1
|
Esposito R, Mirra D, Sportiello L, Spaziano G, D’Agostino B. Overview of Antiviral Drug Therapy for COVID-19: Where Do We Stand? Biomedicines 2022; 10:2815. [PMID: 36359334 PMCID: PMC9687182 DOI: 10.3390/biomedicines10112815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/08/2024] Open
Abstract
The vaccine weapon has resulted in being essential in fighting the COVID-19 outbreak, but it is not fully preventing infection due to an alarming spreading of several identified variants of concern. In fact, the recent emergence of variants has pointed out how the SARS-CoV-2 pandemic still represents a global health threat. Moreover, oral antivirals also develop resistance, supporting the need to find new targets as therapeutic tools. However, cocktail therapy is useful to reduce drug resistance and maximize vaccination efficacy. Natural products and metal-drug-based treatments have also shown interesting antiviral activity, representing a valid contribution to counter COVID-19 outbreak. This report summarizes the available evidence which supports the use of approved drugs and further focuses on significant clinical trials that have investigated the safety and efficacy of repurposing drugs and new molecules in different COVID-19 phenotypes. To date, there are many individuals vulnerable to COVID-19 exhibiting severe symptoms, thus characterizing valid therapeutic strategies for better management of the disease is still a challenge.
Collapse
Affiliation(s)
- Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Liberata Sportiello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| |
Collapse
|
2
|
Mirra D, Cione E, Spaziano G, Esposito R, Sorgenti M, Granato E, Cerqua I, Muraca L, Iovino P, Gallelli L, D’Agostino B. Circulating MicroRNAs Expression Profile in Lung Inflammation: A Preliminary Study. J Clin Med 2022; 11:jcm11185446. [PMID: 36143090 PMCID: PMC9500709 DOI: 10.3390/jcm11185446] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Bronchial asthma is an inflammatory airway disease with an ever-increasing incidence. Therefore, innovative management strategies are urgently needed. MicroRNAs are small molecules that play a key role in lungs cellular functions and are involved in chronic inflammatory diseases, such as bronchial asthma. This study aims to compare microRNA serum expression between subjects with asthma, obesity, the most common co-morbidity in asthma, and healthy controls to obtain a specific expression profile specifically related to lung inflammation. Methods: We collected serum samples from a prospective cohort of 25 sex-matched subjects to determine circulating miRNAs through a quantitative RT-PCR. Moreover, we performed an in silico prediction of microRNA target genes linked to lung inflammation. Results: Asthmatic patients had a significant lower expression of hsa-miR-34a-5p, 181a-5p and 146a-5p compared to both obese and healthy ones suggesting microRNAs’ specific involvement in the regulation of lungs inflammatory response. Indeed, using in silico analysis, we identified microRNAs novel target genes as GATA family, linked to the inflammatory-related pathway. Conclusions: This study identifies a novel circulating miRNAs expression profile with promising potentials for asthma clinical evaluations and management. Further and larger investigations will be needed to confirm the potential role of microRNA as a clinical marker of bronchial asthma and eventually of pharmacological treatment response.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018–2022, University of Calabria, 87036 Rende, CS, Italy
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Mario Sorgenti
- Respiratory Diseases in Primary Care, ASP Catanzaro, 88100 Catanzaro, Italy
| | - Elisabetta Granato
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Lucia Muraca
- Department of Primary Care, ASP Catanzaro, 88100 Catanzaro, Italy
| | - Pasquale Iovino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, Mater Domini Hospital, University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| |
Collapse
|
3
|
Regulatory Peptides in Asthma. Int J Mol Sci 2021; 22:ijms222413656. [PMID: 34948451 PMCID: PMC8707337 DOI: 10.3390/ijms222413656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or β-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.
Collapse
|
4
|
Pavón-Romero GF, Serrano-Pérez NH, García-Sánchez L, Ramírez-Jiménez F, Terán LM. Neuroimmune Pathophysiology in Asthma. Front Cell Dev Biol 2021; 9:663535. [PMID: 34055794 PMCID: PMC8155297 DOI: 10.3389/fcell.2021.663535] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammation of lower airway disease, characterized by bronchial hyperresponsiveness. Type I hypersensitivity underlies all atopic diseases including allergic asthma. However, the role of neurotransmitters (NT) and neuropeptides (NP) in this disease has been less explored in comparison with inflammatory mechanisms. Indeed, the airway epithelium contains pulmonary neuroendocrine cells filled with neurotransmitters (serotonin and GABA) and neuropeptides (substance P[SP], neurokinin A [NKA], vasoactive intestinal peptide [VIP], Calcitonin-gene related peptide [CGRP], and orphanins-[N/OFQ]), which are released after allergen exposure. Likewise, the autonomic airway fibers produce acetylcholine (ACh) and the neuropeptide Y(NPY). These NT/NP differ in their effects; SP, NKA, and serotonin exert pro-inflammatory effects, whereas VIP, N/OFQ, and GABA show anti-inflammatory activity. However, CGPR and ACh have dual effects. For example, the ACh-M3 axis induces goblet cell metaplasia, extracellular matrix deposition, and bronchoconstriction; the CGRP-RAMP1 axis enhances Th2 and Th9 responses; and the SP-NK1R axis promotes the synthesis of chemokines in eosinophils, mast cells, and neutrophils. In contrast, the ACh-α7nAChR axis in ILC2 diminishes the synthesis of TNF-α, IL-1, and IL-6, attenuating lung inflammation whereas, VIP-VPAC1, N/OFQ-NOP axes cause bronchodilation and anti-inflammatory effects. Some NT/NP as 5-HT and NKA could be used as biomarkers to monitor asthma patients. In fact, the asthma treatment based on inhaled corticosteroids and anticholinergics blocks M3 and TRPV1 receptors. Moreover, the administration of experimental agents such as NK1R/NK2R antagonists and exogenous VIP decrease inflammatory mediators, suggesting that regulating the effects of NT/NP represents a potential novel approach for the treatment of asthma.
Collapse
Affiliation(s)
| | | | | | | | - Luis M. Terán
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
5
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
6
|
Esposito R, Spaziano G, Giannattasio D, Ferrigno F, Liparulo A, Rossi A, Roviezzo F, Sessa M, Falciani M, Berrino L, Polverino M, Polverino F, D'Agostino B. Montelukast Improves Symptoms and Lung Function in Asthmatic Women Compared With Men. Front Pharmacol 2019; 10:1094. [PMID: 31611790 PMCID: PMC6769077 DOI: 10.3389/fphar.2019.01094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: Gender differences exist in the prevalence of asthma and allergic diseases, partially due to the effects of sex hormones on the development of allergic manifestations. Women, compared with men, are more prone to suffer allergic asthma, experience difficulties in controlling asthma symptoms, and show adverse responses to drugs. However, there are knowledge gaps on the effectiveness of anti-leukotrienes drugs on lung function, symptoms, and pulmonary and systemic inflammation in adult asthmatic women compared with men. We conducted a prospective cohort study to characterize the effectiveness of an anti-leukotrienes drug, montelukast (MS), in asthmatic adult women and men. Methods: Twenty-one asthmatic subjects (11 women and 10 men), who were on low-dose inhaled corticosteroids (ICS), were treated with MS. The optimal control of the symptoms was achieved in both groups according to the Global Initiative for Asthma guidelines. At enrollment, and after 13 weeks from the beginning of MS, pulmonary function tests and asthma control tests were performed, and the fraction of exhaled nitric oxide and blood eosinophils levels were measured. Results: From baseline until the end of the study, women treated with MS + ICS had better control of the asthmatic symptoms, defined as higher asthma control test (ACT) score (17.00 ± 1.07 to 23.36 ± 0.45; p < 0.0015), improved pulmonary function [with higher forced expiratory volume in 1 s (from 77.25 ± 6.79 to 103.88 ± 6.24; p < 0.0077)], and forced vital capacity (from 91.95 ± 6.81 to 113.17 ± 4.79; p < 0.0183) compared with men. Interestingly, MS + ICS-treated women had significantly lower levels of blood eosinophils (from 5.27 ± 0.30 to 3.30 ± 0.31; p < 0.0449) and exhaled nitric oxide (from 44.70 ± 7.30 to 25.20 ± 3.90; p < 0.0294) compared with men. Conclusion: The treatment with MS, added to ICS, in women leads to better control of symptoms, better management of lung function, and decreased inflammation levels compared with ICS + MS treatment in men.
Collapse
Affiliation(s)
- Renata Esposito
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | | | | | - Angela Liparulo
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maurizio Sessa
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | - Mario Polverino
- Pulmonary and Critical Care Medicine, Ospedale Scarlato, Scafati, Italy
| | - Francesca Polverino
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Bruno D'Agostino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
7
|
D'Agostino B, Sgambato M, Esposito R, Spaziano G. N/OFQ-NOP System and Airways. Handb Exp Pharmacol 2019; 254:313-322. [PMID: 30725285 DOI: 10.1007/164_2018_202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Asthma is a heterogeneous chronic inflammatory disease of the airways. The most prevalent form is atopic asthma, which is initiated by the exposure to (inhaled) allergens. Intermittent attacks of breathlessness, airways hyperresponsiveness, wheezing, coughing, and resultant allergen-specific immune responses characterize the disease. Nociceptin/OFQ-NOP receptor system is able to combine anti-hyperresponsiveness and immunomodulatory actions. In particular, N/OFQ is able to inhibit airways microvascular leakage and bronchoconstriction through a presynaptic and non-opioid mechanism of action that blocks tachykinin release. Moreover, it also acts on allergenic sensitization because it is able to modulate the immune response that triggers the development of airway hyperresponsiveness through an interaction on cell membranes of dendritic cells (DCs) that are generally responsible to start and sustain allergic T helper 2 (TH2)-cell responses to inhaled allergens in asthma. In asthmatic patients, sputum showed elevated N/OFQ levels that are related to increased eosinophil counts. The addition of exogenous N/OFQ in sputum obtained from patients with severe asthma attenuated eosinophils migration and release of inflammatory mediators. These observations confirmed that elevated endogenous N/OFQ levels in asthmatic sputum were lower than the ones required to exert beneficial effects, suggesting that supplementation with exogenous N/OFQ may need. In conclusion, the innovative role of N/OFQ in counteracting airways inflammation/hyperresponsiveness opens new potential targets/strategies in asthma treatment.
Collapse
Affiliation(s)
- Bruno D'Agostino
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "L. Vanvitelli", Naples, Italy.
| | - Manuela Sgambato
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "L. Vanvitelli", Naples, Italy
| | - Renata Esposito
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|