationship with obesity-related comorbidities.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
| | - Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| |
Collapse
|
8
|
Hu S, Wan X, Li X, Wang X. Aerobic exercise alleviates pyroptosis-related diseases by regulating NLRP3 inflammasome. Front Physiol 2022; 13:965366. [PMID: 36187801 PMCID: PMC9520335 DOI: 10.3389/fphys.2022.965366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Pyroptosis plays a crucial role in a variety of human diseases, including atherosclerosis, obesity, diabetes, depression, and Alzheimer’s disease, which usually release pyroptosis-related cytokines due to inflammation. Many studies have demonstrated that aerobic exercise is a good option for decreasing the release of pyroptosis-related cytokines. However, the molecular mechanisms of aerobic exercise on pyroptosis-related diseases remain unknown. In this review, the effects of aerobic exercise on pyroptosis in endothelial cells, adipocytes and hippocampal cells, and their potential mechanisms are summarized. In endothelial cells, aerobic exercise could inhibit NOD-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis by improving the endothelial function, while reducing vascular inflammation and oxidative stress. In adipocytes, aerobic exercise has been shown to inhibit pyroptosis by ameliorating inflammation and insulin resistance. Moreover, aerobic exercise could restrict pyroptosis by attenuating microglial activation, neuroinflammation, and amyloid-beta deposition in hippocampal cells. In summary, aerobic exercise alleviates the pyroptosis-related diseases by regulating the NLRP3 inflammation si0067naling.
Collapse
Affiliation(s)
- Shujuan Hu
- School of Education and Physical Education, Yangtze University, Jingzhou, China
- School of Physical Education and Science, Jishou University, Jishou, China
| | - Xingxia Wan
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, China
| | - Xianhui Li
- College of Pharmacy, Jishou University, Jishou, China
| | - Xianwang Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, China
- *Correspondence: Xianwang Wang,
| |
Collapse
|
9
|
Li XH, Liu LZ, Chen L, Pan QN, Ouyang ZY, Fan DJ, Pan X, Lu SY, Luo QH, Tao PY, Huang HQ. Aerobic exercise regulates FGF21 and NLRP3 inflammasome-mediated pyroptosis and inhibits atherosclerosis in mice. PLoS One 2022; 17:e0273527. [PMID: 36006939 PMCID: PMC9409497 DOI: 10.1371/journal.pone.0273527] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/09/2022] [Indexed: 01/21/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), a known risk factor for atherosclerosis, is readily regulated by exercise, and it can inhibit NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis. However, it is not clear whether aerobic exercise inhibits atherosclerosis via these pathways. Eight-week-old apolipoprotein E-deficient (ApoE-/-) mice on a high-fat diet were randomly divided into 1-h post-exercise (EX-1h), 24-h post-exercise (EX-24h), and sedentary (SED) groups. C57BL/6J wild-type mice fed normal chow served as controls (WT group). Mice in the EX-1h and EX-24h groups were subjected to treadmill exercise training for 12 weeks. Aerobic exercise reduced body weight; blood glucose, lipid, and inflammation levels; and aortic plaque area proportion. Aerobic exercise increased the sensitivity of FGF21 by upregulating the expression of the downstream receptor adiponectin (ApN); the serum FGF21 level after exercise increased initially, and then decreased. Aerobic exercise downregulated the expression of NLRP3 inflammasome-mediated pyroptosis-related markers in the aorta, and FGF21 may participate in the above process. Meanwhile, the liver may be the tissue source of serum FGF21 during aerobic exercise. In conclusion, aerobic exercise may inhibit atherogenesis by regulating FGF21 and NLRP3 inflammasome-mediated pyroptosis. Our study provides new information on the atherosclerosis-preventing mechanism of aerobic exercise.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Oncology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Liang-Zhong Liu
- Department of Oncology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Lin Chen
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qi-Ni Pan
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zi-Yao Ouyang
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - De-Jing Fan
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Pan
- Emergency Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Su-Yu Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiu-Hu Luo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Pin-Yue Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail: (PYT); (HQH)
| | - Hui-Qiao Huang
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail: (PYT); (HQH)
| |
Collapse
|
10
|
Ge Z, Zhang Z, Ding S. Effects of acute endurance exercise and exhaustive exercise on innate immune signals induced by mtDNA. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221134942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective: Numerous studies have shown that mitochondrial DNA (mtDNA) can trigger innate immune signaling, and exercise can induce mitochondrial stress. Therefore, this study is aimed at investigating the influence of different types of acute exercise on the innate immune signaling triggered by mtDNA. Methods: Male C57BL/6 mice ( n = 18) were randomly and equally divided into three groups. They were control group, acute moderate-intensity endurance exercise group (AMIE), and 3-day exhaustive exercise group (EE) respectively. Mice were sacrificed immediately after exercise. The spleen, liver, and blood were taken for analysis. Results: The amount of mtDNA in the liver cytoplasm and plasma was significantly decreased after AMIE ( p < .05). However, the amount of mtDNA in plasma was increased after EE (p < .05). The mRNA expression of TFAM, and most TLR9 and cGAS/STING signaling pathway-related genes in the liver and spleen was markedly elevated, whereas the expression of those genes in leukocytes was reduced after AMIE. Furthermore, AMIE significantly decreased the protein expression of NLRP3 inflammasome in the liver ( p < .05) and STING in spleen ( p < .01). Also, AMIE and EE caused a drop in circulating IFN-β levels ( p < .05). Conclusion: A single bout of moderate-intensity exercise reduces mtDNA-induced innate immune signaling and suppresses inflammatory responses by decreasing hepatic cytoplasmic and circulating mtDNA. However, repeated bouts of exhaustive exercise stimulate innate immune signaling by increasing levels of circulating mtDNA.
Collapse
Affiliation(s)
- Zhe Ge
- School of Sport, Shenzhen University, Shenzhen, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Zhe Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
11
|
Razi O, Tartibian B, Teixeira AM, Zamani N, Govindasamy K, Suzuki K, Laher I, Zouhal H. Thermal dysregulation in patients with multiple sclerosis during SARS-CoV-2 infection. The potential therapeutic role of exercise. Mult Scler Relat Disord 2022; 59:103557. [PMID: 35092946 PMCID: PMC8785368 DOI: 10.1016/j.msard.2022.103557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022]
Abstract
Thermoregulation is a homeostatic mechanism that is disrupted in some neurological diseases. Patients with multiple sclerosis (MS) are susceptible to increases in body temperature, especially with more severe neurological signs. This condition can become intolerable when these patients suffer febrile infections such as coronavirus disease-2019 (COVID-19). We review the mechanisms of hyperthermia in patients with MS, and they may encounter when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finally, the thermoregulatory role and relevant adaptation to regular physical exercise are summarized.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Ana Maria Teixeira
- University of Coimbra, Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Karuppasamy Govindasamy
- Department of Physical Education & Sports Science, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Rennes F-35000, France; Institut International des Sciences du Sport (2I2S), Irodouer 35850, France.
| |
Collapse
|
12
|
NLRP3 Inflammasome in Diabetic Cardiomyopathy and Exercise Intervention. Int J Mol Sci 2021; 22:ijms222413228. [PMID: 34948026 PMCID: PMC8707657 DOI: 10.3390/ijms222413228] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM), as a common complication of diabetes, is characterized by chronic low-grade inflammation. The NLRP3 inflammasome is a key sensor mediating innate immune and inflammatory responses. However, the mechanisms initiating and promoting NLRP3 inflammasome activation in DCM is largely unexplored. The aim of the present review is to describe the link between NLRP3 inflammasome and DCM, and to provide evidence highlighting the importance of exercise training in DCM intervention. Collectively, this evidence suggests that DCM is an inflammatory disease aggravated by NLRP3 inflammasome-mediated release of IL-1β and IL-18. In addition, chronic exercise intervention is an effective preventive and therapeutic method to alleviate DCM via modulating the NLRP3 inflammasome.
Collapse
|
13
|
Zhang T, Ding S, Wang R. Research Progress of Mitochondrial Mechanism in NLRP3 Inflammasome Activation and Exercise Regulation of NLRP3 Inflammasome. Int J Mol Sci 2021; 22:ijms221910866. [PMID: 34639204 PMCID: PMC8509472 DOI: 10.3390/ijms221910866] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
NLRP3 is an important pattern recognition receptor in the innate immune system, and its activation induces a large number of pro-inflammatory cytokines, IL-1β and IL-18 which are involved in the development of various diseases. In recent years, it has been suggested that mitochondria are the platform for NLRP3 inflammasome activation. Additionally, exercise is considered as an important intervention strategy to mediate the innate immune responses. Generally, chronic moderate-intensity endurance training, resistance training and high-intensity interval training inhibit NLRP3 inflammasome activation in response to various pathological factors. In contrast, acute exercise activates NLRP3 inflammasome. However, the mechanisms by which exercise regulates NLRP3 inflammasome activation are largely unclear. Therefore, the mechanism of NLRP3 inflammasome activation is discussed mainly from the perspective of mitochondria in this review. Moreover, the effect and potential mechanism of exercise on NLRP3 inflammasome are explored, hoping to provide new target for relevant research.
Collapse
Affiliation(s)
- Tan Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China;
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- Correspondence: (S.D.); (R.W.)
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China;
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, China
- Correspondence: (S.D.); (R.W.)
| |
Collapse
|
14
|
Hong J, Park E, Lee J, Lee Y, Rooney BV, Park Y. Exercise training mitigates ER stress and UCP2 deficiency-associated coronary vascular dysfunction in atherosclerosis. Sci Rep 2021; 11:15449. [PMID: 34326395 PMCID: PMC8322067 DOI: 10.1038/s41598-021-94944-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and uncoupling protein-2 (UCP2) activation are opposing modulators of endothelial dysfunction in atherosclerosis. Exercise reduces atherosclerosis plaques and enhances endothelial function. Our aim was to understand how exercise affects ER stress and UCP2 activation, and how that relates to endothelial dysfunction in an atherosclerotic murine model. Wild type (C57BL/6, WT) and apolipoprotein-E-knockout (ApoEtm1Unc, ApoE KO) mice underwent treadmill exercise training (EX) or remained sedentary for 12 weeks. Acetylcholine (ACh)-induced endothelium-dependent vasodilation was determined in the presence of an eNOS inhibitor (L-NAME), UCP2 inhibitor (genipin), and ER stress inducer (tunicamycin). UCP2, ER stress markers and NLRP3 inflammasome signaling were quantified by western blotting. p67phox and superoxide were visualized using immunofluorescence and DHE staining. Nitric oxide (NO) was measured by nitrate/nitrite assay. ACh-induced vasodilation was attenuated in coronary arterioles of ApoE KO mice but improved in ApoE KO-EX mice. Treatment of coronary arterioles with L-NAME, tunicamycin, and genipin significantly attenuated ACh-induced vasodilation in all mice except for ApoE KO mice. Exercise reduced expression of ER stress proteins, TXNIP/NLRP3 inflammasome signaling cascades, and Bax expression in the heart of ApoE KO-EX mice. Further, exercise diminished superoxide production and NADPH oxidase p67phox expression in coronary arterioles while simultaneously increasing UCP2 expression and nitric oxide (NO) production in the heart of ApoE KO-EX mice. Routine exercise alleviates endothelial dysfunction in atherosclerotic coronary arterioles in an eNOS, UCP2, and ER stress signaling specific manner, and resulting in reduced TXNIP/NLRP3 inflammasome activity and oxidative stress.
Collapse
Affiliation(s)
- Junyoung Hong
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA
| | - Eunkyung Park
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA
| | - Jonghae Lee
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA
| | - Yang Lee
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX, 77807, USA
| | - Bridgette V Rooney
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA.,Geocontrol Systems Inc, NASA Johnson Space Center, Houston, TX, 77058, USA
| | - Yoonjung Park
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA.
| |
Collapse
|
15
|
Lee J, Hong J, Umetani M, Lavoy EC, Kim JH, Park Y. Vascular Protection by Exercise in Obesity: Inflammasome-associated Mechanisms. Med Sci Sports Exerc 2021; 52:2538-2545. [PMID: 32555019 DOI: 10.1249/mss.0000000000002419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE The nodlike receptor family pyrin domain containing 3 (NLRP3) inflammasome is a critical player in vascular pathology as it regulates caspase-1-mediated interleukin (IL)-1β processing. Physical activity ameliorates obesity-induced inflammation and vascular dysfunction, but the mechanisms responsible for these positive changes are incompletely understood. Here, the protective effect of physical activity on the inflammasome-associated vascular dysfunction in obesity and its putative mechanisms were investigated. METHODS Mice were fed a control low-fat diet (LFD) or a high-fat diet (HFD; 45% of calories from fat) and provided with running wheel access (LF-RUN or HF-RUN) or denied wheel access for our sedentary condition (LF-SED or HF-SED). The NLRP3 inflammasome-associated pathway, including NLRP3, caspase-1, and IL-1β, in mice aorta was examined by RT-qPCR and FLICA and DAB staining. The protein expression of zonula occluden-1 (ZO-1), ZO-2, adiponectin (APN), and adiponectin receptor 1 (AdipoR1) in aortic endothelial cells was determined by immunofluorescence double staining. Intracellular reactive oxidative stress and nitric oxide (NO) production were monitored with fluorescence probes, dihydroethidium, and diaminofluorecein. RESULTS HFD increased caspase-1 and IL-1β at mRNA and protein levels in endothelial cells of the aorta, and this was attenuated by voluntary running. HFD decreased ZO-1 and ZO-2 expression and reduced APN and AdipoR1 signaling; these were restored by running. The elevated intracellular superoxide (O2) production observed in HF-SED was ameliorated in HF-RUN. Finally, HF-RUN improved NO production in the aorta compared with HF-SED. CONCLUSIONS Our findings suggest that voluntary running ameliorates mechanisms associated with vascular dysfunction by suppressing NLRP3 inflammasome, improving NO production, and reducing oxidative stress. Such benefits of physical activity may be, at least in part, associated with APN-AdipoR1 signaling and tight junction protein expression.
Collapse
Affiliation(s)
- Jonghae Lee
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX
| | - Junyoung Hong
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX
| | | | - Emily C Lavoy
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX
| | - Jong-Hee Kim
- Department of Physical Education, Hanyang University, Seoul, REPUBLIC OF KOREA
| | - Yoonjung Park
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX
| |
Collapse
|
16
|
van den Berg DF, Te Velde AA. Severe COVID-19: NLRP3 Inflammasome Dysregulated. Front Immunol 2020; 11:1580. [PMID: 32670297 PMCID: PMC7332883 DOI: 10.3389/fimmu.2020.01580] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 might directly activate NLRP3 inflammasome resulting in an endogenous adjuvant activity necessary to mount a proper adaptive immune response against the virus. Heterogeneous response of COVID-19 patients could be attributed to differences in not being able to properly downregulate NLRP3 inflammasome activation. This relates to the fitness of the immune system of the individual challenged by the virus. Patients with a reduced immune fitness can demonstrate a dysregulated NLRP3 inflammasome activity resulting in severe COVID-19 with tissue damage and a cytokine storm. We sketch the outlines of five possible scenarios for COVID-19 in medical practice and provide potential treatment options targeting dysregulated endogenous adjuvant activity in severe COVID-19 patients.
Collapse
Affiliation(s)
- Daan F van den Berg
- Amsterdam UMC, Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, Netherlands
| | - Anje A Te Velde
- Amsterdam UMC, Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, Netherlands
| |
Collapse
|