1
|
Yin M, Xu K, Chen S, Zhang B, Tao M, Deng J, Deng S, Chen Z, Zhong Y, Li H, Zhang X, Toledo MJL, Diaz KM, Li Y. Rebuttal to Herold et al. Regarding Using "Density," Frequency, and "Inter-Bout Interval" in Exercise Science. Scand J Med Sci Sports 2025; 35:e70078. [PMID: 40421648 DOI: 10.1111/sms.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025]
Affiliation(s)
- Mingyue Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Kai Xu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Sitong Chen
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Boyi Zhang
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - Meiling Tao
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Jianfeng Deng
- School of Human Science (Exercise and Sport Science), University of Western Australia, Perth, Australia
| | - Shengji Deng
- School of Human Science (Exercise and Sport Science), University of Western Australia, Perth, Australia
| | - Zhili Chen
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Yuming Zhong
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Hansen Li
- School of Physical Education, Sichuan Agricultural University, Ya'an, China
| | - Xing Zhang
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Meynard John L Toledo
- Center for Self-Report Sciences, University of Southern California, Los Angeles, California, USA
| | - Keith M Diaz
- Center for Behavioral Cardiovascular Health, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Yongming Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
- China Institute of Sport Science, Beijing, China
| |
Collapse
|
2
|
Yin M, Xu K, Deng J, Deng S, Chen Z, Zhang B, Zhong Y, Li H, Zhang X, Toledo MJL, Diaz KM, Li Y. Optimal Frequency of Interrupting Prolonged Sitting for Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Crossover Trials. Scand J Med Sci Sports 2024; 34:e14769. [PMID: 39630056 DOI: 10.1111/sms.14769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/28/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Increasing evidence highlights the efficacy of interruptions in prolonged sitting (i.e., activity/sedentary breaks) for improving cardiometabolic health, but precise conclusions and recommendations regarding the optimal interruption frequency remain poorly defined. This systematic review and meta-analysis aimed to directly compare the effect of different frequencies of interrupting prolonged sitting on cardiometabolic health and to determine potential moderators. Randomized crossover trials with at least two frequency interruptions compared to a prolonged sitting condition were identified via systematic review. We compared the acute effects of high-frequency (≤ 30 min per bout, HF) versus low-frequency (> 30 min per bout, LF) interruption protocols on various cardiometabolic health outcomes via three-level meta-analysis with pooled effects evaluated within a random-effects model and exploration of potential sources of heterogeneity through subgroup analyses. The quality of evidence was assessed using Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. Thirteen studies with 211 participants (24-66 years, 41% female) were included. When comparing HF to LF condition, the HF had a significantly greater reduction in glucose (9 studies [n = 740]; Hedge's g = -0.30, 95% CI [-0.57, -0.03], p = 0.03; I2-level 3 = 42%, PI [-1.01, 0.41]). However, there was no difference in insulin (4 studies [n = 304]; Hedge's g = -0.22, 95% CI [-0.73, 0.29], p = 0.35; I2-level 3 = 52%, PI [-1.18, 0.74]), triglyceride (3 studies [n = 484]; Hedge's g = 0.11, 95% CI [-0.10, 0.30], p = 0.29; I2-level 3 = 0%, PI [-0.10, 0.30]), blood pressure (5 studies [n = 352]; Hedge's g = -0.06, 95% CI [-0.41, 0.28], p = 0.69; I2-level 3 = 35%, PI [-0.81, 0.62]), and superficial femoral flow-mediated dilation (3 studies [n = 98]; Hedge's g = -0.42, 95% CI [-2.43, 1.60], p = 0.47; I2-level 3 = 78%, PI [-4.09, 3.25]) between the two conditions. The quality of evidence was low GRADE for all outcomes. The present study suggests that a higher sedentary interruption frequency might be more efficacious than a lower frequency/higher duration protocol for reducing glucose levels. Based on these findings, interrupting sedentary time at least, every 30 min may be an ideal strategy to improve glucose control.
Collapse
Affiliation(s)
- Mingyue Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Kai Xu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Jianfeng Deng
- School of Human Science (Exercise and Sport Science), University of Western Australia, Perth, Western Australia, Australia
| | - Shengji Deng
- School of Human Science (Exercise and Sport Science), University of Western Australia, Perth, Western Australia, Australia
| | - Zhili Chen
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Boyi Zhang
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - Yuming Zhong
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Hansen Li
- Department of Physical Education, Southwest University, Chongqing, China
| | - Xing Zhang
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Meynard John L Toledo
- Center for Self-Report Sciences, University of Southern California, Los Angeles, California, USA
| | - Keith M Diaz
- Center for Behavioral Cardiovascular Health, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Yongming Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
- China Institute of Sport Science, Beijing, China
| |
Collapse
|
3
|
Daniele A, Lucas SJE, Rendeiro C. Variability of flow-mediated dilation across lower and upper limb conduit arteries. Eur J Appl Physiol 2024; 124:3265-3278. [PMID: 38878074 PMCID: PMC11519148 DOI: 10.1007/s00421-024-05517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/23/2024] [Indexed: 10/30/2024]
Abstract
Endothelial dysfunction is an early predictor of atherosclerosis and cardiovascular disease. Flow-mediated dilation (FMD) is the gold standard to assess endothelial function in humans. FMD reproducibility has been mainly assessed in the brachial artery (BA) with limited research in lower limb arteries. The purpose of this study was to compare FMD reproducibility in the upper limb BA and lower limb superficial femoral artery (SFA) in young healthy adults.Fifteen young healthy adults (nine males; six females) underwent FMD, resting diameter, velocity, and shear rate measurements on three occasions to determine intra-and inter-day reproducibility in both BA and SFA, assessed by coefficient of variation (CV), intraclass correlation coefficient (ICC), and Bland-Altman plots.BA FMD CVs (intra-day: 4.2%; inter-day: 8.7%) and ICCs (intra-day: 0.967; inter-day: 0.903) indicated excellent reproducibility and reliability, while for SFA FMD, both CVs (intra-day: 11.6%; inter-day: 26.7%) and ICCs (intra-day: 0.898; inter-day: 0.651) showed good/moderate reproducibility and reliability. BA FMD was significantly more reproducible than SFA FMD (p < 0.05). Diameter reproducibility was excellent and similar between arteries, while resting velocity and shear rate have lower reproducibility in the BA compared to SFA. Bland-Altman plots displayed no proportional and fixed bias between measurements.In summary, SFA FMD is less reproducible than BA FMD, with identical volume of ultrasound training. Given the increasing interest in using SFA FMD to test the efficacy of interventions targeting lower limb's vascular health and as a potential biomarker for peripheral arterial disease risk, future studies should ensure higher levels of training for adequate reproducibility.
Collapse
Affiliation(s)
- Alessio Daniele
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
4
|
Silva JKTNF, Menêses AL, Silva GO, O'Driscoll JM, Ritti-Dias RM, Correia MA, Farah BQ. Acute Effects of Breaking up Sitting Time With Isometric Wall Squat Exercise on Vascular Function and Blood Pressure in Sedentary Adults: Randomized Crossover Trial. J Cardiopulm Rehabil Prev 2024; 44:369-376. [PMID: 38885063 DOI: 10.1097/hcr.0000000000000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
PURPOSE The World Health Organization has recommended breaking up sitting time to improve cardiovascular health. However, whether isometric exercise can be effectively used as a strategy to break up sitting time remains unclear. Thus, the aim of this study was to analyze the acute effects of breaking up prolonged sitting with isometric wall squat exercise (IWSE) on vascular function and blood pressure (BP) in sedentary adults. METHODS This randomized crossover trial included 17 adults (53% male, 26 ± 6 yr, 22.4 ± 3.6 kg/m 2 ) with high sedentary behavior (≥ 6 hr/d). The participants completed 2 experimental sessions in a randomized order, both sharing a common sitting period of 180 min: Breaks (2-min breaks were incorporated into the IWSE, with participants maintaining their knees at the angle determined by the incremental test, which occurred every 30 min) and Control (sitting for 180 min continuously). Popliteal artery flow-mediated dilation (FMD) and brachial BP were measured before and at 10 and 30 min after the experimental sessions. RESULTS The results did not indicate significant session vs time interaction effects on popliteal FMD and brachial BP ( P > .05). A subanalysis including only participants with popliteal FMD reduction after the Control session (n = 11) revealed that Breaks enhanced popliteal FMD after 10 min (1.38 ± 6.45% vs -4.87 ± 2.95%, P = .002) and 30 min (-0.43 ± 2.48% vs -2.11 ± 5.22%, P = .047). CONCLUSION Breaking up prolonged sitting with IWSE mitigates impaired vascular function resulting from prolonged sitting but has no effect on BP in sedentary adults.
Collapse
Affiliation(s)
- Jéssika K T N F Silva
- Author Affiliations: Department of Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil (Ms Silva, Mr O. Silva, and Drs Ritti-Dias, Correia, and Farah); Graduate Program in Physical Education, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil (Ms Silva and Dr Farah); University of Pernambuco (UPE), Recife, Pernambuco, Brazil (Dr Menêses); School of Psychology and Life Sciences, Canterbury Christ Church University, Kent, United Kingdom (Dr O'Driscoll); Department of Physical Education, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil (Dr Farah)
| | | | | | | | | | | | | |
Collapse
|
5
|
Shruthi PP, Chandrasekaran B, Vaishali K, Shivashankar KN, Sukumar S, Ravichandran S, Kadavigere R. Effect of physical activity breaks during prolonged sitting on vascular outcomes: A scoping review. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2024; 13:294. [PMID: 39416984 PMCID: PMC11482367 DOI: 10.4103/jehp.jehp_1773_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/16/2024] [Indexed: 10/19/2024]
Abstract
Emerging evidence claims the vascular benefits of varied frequency and duration of physical activity (PA) breaks, whereas the efficacy of varied intensity remains unexplored. We aimed to collate and summate the studies investigating the PA breaks at various intensities on vascular protection. Seven electronic databases were searched for potential studies till Jan 31, 2022. The eligible studies should have administered PA breaks of differing intensities in prolonged sitting postures and explored regional vascular changes [flow mediated dilation (FMD), shear stress, diameter, and blood flow] using ultrasound and novel outcome markers. Two independent reviewers assessed the studies for eligibility after abstract and full-text screen, and appropriate data were extracted to summarise vascular protective effects with PA breaks. Our findings reveal adverse regional vascular outcomes with prolonged sitting (FMD ≈ -1.5%, diameter ≈ -0.06 mm), whereas PA breaks of any intensity were found to improve endothelial functions (FMD ≈ +0.5%, diameter ≈ +0.1 mm, shear ≈ +13 s-1) and mitigate the adverse effects associated with prolonged sitting. Compared with high-intensity activity, low-intensity PA breaks alleviate arterial stiffness and endothelial dysfunction risks.
Collapse
Affiliation(s)
- P Poovitha Shruthi
- Division of Yoga, Center for Integrative Medicine and Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Baskaran Chandrasekaran
- Department of Exercise and Sports Sciences, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Center for Sports Science, Medicine and Research, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - K Vaishali
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Suresh Sukumar
- Department of Medical Imaging Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sneha Ravichandran
- Department of Medical Imaging Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajagopal Kadavigere
- Department of Radiodiagnosis and Imaging, Kasturba Medical College and Hospitals, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
DiFrancisco-Donoghue J, Borges K, Li T, Ballone O, Zwibel H, Douris PC. Reducing thrombotic risks in video gamers: investigating the benefits of walking and compression sleeves on blood hemodynamics. Am J Physiol Heart Circ Physiol 2024; 326:H538-H547. [PMID: 38133616 PMCID: PMC11221800 DOI: 10.1152/ajpheart.00669.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
With the growing popularity of video gaming, deep vein thromboses are increasingly being reported in gamers. This study aimed to compare the effects of lower leg graduated compression sleeves and a 6-min walking break during prolonged gaming on blood flow and hemodynamics in competitive sport players to help mitigate this risk. Ten healthy gamers (19.6 ± 1.2 yr old; 9 men) consented to participate in this mixed-model crossover design study that consisted of three visits. In visit 1, participants engaged in continuous 2-h video game play wearing no compression (continuous). Visits 2 and 3 involved 2-h play wearing compression sleeves (compression) and 2-h game play interrupted at 1 h by a 6-min walk (walk). Doppler ultrasound measurements of the left popliteal artery were taken at 30, 60, 90, and 120 min, to record vessel diameter, blood flow velocity, and blood flow volume. Participants completed a survey to assess their perception of each approach. There was a significant interaction between conditions for blood flow and blood velocity (P = 0.01, P < 0.001). Post hoc analysis demonstrated a greater decrease in blood flow and blood velocity in the continuous group compared with the walk group at the 90-min mark (P = 0.04, P = 0.01). No differences were found between the compression and walk groups or between the continuous and compression groups (P = 0.42, P = 0.69). No interactions were observed in diameter, mean arterial pressure, or heart rate. This study suggests that incorporating a 6-min walk every 60 min during prolonged gaming is advisable to counteract the negative effects on blood flow hemodynamics.NEW & NOTEWORTHY A 6-min light-intensity walking break during gaming can effectively combat the adverse effects of prolonged sitting, surpassing compression garments. Prolonged sitting reduces blood flow velocity, potentially leading to deep vein thrombosis (DVT). Compression sleeves help, with superior results after a 6-min walk at 60 min. Although compression stockings offer moderate improvements, a 6-min active break proves more effective. These findings offer promising interventions for gamers' health, initiating guidelines to mitigate DVT risk during gaming.
Collapse
Affiliation(s)
- Joanne DiFrancisco-Donoghue
- Department of Osteopathic Medicine, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, United States
- Center for Esports Medicine, New York Institute of Technology, Old Westbury, New York, United States
| | - Kelly Borges
- Medical School, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Timothy Li
- Medical School, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Olivia Ballone
- Medical School, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Hallie Zwibel
- Department of Family Medicine, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, United States
- Center for Esports Medicine, New York Institute of Technology, Old Westbury, New York, United States
| | - Peter C Douris
- Department of Physical Therapy, New York Institute of Technology, Old Westbury, New York, United States
| |
Collapse
|
7
|
Ferreira-Santos L, Martinez-Lemus LA, Padilla J. Sitting leg vasculopathy: potential adaptations beyond the endothelium. Am J Physiol Heart Circ Physiol 2024; 326:H760-H771. [PMID: 38241008 PMCID: PMC11221807 DOI: 10.1152/ajpheart.00489.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
Increased sitting time, the most common form of sedentary behavior, is an independent risk factor for all-cause and cardiovascular disease mortality; however, the mechanisms linking sitting to cardiovascular risk remain largely elusive. Studies over the last decade have led to the concept that excessive time spent in the sitting position and the ensuing reduction in leg blood flow-induced shear stress cause endothelial dysfunction. This conclusion has been mainly supported by studies using flow-mediated dilation in the lower extremities as the measured outcome. In this review, we summarize evidence from classic studies and more recent ones that collectively support the notion that prolonged sitting-induced leg vascular dysfunction is likely also attributable to changes occurring in vascular smooth muscle cells (VSMCs). Indeed, we provide evidence that prolonged constriction of resistance arteries can lead to modifications in the structural characteristics of the vascular wall, including polymerization of actin filaments in VSMCs and inward remodeling, and that these changes manifest in a time frame that is consistent with the vascular changes observed with prolonged sitting. We expect this review will stimulate future studies with a focus on VSMC cytoskeletal remodeling as a potential target to prevent the detrimental vascular ramifications of too much sitting.
Collapse
Affiliation(s)
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
8
|
Adams NT, Paterson C, Poles J, Higgins S, Stoner L. The Effect of Sitting Duration on Peripheral Blood Pressure Responses to Prolonged Sitting, With and Without Interruption: A Systematic Review and Meta-Analysis. Sports Med 2024; 54:169-183. [PMID: 37682412 PMCID: PMC10872309 DOI: 10.1007/s40279-023-01915-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND A previous meta-analysis reported that: (i) an acute bout of prolonged uninterrupted sitting induces a significant increase in peripheral blood pressure (BP) and (ii) the increase in BP can be offset by interrupting the sitting bout with light aerobic activities such as walking. However, the temporal association between prolonged uninterrupted sitting and BP was not determined. A better understanding of temporality, for example, how long it takes BP to increase, will assist in prescribing sitting interruption strategies. OBJECTIVES We aimed to determine: (1) the temporal association between the duration of uninterrupted sitting and BP and (2) whether regular sitting interruptions moderate the association between uninterrupted sitting and BP. DATA SOURCES Electronic databases (PubMed, Web of Science, SPORTDiscus) were searched from inception to July 2022. Reference lists of eligible studies and relevant reviews were also screened. STUDY SELECTION Inclusion criteria for objective (1) were: (i) participants aged ≥ 18 years; (ii) a prolonged sitting bout ≥ 1 h; and (iii) peripheral BP measurements (systolic BP, diastolic BP, and/or mean arterial pressure) at more than two timepoints during the sitting bout. Additional criteria for objective (2) were: (i) the sitting interruption strategy was implemented during the sitting bout (i.e., not prior to engaging in sitting) and (ii) the study included a control (uninterrupted sitting) condition or group. APPRAISAL AND SYNTHESIS METHODS There were 1555 articles identified, of which 33 met inclusion criteria for objective (1). Of those articles, 20 met inclusion criteria for objective (2). To investigate the effect of sitting duration on the BP response, unstandardized b coefficients (mmHg/h) and 95% confidence intervals (CIs) were calculated using a three-level mixed-effect meta-regression. RESULTS Increased sitting duration was positively associated with systolic BP (b = 0.42 mmHg/h, 95% CI 0.18-0.60), diastolic BP (b = 0.24 mmHg/h, 95% CI 0.06-0.42), and mean arterial pressure (b = 0.66 mmHg/h, 95% CI 0.36-0.90). In trials where sitting was interrupted, there was a significant decrease in systolic BP (b = - 0.24 mmHg/h, 95% CI - 0.42 to - 0.06) and diastolic BP (b = - 0.24 mmHg/h, 95% CI - 0.42 to - 0.12), and a non-significant change in mean arterial pressure (p = 0.69). CONCLUSIONS Increased uninterrupted sitting duration results in greater increases in BP; however, regularly interrupting sitting may offset negative effects.
Collapse
Affiliation(s)
- Nathan T Adams
- School of Health and Exercise Science, University of British Columbia, 1238 Discovery Ave, Kelowna, BC, V1V 1V9, Canada.
| | - Craig Paterson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jillian Poles
- Vilcek Institute of Graduate Biomedical Sciences, New York University, New York, NY, USA
| | - Simon Higgins
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lee Stoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Health Promotion and Disease Prevention, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Pinto AJ, Bergouignan A, Dempsey PC, Roschel H, Owen N, Gualano B, Dunstan DW. Physiology of sedentary behavior. Physiol Rev 2023; 103:2561-2622. [PMID: 37326297 PMCID: PMC10625842 DOI: 10.1152/physrev.00022.2022] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/10/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
Sedentary behaviors (SB) are characterized by low energy expenditure while in a sitting or reclining posture. Evidence relevant to understanding the physiology of SB can be derived from studies employing several experimental models: bed rest, immobilization, reduced step count, and reducing/interrupting prolonged SB. We examine the relevant physiological evidence relating to body weight and energy balance, intermediary metabolism, cardiovascular and respiratory systems, the musculoskeletal system, the central nervous system, and immunity and inflammatory responses. Excessive and prolonged SB can lead to insulin resistance, vascular dysfunction, shift in substrate use toward carbohydrate oxidation, shift in muscle fiber from oxidative to glycolytic type, reduced cardiorespiratory fitness, loss of muscle mass and strength and bone mass, and increased total body fat mass and visceral fat depot, blood lipid concentrations, and inflammation. Despite marked differences across individual studies, longer term interventions aimed at reducing/interrupting SB have resulted in small, albeit marginally clinically meaningful, benefits on body weight, waist circumference, percent body fat, fasting glucose, insulin, HbA1c and HDL concentrations, systolic blood pressure, and vascular function in adults and older adults. There is more limited evidence for other health-related outcomes and physiological systems and for children and adolescents. Future research should focus on the investigation of molecular and cellular mechanisms underpinning adaptations to increasing and reducing/interrupting SB and the necessary changes in SB and physical activity to impact physiological systems and overall health in diverse population groups.
Collapse
Affiliation(s)
- Ana J Pinto
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Audrey Bergouignan
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Institut Pluridisciplinaire Hubert Curien, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Paddy C Dempsey
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Neville Owen
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Centre for Urban Transitions, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Food Research Center, University of Sao Paulo, Sao Paulo, Brazil
| | - David W Dunstan
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
10
|
Chandran O, Shruthi P, Sukumar S, Kadavigere R, Chakravarthy K, Rao CR, Chandrasekaran B. Effects of physical activity breaks during prolonged sitting on vascular and executive function—A randomised cross-over trial. J Taibah Univ Med Sci 2023; 18:1065-1075. [PMID: 36994221 PMCID: PMC10040888 DOI: 10.1016/j.jtumed.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/25/2023] [Accepted: 03/03/2023] [Indexed: 03/15/2023] Open
Abstract
Objectives High sedentary behaviour is associated with adverse effects on central vascular function and cognitive function. Although interventions to mitigate the adverse effects of workplace sitting are intriguing, evidence of the efficacy of such interventions remains lacking. This randomised cross-over trial was aimed at exploring the effectiveness of prolonged sitting, with or without physical activity breaks, on central, peripheral vascular and cognitive function in adults. Methods Twenty one healthy adults completed 4 h of simulated work conditions in three experimental visits: (1) uninterrupted sitting (SIT); (2) sitting interrupted by 3 min of walking every hour (LIT); and (3) sitting interrupted by 3 min of stair climbing every hour (MIT). Carotid (CA) and superficial femoral artery (SFA) diameter, velocity, shear rate and blood flow were measured with Duplex ultrasound at 50 MHz at three time points (hours 0, 2 and 4), and executive function was assessed with the computer based Eriksen Flanker task every hour. Results The decreases in reaction time (-30.59%) and accuracy (-10.56%) during SIT conditions were statistically significant, and less of a decrease was observed under LIT and MIT conditions. No significant differences in CA and SFA function were observed with LIT and MIT interventions. Conclusion Physical activity breaks of varying intensity during prolonged sitting improve reaction time. However, the vascular benefits of physical activity breaks should be confirmed in the future through long term studies in natural environment.
Collapse
|
11
|
Daniele A, Lucas SJE, Rendeiro C. Detrimental effects of physical inactivity on peripheral and brain vasculature in humans: Insights into mechanisms, long-term health consequences and protective strategies. Front Physiol 2022; 13:998380. [PMID: 36237532 PMCID: PMC9553009 DOI: 10.3389/fphys.2022.998380] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The growing prevalence of physical inactivity in the population highlights the urgent need for a more comprehensive understanding of how sedentary behaviour affects health, the mechanisms involved and what strategies are effective in counteracting its negative effects. Physical inactivity is an independent risk factor for different pathologies including atherosclerosis, hypertension and cardiovascular disease. It is known to progressively lead to reduced life expectancy and quality of life, and it is the fourth leading risk factor for mortality worldwide. Recent evidence indicates that uninterrupted prolonged sitting and short-term inactivity periods impair endothelial function (measured by flow-mediated dilation) and induce arterial structural alterations, predominantly in the lower body vasculature. Similar effects may occur in the cerebral vasculature, with recent evidence showing impairments in cerebral blood flow following prolonged sitting. The precise molecular and physiological mechanisms underlying inactivity-induced vascular dysfunction in humans are yet to be fully established, although evidence to date indicates that it may involve modulation of shear stress, inflammatory and vascular biomarkers. Despite the steady increase in sedentarism in our societies, only a few intervention strategies have been investigated for their efficacy in counteracting the associated vascular impairments. The current review provides a comprehensive overview of the evidence linking acute and short-term physical inactivity to detrimental effects on peripheral, central and cerebral vascular health in humans. We further examine the underlying molecular and physiological mechanisms and attempt to link these to long-term consequences for cardiovascular health. Finally, we summarize and discuss the efficacy of lifestyle interventions in offsetting the negative consequences of physical inactivity.
Collapse
Affiliation(s)
- Alessio Daniele
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Catarina Rendeiro,
| |
Collapse
|
12
|
Soto-Rodríguez FJ, Cabañas EI, Pérez-Mármol JM. Impact of prolonged sitting interruption strategies on shear rate, flow-mediated dilation and blood flow in adults: A systematic review and meta-analysis of randomized cross-over trials. J Sports Sci 2022; 40:1558-1567. [PMID: 35731706 DOI: 10.1080/02640414.2022.2091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Prolonged sitting has been shown to affect endothelial function. Strategies that promote interruption of sitting have shown varying results on the shear rate (SR), flow-mediated dilation (FMD) and blood flow (BF). Thus, we conducted a systematic review and meta-analysis to 1) increase the existing knowledge of the impact of sitting interruption in the prevention of endothelial dysfunction in adults and 2) determine the effect of the sitting interruption strategies on SR, FMD, BF. Literature search was carried out through 7 databases. A random effects model was used to provide the overall mean difference with a 95%CI, and forest plots were generated for pooled estimates of each study outcome. Assessment of biases was performed using ROB2 and considerations for crossover trials. Prolonged sitting interruption strategies showed a significant effect in increasing SR (MD: 7.58 s-1; 95% CI: 3.00 to 12.17), FMD (MD: 1.74%; 95% CI: 0.55 to 2.93) and BF (MD: 12.08 ml/min; 95% CI: 7.61 to 16.55) when compared with the uninterrupted prolonged sitting condition. Prolonged sitting interruption strategies significantly increase SR, FMD and BF, therefore, they represent a considerable effective preventive method on endothelial dysfunction caused by acute exposure to uninterrupted prolonged sitting.
Collapse
Affiliation(s)
- Francisco Javier Soto-Rodríguez
- Programa de Doctorado en Medicina Clínica y Salud Pública, Universidad de Granada, Granada, Spain.,Facultad de Medicina, Departamento de Medicina Interna, Universidad de La Frontera, Temuco, Chile.,Facultad de Ciencias de la Salud, Carrera de Kinesiología, Universidad Autónoma de Chile, Temuco, Chile
| | - Eva Isidoro Cabañas
- Programa de Doctorado en Medicina Clínica y Salud Pública, Universidad de Granada, Granada, Spain.,Hospital Virgen de las Nieves, Granada, España
| | - José Manuel Pérez-Mármol
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
| |
Collapse
|
13
|
da Silva GO, Santini LB, Farah BQ, Germano-Soares AH, Correia MA, Ritti-Dias RM. Effects of Breaking Up Prolonged Sitting on Cardiovascular Parameters: A systematic Review. Int J Sports Med 2022; 43:97-106. [PMID: 34535019 DOI: 10.1055/a-1502-6787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of this systematic review was to analyze the acute and chronic effects of sitting breaks on cardiovascular parameters. PubMed and Web of Science databases were searched by two independent researchers for relevant studies published until February 2020. Acute or chronic studies reporting the effects of sitting breaks or reduction in sitting time on cardiovascular parameters were examined. The eligibility criteria followed PICOS: Population - Humans ≥ 18 years old; Interventions - Sitting break strategies; Comparisons - Uninterrupted sitting; Outcomes - Cardiovascular parameters (blood pressure, heart rate, ambulatory blood pressure, vascular function, pulse-wave velocity, cerebral blood flow and biomarkers); Study design - Randomized controlled trials, non-randomized non-controlled trials and randomized crossover trials. Forty-five studies were included, where 35 investigated the acute and 10 the chronic effects of sitting breaks or reductions in sitting time. Walking was the main acute study strategy, used in different volumes (1 min 30 s to 30 min), intensities (light to vigorous) and frequencies (every 20 min to every 2 h). Acute studies found improvements on cardiovascular parameters, especially blood pressure, flow-mediated dilation, and biomarkers, whereas chronic studies found improvements mostly on blood pressure. Breaking up or reducing sitting time improves cardiovascular parameters, especially with walking.
Collapse
Affiliation(s)
| | - Luiza Batista Santini
- Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Breno Quintella Farah
- Departament of Physical Education, Universidade Federal Rural de Pernambuco, Recife, Brazil
- Post-graduate Program in Physical Education, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | |
Collapse
|
14
|
Heiland EG, Kjellenberg K, Tarassova O, Fernström M, Nyberg G, Ekblom MM, Helgadottir B, Ekblom Ö. ABBaH teens: Activity Breaks for Brain Health in adolescents: study protocol for a randomized crossover trial. Trials 2022; 23:22. [PMID: 34991692 PMCID: PMC8733916 DOI: 10.1186/s13063-021-05972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Physical activity breaks are widely being implemented in school settings as a solution to increase academic performance and reduce sitting time. However, the underlying physiological mechanisms suggested to improve cognitive function from physical activity and the frequency, intensity, and duration of the breaks remain unknown. This study will investigate the effects of frequent, short physical activity breaks during prolonged sitting on task-related prefrontal cerebral blood flow, cognitive performance, and psychological factors. Additionally, the moderating and mediating effects of arterial stiffness on changes in cerebral blood flow will be tested. METHODS This is a protocol for a randomized crossover study that will recruit 16 adolescents (13-14 years old). Participants will undergo three different conditions in a randomized order, on three separate days, involving sitting 80 min with a different type of break every 17 min for 3 min. The breaks will consist of (1) seated social breaks, (2) simple resistance activities, and (3) step-up activities. Before and after the 80-min conditions, prefrontal cerebral blood flow changes will be measured using functional near-infrared spectroscopy (primary outcome), while performing working memory tasks (1-, 2-, and 3-back tests). Arterial stiffness (augmentation index and pulse wave velocity) and psychological factors will also be assessed pre and post the 80-min interventions. DISCUSSION Publication of this protocol will help to increase rigor in science. The results will inform regarding the underlying mechanisms driving the association between physical activity breaks and cognitive performance. This information can be used for designing effective and feasible interventions to be implemented in schools. TRIAL REGISTRATION www.ClinicalTrials.gov , NCT04552626 . Retrospectively registered on September 21, 2020.
Collapse
Affiliation(s)
- Emerald G. Heiland
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Lidingövägen 1, 11433 Stockholm, Sweden
- Department of Surgical Sciences, Medical Epidemiology, Uppsala University, Dag Hammarskjölds väg 14B, 75185 Uppsala, Sweden
| | - Karin Kjellenberg
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Lidingövägen 1, 11433 Stockholm, Sweden
| | - Olga Tarassova
- Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Lidingövägen 1, 11433 Stockholm, Sweden
| | - Maria Fernström
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Lidingövägen 1, 11433 Stockholm, Sweden
| | - Gisela Nyberg
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Lidingövägen 1, 11433 Stockholm, Sweden
- Department of Global Public Health, Karolinska Institutet, Solnavägen 1, 17177 Solna, Sweden
| | - Maria M. Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Lidingövägen 1, 11433 Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Solnavägen 1, 17177 Solna, Sweden
| | - Björg Helgadottir
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Lidingövägen 1, 11433 Stockholm, Sweden
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Solnavägen 1, 17177 Solna, Sweden
| | - Örjan Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Lidingövägen 1, 11433 Stockholm, Sweden
| |
Collapse
|
15
|
Fryer S, Stone K, Paterson C, Brown M, Faulkner J, Lambrick D, Credeur D, Zieff G, Martínez Aguirre-Betolaza A, Stoner L. Central and peripheral arterial stiffness responses to uninterrupted prolonged sitting combined with a high-fat meal: a randomized controlled crossover trial. Hypertens Res 2021; 44:1332-1340. [PMID: 34334790 PMCID: PMC8490151 DOI: 10.1038/s41440-021-00708-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Independently, prolonged uninterrupted sitting and the consumption of a meal high in saturated fats acutely disrupt normal cardiovascular function. Currently, the acute effects of these behaviors performed in combination on arterial stiffness, a marker of cardiovascular health, are unknown. This study sought to determine the effect of consuming a high-fat meal (Δ = 51 g fat) in conjunction with prolonged uninterrupted sitting (180 min) on measures of central and peripheral arterial stiffness. Using a randomized crossover design, 13 young healthy males consumed a high-fat (61 g) or low-fat (10 g) meal before 180 min of uninterrupted sitting. Carotid-femoral (cf) and femoral-ankle (fa) pulse wave velocity (PWV), aortic-femoral stiffness gradient (af-SG), superficial femoral PWV beta (β), and oscillometric pulse wave analysis outcomes were assessed pre and post sitting. cfPWV increased significantly more following the high-fat (mean difference [MD] = 0.59 m·s-1) meal than following the low-fat (MD = 0.2 m·s-1) meal, with no change in faPWV in either condition. The af-SG significantly decreased (worsened) (ηp2 = 0.569) over time in the high- and low-fat conditions (ratio = 0.1 and 0.1, respectively). Superficial femoral PWVβ significantly increased over time in the high- and low-fat conditions (ηp2 = 0.321; 0.8 and 0.4 m·s-1, respectively). Triglycerides increased over time in the high-fat trial only (ηp2 = 0.761). There were no significant changes in blood pressure. Consuming a high-fat meal prior to 180 min of uninterrupted sitting augments markers of cardiovascular disease risk more than consuming a low-fat meal prior to sitting.
Collapse
Affiliation(s)
- Simon Fryer
- School of Sport and Exercise, University of Gloucestershire, Gloucestershire, UK.
| | - Keeron Stone
- School of Sport and Exercise, University of Gloucestershire, Gloucestershire, UK
| | - Craig Paterson
- School of Sport and Exercise, University of Gloucestershire, Gloucestershire, UK
| | - Meghan Brown
- School of Sport and Exercise, University of Gloucestershire, Gloucestershire, UK
- School of Health Sciences, Birmingham City University, Birmingham, UK
| | - James Faulkner
- Department of Sport and Exercise, University of Winchester, Hampshire, UK
| | | | - Daniel Credeur
- Department of Biology, Ave Maria University, Ave Maria, FL, USA
| | - Gabriel Zieff
- Department of Sport and Exercise, University of North Carolina, Chapel Hill, NC, USA
| | - Aitor Martínez Aguirre-Betolaza
- Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Lee Stoner
- Department of Sport and Exercise, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Rise and Recharge: Exploring Employee Perceptions of and Contextual Factors Influencing an Individual-Level E-Health Smartphone Intervention to Reduce Office Workers' Sedentary Time at Work. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189627. [PMID: 34574551 PMCID: PMC8467510 DOI: 10.3390/ijerph18189627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
This feasibility study explored the contextual factors influencing office workers' adherence to an e-health intervention targeting total and prolonged sedentary time over 12 weeks. A three-arm quasi-randomized intervention included prompts at 30 or 60 min intervals delivered via a smartphone application, and a no-prompt comparison arm. Fifty-six office workers completed baseline (64% female) and 44 completed the 12 week follow-up (80% retention). Ecological momentary assessments (EMA) captured contextual data, with 82.8 ± 24.9 EMA prompt questionnaires completed weekly. Two focus groups with n = 8 Prompt 30 and 60 participants were conducted one-month post-intervention to address intervention acceptability and feasibility. Contextual findings indicate that when working on a sedentary task (i.e., reading or screen-based work) and located at an individual workstation, hourly prompts may be more acceptable and feasible for promoting a reduction in total and prolonged sedentary time compared to 30 min prompts. Interpersonal support also appears important for promoting subtle shifts in sedentary working practices. This novel study gives a real-time insight into the factors influencing adherence to e-health prompts. Findings identified unique, pragmatic considerations for delivering a workplace e-health intervention, indicating that further research is warranted to optimize the method of intervention delivery prior to evaluation of a large-scale intervention.
Collapse
|
17
|
Sit Less and Move More-A Multicomponent Intervention With and Without Height-Adjustable Workstations in Contact Center Call Agents: A Pilot Randomized Controlled Trial. J Occup Environ Med 2021; 63:44-56. [PMID: 33122540 DOI: 10.1097/jom.0000000000002066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To pilot a multicomponent intervention to sit less and move more, with (SLAMM+) and without (SLAMM) height-adjustable workstations, in contact center call agents. METHODS Agents were individually randomized to SLAMM or SLAMM+ in this 10-month, parallel, open-label, pilot trial. Mixed-methods assessed response, recruitment, retention, attrition and completion rates, adverse effects, trial feasibility and acceptability, preliminary effectiveness on worktime sitting, and described secondary outcomes. RESULTS The participant recruitment rate, and randomization, data collection, and interventions were mostly acceptable. Refinements to organization recruitment were identified. High staff turnover negatively impacted retention and completion rates. The multicomponent intervention with height-adjustable workstations has potential to reduce sitting time at work. CONCLUSIONS The demonstrated findings will help prepare for a future randomized controlled trial designed to assess the effect of the interventions.
Collapse
|
18
|
Whipple MO, Masters KS, Huebschmann AG, Scalzo RL, Reusch JE, Bergouignan A, Regensteiner JG. Acute effects of sedentary breaks on vascular health in adults at risk for type 2 diabetes: A systematic review. Vasc Med 2021; 26:448-458. [PMID: 33977799 PMCID: PMC9074004 DOI: 10.1177/1358863x211009307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this systematic review was to evaluate the available evidence regarding the acute effects of interrupting/breaking up prolonged sedentary behavior (SB) on vascular health among individuals at elevated risk for type 2 diabetes (T2D). Searches of MEDLINE, Embase, Web of Science, and Cochrane Library databases were conducted on April 7, 2020. Included studies: (1) examined the effect of breaking up prolonged SB in adults with or at elevated risk for T2D and (2) assessed a vascular health outcome, such as blood pressure (BP), flow-mediated dilation (FMD), pulse-wave velocity, or endothelin-1. A total of 20 articles (17 unique studies) were included. Only three studies reported adequate statistical power for the specified vascular outcome. The available evidence suggests that light and moderate intensity activity breaks are effective in acutely lowering BP when compared to prolonged sitting. The small number of studies that included FMD or other vascular outcomes prohibits conclusions regarding the impact of SB breaks on these outcomes. Few studies evaluating the impact of breaking up SB among adults at risk for T2D have included and been adequately powered to examine vascular outcomes, but our preliminary finding, that certain SB breaks improve BP, provides proof-of-concept for this line of inquiry. Future studies should examine both the acute and chronic vascular effects of breaking up SB among individuals most vulnerable to the effects of SB (e.g. older adults, those with T2D), as these individuals are both highly sedentary and at greatest risk of poor health outcomes. PROSPERO ID: CRD42020183423.
Collapse
Affiliation(s)
- Mary O. Whipple
- Division of General Internal Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kevin S. Masters
- Department of Psychology, Clinical Health Psychology, University of Colorado Denver, Denver, CO
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Amy G. Huebschmann
- Division of General Internal Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rebecca L. Scalzo
- Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Rocky Mountain Regional VA, Aurora, CO
| | - Jane E.B. Reusch
- Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Rocky Mountain Regional VA, Aurora, CO
| | - Audrey Bergouignan
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Institut Pluridisciplinaire Hubert Curien, French National Center for Scientific Research, Université de Strasbourg, UMR 7178, Strasbourg, France
| | - Judith G. Regensteiner
- Division of General Internal Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
19
|
Silva GO, Carvalho JF, Kanegusuku H, Farah BQ, Correia MA, Ritti-Dias RM. Acute effects of breaking up sitting time with isometric exercise on cardiovascular health: Randomized crossover trial. Scand J Med Sci Sports 2021; 31:2044-2054. [PMID: 34270830 DOI: 10.1111/sms.14024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 11/26/2022]
Abstract
The objective of this study was to analyze the acute effects of breaking up prolonged sitting with isometric exercise on the cardiovascular health of sedentary adults. This is a three-condition randomized crossover trial. The sample was comprised of 17 subjects (11 women; 29 ± 10 years old; 25,1 ± 5,1 kg/m2 ). The participants completed, in randomized order, three experimental conditions (control, breaks with isometric leg extension exercise, and breaks with walking), with the order of the conditions determined through simple automatic randomization. All the conditions had in common a sitting period of 3 h. During the conditions with isometric exercise and walking breaks the participants performed breaks with isometric leg extension exercise and with walking every 30 min, while in the control condition they remained seated with no breaks. Before and after this period, vascular function (primary outcome), blood pressure, and cardiac autonomic modulation (secondary outcomes) were measured. Generalized estimated equations were used to analyze the data. The results did not indicate significant interaction effects for vascular function among experimental conditions (p > 0,05 for all). We also did not find significant interaction effects for systolic or diastolic blood pressure among the conditions (p > 0,05 for all). The heart rate variability parameters did not present significant interaction effects among conditions (p > 0,05 for all). In conclusion, breaking up sitting with isometric exercise does not seem to lead to significant effects on the cardiovascular health of sedentary adults.
Collapse
Affiliation(s)
| | | | | | - Breno Q Farah
- Physical Education Department, Rural Federal University of Pernambuco, Recife-PE, Brazil.,Graduate Program in Physical Education, Federal University of Pernambuco (UFPE), Recife, Brazil
| | | | | |
Collapse
|
20
|
Chang YJ, Tuz-Zahra F, Godbole S, Avitia Y, Bellettiere J, Rock CL, Jankowska MM, Allison MA, Dunstan DW, Rana B, Natarajan L, Sears DD. Endothelial-derived cardiovascular disease-related microRNAs elevated with prolonged sitting pattern among postmenopausal women. Sci Rep 2021; 11:11766. [PMID: 34083573 PMCID: PMC8175392 DOI: 10.1038/s41598-021-90154-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/06/2021] [Indexed: 02/03/2023] Open
Abstract
Time spent sitting is positively correlated with endothelial dysfunction and cardiovascular disease risk. The underlying molecular mechanisms are unknown. MicroRNAs contained in extracellular vesicles (EVs) reflect cell/tissue status and mediate intercellular communication. We explored the association between sitting patterns and microRNAs isolated from endothelial cell (EC)-derived EVs. Using extant actigraphy based sitting behavior data on a cohort of 518 postmenopausal overweight/obese women, we grouped the woman as Interrupted Sitters (IS; N = 18) or Super Sitters (SS; N = 53) if they were in the shortest or longest sitting pattern quartile, respectively. The cargo microRNA in EC-EVs from the IS and SS women were compared. MicroRNA data were weighted by age, physical functioning, MVPA, device wear days, device wear time, waist circumference, and body mass index. Screening of CVD-related microRNAs demonstrated that miR-199a-5p, let-7d-5p, miR-140-5p, miR-142-3p, miR-133b level were significantly elevated in SS compared to IS groups. Group differences in let-7d-5p, miR-133b, and miR-142-3p were validated in expanded groups. Pathway enrichment analyses show that mucin-type O-glycan biosynthesis and cardiomyocyte adrenergic signaling (P < 0.001) are downstream of the three validated microRNAs. This proof-of-concept study supports the possibility that CVD-related microRNAs in EC-EVs may be molecular transducers of sitting pattern-associated CVD risk in overweight postmenopausal women.
Collapse
Affiliation(s)
- Ya-Ju Chang
- Department of Family Medicine, UC San Diego, La Jolla, CA, USA
| | - Fatima Tuz-Zahra
- Herbert Wertheim School of Public Health, UC San Diego, La Jolla, CA, USA
| | - Suneeta Godbole
- Department of Family Medicine, UC San Diego, La Jolla, CA, USA
| | - Yesenia Avitia
- Department of Family Medicine, UC San Diego, La Jolla, CA, USA
| | - John Bellettiere
- Herbert Wertheim School of Public Health, UC San Diego, La Jolla, CA, USA.,Center for Behavioral Epidemiology and Community Health, San Diego State University, San Diego, CA, USA
| | - Cheryl L Rock
- Department of Family Medicine, UC San Diego, La Jolla, CA, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | | | | | - David W Dunstan
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Brinda Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA.,Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - Loki Natarajan
- Herbert Wertheim School of Public Health, UC San Diego, La Jolla, CA, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Dorothy D Sears
- Department of Family Medicine, UC San Diego, La Jolla, CA, USA. .,Moores Cancer Center, UC San Diego, La Jolla, CA, USA. .,Department of Medicine, UC San Diego, La Jolla, CA, USA. .,College of Health Solutions, Arizona State University, 550 N 3rd Street, Phoenix, AZ, 85004, USA.
| |
Collapse
|
21
|
Cheng JL, Williams JS, Hoekstra SP, MacDonald MJ. Improvements in vascular function in response to acute lower limb heating in young healthy males and females. J Appl Physiol (1985) 2021; 131:277-289. [PMID: 34013754 DOI: 10.1152/japplphysiol.00630.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Regular exposure to passive heat stress improves vascular function, but the optimal heating prescription remains undefined. Local limb heating is more feasible than whole body heating, but the evidence demonstrating its efficacy is lacking. The purpose of this study was to determine whether acute improvements in vascular function can be achieved with lower limb heating in 16 young healthy individuals (8 female, 8 male). In separate visits, participants underwent 45 min of ankle- and knee-level hot water immersion (45°C). A subset of seven participants also participated in a time-control visit. Endothelial function was assessed through simultaneous brachial and superficial femoral artery flow-mediated dilation (FMD) tests. Macrovascular function was quantified by %FMD, whereas microvascular function was quantified by vascular conductance during reactive hyperemia. Arterial stiffness was assessed through carotid-femoral and femoral-foot pulse wave velocity (PWV). Plasma concentrations of interleukin-6 and extracellular heat shock protein-72 (eHSP72) were used as indicators of inflammation. Our findings showed that 45 min of lower limb heating-regardless of condition-acutely improved upper limb macrovascular endothelial function (i.e., brachial %FMD; Pre: 4.6 ± 1.7 vs. Post: 5.4 ± 2.0%; P = 0.004) and lower limb arterial stiffness (i.e., femoral-foot PWV; Pre: 8.4 ± 1.2 vs. Post: 7.7 ± 1.1 m/s; P = 0.011). However, only knee-level heating increased upper limb microvascular function (i.e., brachial peak vascular conductance; Pre: 6.3 ± 2.7 vs. Post: 7.8 ± 3.5 mL/min ⋅ mmHg; P ≤ 0.050) and plasma eHSP72 concentration (Pre: 12.4 ± 9.4 vs. Post: 14.8 ± 9.8 ng/mL; P ≤ 0.050). These findings show that local lower limb heating acutely improves vascular function in younger individuals, with knee-level heating improving more outcome measures.NEW & NOTEWORTHY This study demonstrates that lower limb hot water immersion is an effective strategy for acutely improving vascular function in young, healthy males and females, thereby encouraging the development of accessible modes of heat therapy for vascular health.
Collapse
Affiliation(s)
- Jem L Cheng
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Sven P Hoekstra
- The Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | | |
Collapse
|
22
|
Page J, Erskine RM, Hopkins ND. Skeletal muscle properties and vascular function do not differ between healthy, young vegan and omnivorous men. Eur J Sport Sci 2021; 22:559-568. [PMID: 33905293 DOI: 10.1080/17461391.2021.1923814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A vegan diet is associated with reduced cardiovascular morbidity and mortality, but protein deficiencies may be detrimental to skeletal muscle structure and function. The aim of this study was to compare the vascular and skeletal muscle properties between young, healthy, recreationally active habitual vegan (VEG) and omnivorous (OMN) men. Sixteen OMN and nine VEG underwent ultrasound scans to determine brachial artery flow-mediated dilation (FMD) and carotid artery intima-media thickness (cIMT) and vastus lateralis (VL) muscle thickness and fascicle pennation angle. Knee extension maximal voluntary isometric contraction (MVIC) force was assessed on an isokinetic dynamometer, and V˙O2max on a cycle ergometer and online gas analysis system. A three-day food diary determined habitual dietary behaviour. Bayesian analyses of independent groups provided "moderate" to "very strong" evidence for lower consumption of absolute (63±21 g/d vs. 98 ± 30 g/d; Bayes Factor (BF01) = 0.140) and relative (0.86 ± 0.29 g/kg/d vs.1.36 ± 0.52 g/kg/d; BF01 = 0.259) protein, absolute saturated fat (15.2 ± 7.9 g vs. 30.3 ± 11.8 g; BF01 = 0.089) and cholesterol (5.0 ± 6.0 mg vs. 337.9 ± 232.6 mg; BF01 = 0.019) in VEG compared to OMN, respectively. Further, there was "anecdotal" evidence to support no differences in FMD (3.37 ± 3.31% vs. 4.58 ± 5.82%; BF01 = 2.591), cIMT (0.51 ± 0.07 mm vs. 0.49 ± 0.04 mm; BF01 = 2.510), VL thickness (26.1 ± 3.7 mm vs. 27.8 ± 6.4 mm; BF01 = 2.726), fascicle pennation angle (16.6 ± 4.7° vs. 17.7 ± 3.7°; BF01 = 2.844), MVIC (627 ± 182 N vs. 551 ± 102 N; BF01 = 1.656) or V˙O2max (40.8 ± 9.8 ml/kg/min vs. 35.8 ± 5.2 ml/kg/min; BF01 = 1.218) between VEG and OMN, respectively. Despite marked differences in habitual nutrient intake, healthy, young vegan and omnivorous men did not differ regarding vascular and skeletal muscle structure and function, or cardiovascular fitness.
Collapse
Affiliation(s)
- Joe Page
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Robert M Erskine
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - Nicola D Hopkins
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
23
|
Bowden Davies KA, Norman JA, Thompson A, Mitchell KL, Harrold JA, Halford JCG, Wilding JPH, Kemp GJ, Cuthbertson DJ, Sprung VS. Short-Term Physical Inactivity Induces Endothelial Dysfunction. Front Physiol 2021; 12:659834. [PMID: 33897466 PMCID: PMC8064120 DOI: 10.3389/fphys.2021.659834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objective This study examined the effects of a short-term reduction in physical activity, and subsequent resumption, on metabolic profiles, body composition and cardiovascular (endothelial) function. Design Twenty-eight habitually active (≥10,000 steps/day) participants (18 female, 10 male; age 32 ± 11 years; BMI 24.3 ± 2.5 kg/m2) were assessed at baseline, following 14 days of step-reduction and 14 days after resuming habitual activity. Methods Physical activity was monitored throughout (SenseWear Armband). Endothelial function (flow mediated dilation; FMD), cardiorespiratory fitness ( V . O 2 peak) and body composition including liver fat (dual-energy x-ray absorptiometry and magnetic resonance spectroscopy) were determined at each assessment. Statistical analysis was performed using one-way within subject's ANOVA; data presented as mean (95% CI). Results Participants decreased their step count from baseline by 10,111 steps/day (8949, 11,274; P < 0.001), increasing sedentary time by 103 min/day (29, 177; P < 0.001). Following 14 days of step-reduction, endothelial function was reduced by a 1.8% (0.4, 3.3; P = 0.01) decrease in FMD. Following resumption of habitual activity, FMD increased by 1.4%, comparable to the baseline level 0.4% (-1.8, 2.6; P = 1.00). Total body fat, waist circumference, liver fat, whole body insulin sensitivity and cardiorespiratory fitness were all adversely affected by 14 days step-reduction (P < 0.05) but returned to baseline levels following resumption of activity. Conclusion This data shows for the first time that whilst a decline in endothelial function is observed following short-term physical inactivity, this is reversed on resumption of habitual activity. The findings highlight the need for public health interventions that focus on minimizing time spent in sedentary behavior.
Collapse
Affiliation(s)
- Kelly A Bowden Davies
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom.,Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Obesity and Endocrinology Research Group, Clinical Sciences Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Juliette A Norman
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Obesity and Endocrinology Research Group, Clinical Sciences Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Andrew Thompson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Katie L Mitchell
- Institute of Public Health, University of Liverpool, Liverpool, United Kingdom
| | - Joanne A Harrold
- Institute of Public Health, University of Liverpool, Liverpool, United Kingdom
| | | | - John P H Wilding
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Obesity and Endocrinology Research Group, Clinical Sciences Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Graham J Kemp
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Liverpool Magnetic Resonance Imaging Centre, University of Liverpool, Liverpool, United Kingdom
| | - Daniel J Cuthbertson
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Obesity and Endocrinology Research Group, Clinical Sciences Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Victoria S Sprung
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Obesity and Endocrinology Research Group, Clinical Sciences Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
24
|
Paterson C, Fryer S, Zieff G, Stone K, Credeur DP, Barone Gibbs B, Padilla J, Parker JK, Stoner L. The Effects of Acute Exposure to Prolonged Sitting, With and Without Interruption, on Vascular Function Among Adults: A Meta-analysis. Sports Med 2021; 50:1929-1942. [PMID: 32757163 DOI: 10.1007/s40279-020-01325-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Exposure to acute prolonged sitting can result in vascular dysfunction, particularly within the legs. This vascular dysfunction, assessed using flow-mediated dilation (FMD), is likely the consequence of decreased blood flow-induced shear stress. With mixed success, several sitting interruption strategies have been trialled to preserve vascular function. OBJECTIVES The objectives of this meta-analysis were to (1) assess the effects of acute prolonged sitting exposure on vascular function in the upper- and lower-limb arteries, and (2) evaluate the effectiveness of sitting interruption strategies in preserving vascular function. Sub-group analyses were conducted to determine whether artery location or interruption modality explain heterogeneity. DATA SOURCES Electronic databases (PubMed, Web of Science, SPORTDiscus, and Google Scholar) were searched from inception to January 2020. Reference lists of eligible studies and relevant reviews were also checked. STUDY SELECTION Inclusion criteria for objective (1) were: (i) FMD% was assessed pre- and post-sitting; (ii) studies were either randomised-controlled, randomised-crossover, or quasi-experimental trials; (iii) the sitting period was ≥ 1 h; and (iv) participants were healthy non-smoking adults (≥ 18 years), and free of vascular-acting medication and disease at the time of testing. Additional inclusion criteria for objective (2) were: (i) the interruption strategy must have been during the sitting period; (ii) there was a control (uninterrupted sitting) group/arm; and (iii) the interruption strategy must have involved the participants actively moving their lower- or upper-limbs. APPRAISAL AND SYNTHESIS METHODS One thousand eight hundred and two articles were identified, of which 17 (22 trials, n = 269) met inclusion criteria for objective (1). Of those 17 articles, 6 studies (9 trials, n = 127) met the inclusion criteria for objective (2). Weighted mean differences (WMD), 95% confidence intervals (95% CI), and standardised mean difference (SMD) were calculated for all trials using random-effects meta-analysis modelling. SMD was used to determine the magnitude of effect, where < 0.2, 0.2, 0.5, and 0.8 was defined as trivial, small, moderate, and large respectively. RESULTS (1) Random-effects modelling showed uninterrupted bouts of prolonged sitting resulted in a significant decrease in FMD% (WMD = - 2.12%, 95% CI - 2.66 to - 1.59, SMD = 0.84). Subgroup analysis revealed reductions in lower- but not upper-limb FMD%. (2) Random-effects modelling showed that interrupting bouts of sitting resulted in a significantly higher FMD% compared to uninterrupted sitting (WMD = 1.91%, 95% CI 0.40 to 3.42, SMD = 0.57). Subgroup analyses failed to identify an optimum interruption strategy but revealed moderate non-significant effects for aerobic interventions (WMD = 2.17%, 95% CI - 0.34 to 4.67, SMD = 0.69) and simple resistance activities (WMD = 2.40%, 95% CI - 0.08 to 4.88, SMD = 0.55) and a trivial effect for standing interruptions (WMD = 0.24%, 95% CI - 0.90 to 1.38, SMD = 0.16). CONCLUSIONS Exposure to acute prolonged sitting leads to significant vascular dysfunction in arteries of the lower, but not upper, limbs. The limited available data indicate that vascular dysfunction can be prevented by regularly interrupting sitting, particularly with aerobic or simple resistance activities.
Collapse
Affiliation(s)
- Craig Paterson
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK.
| | - Simon Fryer
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Gabriel Zieff
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keeron Stone
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | | | - Bethany Barone Gibbs
- Department of Health and Physical Activity, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - John K Parker
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Lee Stoner
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Zheng C, Zhang X, Sheridan S, Ho RST, Sit CHP, Huang Y, Wong SHS. Effect of sedentary behavior interventions on vascular function in adults: A systematic review and meta-analysis. Scand J Med Sci Sports 2021; 31:1395-1410. [PMID: 33655660 DOI: 10.1111/sms.13947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 01/28/2023]
Abstract
Sedentary behavior (SB) results in hemodynamic alterations within the vasculature, leading to vascular dysfunction that may be attenuated by various interventions. This systematic review and meta-analysis examined the effect of SB interventions on vascular function in adults using seven databases searched on December 17, 2020. All types of SB interventions were included such as short- and long-term interventions (≥7 days) in participants aged ≥18 years. The pooled effect (mean difference) of intervention on three outcomes, namely, flow-mediated dilation (FMD), shear rate (SR), and pulse wave velocity (PWV), was evaluated using random effects meta-analyses. The revised Cochrane risk-of-bias tool for randomized trials was employed to assess the quality of the included studies. Twenty-six studies (21 short-term and six long-term interventions) involving 669 participants from eight countries were included. Evidence from meta-analysis showed that short-term interventions targeting SB improved FMD by 1.50% (95% confidence interval [CI] 1.00-1.99) and increased SR by 12.70 S-1 (95% CI 7.86-17.54); no significant pooled effect was found for PWV. Long-term SB interventions resulted in a 0.93% increase in FMD (95% CI 0.25-1.62) and had no significant effect on PWV. Findings of this systematic review and meta-analysis suggest that both short- and long-term SB interventions improved FMD but had no effect on PWV. Short-term interventions had a greater effect in improving lower extremity arterial function. Further studies targeting long-term SB interventions on vascular function in adults are warranted.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyuan Zhang
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Sinead Sheridan
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Robin Sze-Tak Ho
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Cindy Hui-Ping Sit
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Heung-Sang Wong
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Does breaking up prolonged sitting improve cognitive functions in sedentary adults? A mapping review and hypothesis formulation on the potential physiological mechanisms. BMC Musculoskelet Disord 2021; 22:274. [PMID: 33711976 PMCID: PMC7955618 DOI: 10.1186/s12891-021-04136-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Prolonged (excessive) sitting is detrimentally associated with cardiovascular, metabolic and mental health. Moreover, prolonged sitting has been associated with poor executive function, memory, attention and visuospatial skills, which are important cognitive aspects of work performance. Breaking up prolonged sitting with standing or light-intensity exercises at the workplace is recognized as a potential measure in improving cognition. However, preliminary evidence, primarily from acute laboratory experiments, has enabled formulating hypothesis on the possible mechanistic pathways. Hence, the aim of this mapping review is to gather preliminary evidence and substantiate possible physiological mechanisms underpinning the putative effects of breaking prolonged sitting on improving cognitive function among sedentary office workers. Mapping method We searched four databases to identify relevant studies that explored the effects of uninterrupted sitting on cognitive function. First, we introduce how prolonged sitting increases the risks of hyperglycemia, autonomic stability, inflammation, adverse hormonal changes and restrictions in cerebral blood flow (CBF) and alters cognitive function. Second, we elucidate the direct and indirect effects of breaking up prolonged sitting time that may prevent a decline in cognitive performance by influencing glycaemic variability, autonomic stability, hormones (brain derived neurotrophic factor, dopamine, serotonin), vascular functions, and CBF. We highlight the importance of breaking up prolonged sitting on metabolic, vascular and endocrine functions, which in turn may improve cognitive functions and eventually foster work productivity. Improved synaptic transmission or neuroplasticity due to increased brain glucose and mitochondrial metabolism, increased endothelial shear and CBF, increased brain neurotrophic factors (dopamine) and accelerated anti-inflammatory functions are some of the hypothetical mechanisms underpinning improved cognitive functions. Conclusion We postulate that improving cognitive function by breaking up prolonged sitting periods is biologically plausible with the myriad of (suggested) physiological mechanisms. Future experimental studies to ascertain the aforementioned hypothetical mechanisms and clinical trials to break sedentary behavior and improve cognitive functions in sedentary office workers are warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04136-5.
Collapse
|
27
|
Abstract
BACKGROUND & AIMS Though viewed as a critical measure to prevent the spread of the virus, a prolonged homestay may result in unfavourable sedentary behaviour and chronic disease risk. This systematic review focuses on sedentary behaviour resulting from this quarantine period which may elevate the cardiovascular disease risk, obesity, hypertension, cancer and mental health illness. METHODS Evidence of breaking sedentary behaviour and global recommendations were investigated. Potential unanswered questions regarding sedentary behaviour and physical activity during lockdown were explored. RESULTS Five systematic reviews and six prospective trials explored the effect of sedentarism affecting chronic disease through potential pathophysiological mechanisms. Sedentary behaviour especially prolonged sitting is found to be a pleiotropic risk factor with altered energy expenditure, adipogenic signalling, immunomodulation, autonomic stability and hormonal dysregulation perpetuating underlying chronic diseases such as obesity, cardiovascular disease, cancer and mental health disorders. CONCLUSION Breaking sitting and physical activity are found to reverse the adverse effects associated with excessive sitting during the lockdown.
Collapse
Affiliation(s)
- Baskaran Chandrasekaran
- Assistant Professor, Department of Exercise & Sports Sciences, Manipal College of Health Professions, Manipal Academy of Higher Education, India
| | | |
Collapse
|
28
|
Williams JS, Dunford EC, Cheng JL, Moncion K, Valentino SE, Droog CA, Cherubini JM, King TJ, Noguchi KS, Wiley E, Turner JR, Tang A, Al-Khazraji BK, MacDonald MJ. The impact of the 24-h movement spectrum on vascular remodeling in older men and women: a review. Am J Physiol Heart Circ Physiol 2021; 320:H1136-H1155. [PMID: 33449851 DOI: 10.1152/ajpheart.00754.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aging is associated with increased risk of cardiovascular and cerebrovascular events, which are preceded by early, negative remodeling of the vasculature. Low physical activity is a well-established risk factor associated with the incidence and development of disease. However, recent physical activity literature indicates the importance of considering the 24-h movement spectrum. Therefore, the purpose of this review was to examine the impact of the 24-h movement spectrum, specifically physical activity (aerobic and resistance training), sedentary behavior, and sleep, on cardiovascular and cerebrovascular outcomes in older adults, with a focus on recent evidence (<10 yr) and sex-based considerations. The review identifies that both aerobic training and being physically active (compared with sedentary) are associated with improvements in endothelial function, arterial stiffness, and cerebrovascular function. Additionally, there is evidence of sex-based differences in endothelial function: a blunted improvement in aerobic training in postmenopausal women compared with men. While minimal research has been conducted in older adults, resistance training does not appear to influence arterial stiffness. Poor sleep quantity or quality are associated with both impaired endothelial function and increased arterial stiffness. Finally, the review highlights mechanistic pathways involved in the regulation of vascular and cerebrovascular function, specifically the balance between pro- and antiatherogenic factors, which mediate the relationship between the 24-h movement spectrum and vascular outcomes. Finally, this review proposes future research directions: examining the role of duration and intensity of training, combining aerobic and resistance training, and exploration of sex-based differences in cardiovascular and cerebrovascular outcomes.
Collapse
Affiliation(s)
- Jennifer S Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Emily C Dunford
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jem L Cheng
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kevin Moncion
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Sydney E Valentino
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Connor A Droog
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Joshua M Cherubini
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Trevor J King
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth S Noguchi
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Elise Wiley
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Joshua R Turner
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Ada Tang
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Maureen J MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
29
|
Peddie MC, Kessell C, Bergen T, Gibbons TD, Campbell HA, Cotter JD, Rehrer NJ, Thomas KN. The effects of prolonged sitting, prolonged standing, and activity breaks on vascular function, and postprandial glucose and insulin responses: A randomised crossover trial. PLoS One 2021; 16:e0244841. [PMID: 33395691 PMCID: PMC7781669 DOI: 10.1371/journal.pone.0244841] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
The objective of this study was to compare acute effects of prolonged sitting, prolonged standing and sitting interrupted with regular activity breaks on vascular function and postprandial glucose metabolism. In a randomized cross-over trial, 18 adults completed: 1. Prolonged Sitting; 2. Prolonged Standing and 3. Sitting with 2-min walking (5 km/h, 10% incline) every 30 min (Regular Activity Breaks). Flow mediated dilation (FMD) was measured in the popliteal artery at baseline and 6 h. Popliteal artery hemodynamics, and postprandial plasma glucose and insulin were measured over 6 h. Neither raw nor allometrically-scaled FMD showed an intervention effect (p = 0.285 and 0.159 respectively). Compared to Prolonged Sitting, Regular Activity Breaks increased blood flow (overall effect of intervention p<0.001; difference = 80%; 95% CI 34 to 125%; p = 0.001) and net shear rate (overall effect of intervention p<0.001; difference = 72%; 95% CI 30 to 114%; p = 0.001) at 60 min. These differences were then maintained for the entire 6 h. Prolonged Standing increased blood flow at 60 min only (overall effect of intervention p<0.001; difference = 62%; 95% CI 28 to 97%; p = 0.001). Regular Activity Breaks decreased insulin incremental area under the curve (iAUC) when compared to both Prolonged Sitting (overall effect of intervention P = 0.001; difference = 28%; 95% CI 14 to 38%; p<0.01) and Prolonged Standing (difference = 19%; 95% CI 4 to 32%, p = 0.015). There was no intervention effect on glucose iAUC or total AUC (p = 0.254 and 0.450, respectively). In normal-weight participants, Regular Activity Breaks induce increases in blood flow, shear stress and improvements in postprandial metabolism that are associated with beneficial adaptations. Physical activity and sedentary behaviour messages should perhaps focus more on the importance of frequent movement rather than simply replacing sitting with standing.
Collapse
Affiliation(s)
- Meredith C. Peddie
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Chris Kessell
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Tom Bergen
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Travis D. Gibbons
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Holly A. Campbell
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - James D. Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Nancy J. Rehrer
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Kate N. Thomas
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Carter SE, Draijer R, Maxwell JD, Morris AS, Pedersen SJ, Graves LEF, Thijssen DHJ, Hopkins ND. Using an e-Health Intervention to Reduce Prolonged Sitting in UK Office Workers: A Randomised Acceptability and Feasibility Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238942. [PMID: 33271884 PMCID: PMC7729470 DOI: 10.3390/ijerph17238942] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/03/2023]
Abstract
Low-cost workplace interventions are required to reduce prolonged sitting in office workers as this may improve employees’ health and well-being. This study aimed to assess the acceptability and feasibility of an e-health intervention to reduce prolonged sitting among sedentary UK-based office workers. Secondary aims were to describe preliminary changes in employee health, mood and work productivity after using an e-health intervention. Healthy, university office workers (n = 14) completed this study. An 8 week randomised crossover design was used, consisting of two trials: Intervention (computer-based prompts) and Control. Eligibility and retention rates were recorded to assess the feasibility of the trial and interviews were conducted following the intervention to explore its acceptability. Sitting, standing and stepping were objectively assessed prior to and during week 8 of each trial. Before and after each trial, measurements of vascular function, cerebrovascular function, mood and work productivity were obtained. This study had eligibility and retention rates of 54.5% and 77.8%, respectively. Participants expressed a lack of autonomy and disruption to their workflow when using the e-health intervention, raising concerns over its acceptability and long-term implementation. Preliminary data indicate that the intervention may improve the patterning of activity accrued during work hours, with increases in the number of standing and stepping bouts completed, in addition to improving vascular function. This e-health intervention is feasible to deliver in a cohort of university office workers. However, adaptations to its implementation, such as personalised settings, are needed to increase acceptability before larger trials can be conducted.
Collapse
Affiliation(s)
- Sophie E. Carter
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (J.D.M.); (L.E.F.G.); (D.H.J.T.); (N.D.H.)
- School of Science, Technology and Health, York St John University, York YO31 8TA, UK
- Correspondence: ; Tel.: +44-1904-876207
| | - Richard Draijer
- Unilever Foods Innovation Centre, Wageningen, The Netherlands;
| | - Joseph D. Maxwell
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (J.D.M.); (L.E.F.G.); (D.H.J.T.); (N.D.H.)
| | - Abigail S. Morris
- Department of Health Research, Lancaster University, Lancaster LA1 4YW, UK;
| | - Scott J. Pedersen
- Active Work Laboratory, School of Education, University of Tasmania, Launceston 7250, Australia;
| | - Lee E. F. Graves
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (J.D.M.); (L.E.F.G.); (D.H.J.T.); (N.D.H.)
| | - Dick H. J. Thijssen
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (J.D.M.); (L.E.F.G.); (D.H.J.T.); (N.D.H.)
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nicola D. Hopkins
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (J.D.M.); (L.E.F.G.); (D.H.J.T.); (N.D.H.)
| |
Collapse
|
31
|
Taylor FC, Dunstan DW, Homer AR, Dempsey PC, Kingwell BA, Climie RE, Owen N, Cohen ND, Larsen RN, Grace M, Eikelis N, Wheeler MJ, Townsend MK, Maniar N, Green DJ. Acute effects of interrupting prolonged sitting on vascular function in type 2 diabetes. Am J Physiol Heart Circ Physiol 2020; 320:H393-H403. [PMID: 33164575 DOI: 10.1152/ajpheart.00422.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In healthy and overweight/obese adults, interrupting prolonged sitting with activity bouts mitigates impairment in vascular function. However, it is unknown whether these benefits extend to those with type 2 diabetes (T2D), nor whether an optimal frequency of activity interruptions exist. We examined the acute effects on vascular function in T2D of interrupting prolonged sitting with simple resistance activities (SRA) at different frequencies. In a randomized crossover trial, 24 adults with T2D (35-70 yr) completed three 7-h conditions: 1) uninterrupted sitting (SIT), 2) sitting with 3-min bouts of SRA every 30 min (SRA3), and 3) sitting with 6 min bouts of SRA every 60 min (SRA6). Femoral artery flow-mediated dilation (FMD), resting shear rate, blood flow, and endothelin-1 were measured at 0, 1, 3.5, 4.5, and 6.5-7 h. Mean femoral artery FMD over 7 h was significantly higher in SRA3 (4.1 ± 0.3%) compared with SIT (3.7 ± 0.3%, P = 0.04) but not in SRA6. Mean resting femoral shear rate over 7 h was increased significantly for SRA3 (45.3 ± 4.1/s, P < 0.001) and SRA6 (46.2 ± 4.1/s, P < 0.001) relative to SIT (33.1 ± 4.1/s). Endothelin-1 concentrations were not statistically different between conditions. Interrupting sitting with activity breaks every 30 min, but not 60 min, significantly increased mean femoral artery FMD over 7 h, relative to SIT. Our findings suggest that more frequent and shorter breaks may be more beneficial than longer, less frequent breaks for vascular health in those with T2D.NEW & NOTEWORTHY This is the first trial to examine both the effects of interrupting prolonged sitting on vascular function in type 2 diabetes and the effects of the frequency and duration of interruptions. Brief, simple resistance activity bouts every 30 min, but not every 60 min, increased mean femoral artery flow-mediated dilation over 7 h, relative to uninterrupted sitting. With further supporting evidence, these initial findings can have important implications for cardiovascular health in type 2 diabetes.
Collapse
Affiliation(s)
- Frances C Taylor
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - David W Dunstan
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia.,School of Sport Science, Exercise and Health, University of Western Australia, Perth, Australia
| | - Ashleigh R Homer
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Paddy C Dempsey
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.,Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, United Kingdom
| | - Bronwyn A Kingwell
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,CSL Limited, Bio21, Parkville, Victoria, Australia
| | - Rachel E Climie
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Neville Owen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Centre for Urban Transitions, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Neale D Cohen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Robyn N Larsen
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Megan Grace
- School of Clinical Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Nina Eikelis
- Iverson Health Innovation Research Institute and School of Health Science, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Michael J Wheeler
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,School of Sport Science, Exercise and Health, University of Western Australia, Perth, Australia
| | | | - Nirav Maniar
- School of Behavioural and Health Sciences, Australian Catholic University, Australia
| | - Daniel J Green
- School of Sport Science, Exercise and Health, University of Western Australia, Perth, Australia
| |
Collapse
|
32
|
Heiland EG, Ekblom Ö, Tarassova O, Fernström M, English C, Ekblom MM. ABBaH: Activity Breaks for Brain Health. A Protocol for a Randomized Crossover Trial. Front Hum Neurosci 2020; 14:273. [PMID: 32760263 PMCID: PMC7372129 DOI: 10.3389/fnhum.2020.00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/17/2020] [Indexed: 01/18/2023] Open
Abstract
Introduction: Extended periods of sitting may have detrimental effects on brain health. However, the effects of breaking up prolonged sedentary periods with frequent, short physical activity bouts on mechanisms to improve brain health remain unclear. Therefore, this study aims to investigate the immediate effects of uninterrupted sitting and frequent, short bouts of physical activity on cerebral blood flow and cognitive function in the prefrontal cortex in middle-aged adults. Methods: This is a protocol article to describe a randomized crossover study. We will collect data from 13 healthy adults, aged between 40 and 60 years old, with a body mass index <35 kg/m2. Participants will be required to come into the laboratory on three occasions, sit for 3 h, and perform a different type of break for 3 min every 30 min at each visit in a random order, being either: (1) a social break; (2) brisk walk on a treadmill; or (3) simple resistance activities. Before and after each experimental condition, cerebral blood flow (primary outcome) will be measured using functional near-infrared spectroscopy (fNIRS), with short-separation channels, and working memory (1-, 2-, and 3-back on the computer) will be assessed. The following additional secondary outcomes will be collected: psychological factors (questionnaires); arterial stiffness; salivary cortisol levels; and blood glucose levels. Conclusion: The results from this randomized crossover study will determine the effects of uninterrupted sitting and frequent, short bouts of physical activity on cerebral blood flow and cognitive performance. Publication of this study protocol emphasizes the importance of registration and publication of protocols in the field of sedentary behavior research.
Collapse
Affiliation(s)
- Emerald G Heiland
- The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Örjan Ekblom
- The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Olga Tarassova
- The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Maria Fernström
- The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Coralie English
- School of Health Sciences and Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
| | - Maria M Ekblom
- The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| |
Collapse
|