1
|
Shaw DM, Harrell JW. Integrating physiological monitoring systems in military aviation: a brief narrative review of its importance, opportunities, and risks. ERGONOMICS 2023; 66:2242-2254. [PMID: 36946542 DOI: 10.1080/00140139.2023.2194592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Military pilots risk their lives during training and operations. Advancements in aerospace engineering, flight profiles, and mission demands may require the pilot to test the safe limits of their physiology. Monitoring pilot physiology (e.g. heart rate, oximetry, and respiration) inflight is in consideration by several nations to inform pilots of reduced performance capacity and guide future developments in aircraft and life-support system design. Numerous challenges, however, prevent the immediate operationalisation of physiological monitoring sensors, particularly their unreliability in the aerospace environment and incompatibility with pilot clothing and protective equipment. Human performance and behaviour are also highly variable and measuring these in controlled laboratory settings do not mirror the real-world conditions pilots must endure. Misleading or erroneous predictive models are unacceptable as these could compromise mission success and lose operator trust. This narrative review provides an overview of considerations for integrating physiological monitoring systems within the military aviation environment.Practitioner summary: Advancements in military technology can conflictingly enhance and compromise pilot safety and performance. We summarise some of the opportunities, limitations, and risks of integrating physiological monitoring systems within military aviation. Our intent is to catalyse further research and technological development.Abbreviations: AGS: anti-gravity suit; AGSM: anti-gravity straining manoeuvre; A-LOC: almost loss of consciousness; CBF: cerebral blood flow; ECG: electrocardiogram; EEG: electroencephalogram; fNIRS: functional near-infrared spectroscopy; G-forces: gravitational forces; G-LOC: gravity-induced loss of consciousness; HR: heart rate; HRV: heart rate variability; LSS: life-support system; NATO: North Atlantic Treaty Organisation; PE: Physiological Episode; PCO2: partial pressure of carbon dioxide; PO2: partial pressure of oxygen; OBOGS: on board oxygen generating systems; SpO2: peripheral blood haemoglobin-oxygen saturation; STANAG: North Atlantic Treaty Organisation Standardisation Agreement; UPE: Unexplained Physiological Episode; WBV: whole body vibration.
Collapse
Affiliation(s)
- David M Shaw
- Aviation Medicine Unit, Royal New Zealand Air Force Base Auckland, Auckland, New Zealand
- School of Sport, Exercise and Nutrition, Massey University, Auckland, New Zealand
| | - John W Harrell
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| |
Collapse
|
2
|
Independent effects of acute normobaric hypoxia and hypobaric hypoxia on human physiology. Sci Rep 2022; 12:19570. [PMID: 36379983 PMCID: PMC9666440 DOI: 10.1038/s41598-022-23698-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to examine the effects of acute normobaric (NH, decreased FiO2) and hypobaric (HH, 4200 m ascent) hypoxia exposures compared to sea level (normobaric normoxia, NN). Tissue oxygenation, cardiovascular, and body fluid variables measured during rest and a 3-min step-test following 90-min exposures (NH, HH, NN). Muscle oxygenated hemoglobin (O2Hb) decreased, and muscle deoxygenated hemoglobin (HHb) increased environmentally independent from rest to exercise (p < 0.001). During exercise, brain O2Hb was lower at HH compared to NN (p = 0.007), trending similarly with NH (p = 0.066), but no difference between NN and NH (p = 0.158). During exercise, HR at NH (141 ± 4 beats·min-1) and HH (141 ± 3 beats·min-1) were higher than NN (127 ± 44 beats·min-1, p = 0.002), but not each other (p = 0.208). During exercise, stroke volume at HH (109.6 ± 4.1 mL·beat-1) was higher than NH (97.8 ± 3.3 mL·beat-1) and NN (99.8 ± 3.9 mL·beat-1, p ≤ 0.010) with no difference between NH and NN (p = 0.481). During exercise, cardiac output at NH (13.8 ± 0.6 L) and HH (15.5 ± 0.7 L) were higher than NN (12.6 ± 0.5 L, p ≤ 0.006) with HH also higher than NH (p = 0.001). During acute hypoxic stimuli, skeletal muscle maintains oxygenation whereas the brain does not. These differences may be mediated by environmentally specific cardiovascular compensation. Thus, caution is advised when equating NH and HH.
Collapse
|
3
|
Hohenauer E, Taube W, Freitag L, Clijsen R. Sex differences during a cold-stress test in normobaric and hypobaric hypoxia: A randomized controlled crossover study. Front Physiol 2022; 13:998665. [PMID: 36225301 PMCID: PMC9549379 DOI: 10.3389/fphys.2022.998665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Cold and hypoxia are two stressors that are frequently combined and investigated in the scientific literature. Despite the growing literature regarding normobaric hypoxia (NH) and hypobaric hypoxia (HH), responses between females and males are less often evaluated. Therefore, this study aims to investigate the physiological sex differences following a cold-stress test under normoxia, normobaric- and hypobaric hypoxia. A total of n = 10 females (24.8 ± 5.1 years) and n = 10 males (30.3 ± 6.3 years) from a university population volunteered for this study. The cold-stress test (CST) of the right hand (15°C for 2 min) was performed using a randomised crossover design in normobaric normoxia, NH and HH. The change (∆) from baseline to post-CST up to 15 min was analysed for cutaneous vascular conductance (CVC) and the hands’ skin temperature, whilst the mean values across time (post-CST up to 15 min) were assessed for peripheral oxygen saturation (SpO2), thermal sensation- and comfort. Pressure pain threshold (PPT) was assessed after the post-CST 15 min period. The hands’ skin temperature drop was higher (p = 0.01) in the female group (∆3.3 ± 1.5°C) compared to the male group (∆1.9 ± 0.9°C) only in NH. Females (−0.9 ± 0.5) rated this temperature drop in NH to feel significantly colder (p = 0.02) compared to the males (−0.2 ± 0.7). No differences were observed between sexes in NN, NH, and HH for ∆CVC, SpO2, thermal comfort and PPT. In conclusion, females and males show similar reactions after a CST under normoxia and hypoxia. Sex differences were observed in the local skin temperature response and thermal sensation only in NH.
Collapse
Affiliation(s)
- Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- Department of Physiotherapy, International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- *Correspondence: Erich Hohenauer,
| | - Wolfgang Taube
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Livia Freitag
- Rehabilitation and Exercise Science Laboratory (RES lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Ron Clijsen
- Rehabilitation and Exercise Science Laboratory (RES lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- Department of Physiotherapy, International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Health, Bern University of Applied Sciences, Berne, Switzerland
| |
Collapse
|
4
|
DiMarco KG, Beasley KM, Shah K, Speros JP, Elliott JE, Laurie SS, Duke JW, Goodman RD, Futral JE, Hawn JA, Roach RC, Lovering AT. No effect of patent foramen ovale on acute mountain sickness and pulmonary pressure in normobaric hypoxia. Exp Physiol 2021; 107:122-132. [PMID: 34907608 DOI: 10.1113/ep089948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022]
Abstract
What is the central question to this study? Is there a relationship between a patent foramen ovale and the development of acute mountain sickness and an exaggerated increase in pulmonary pressure in response to 7-10 hours of normobaric hypoxia? What is the main finding and its importance? Patent foramen ovale presence did not increase susceptibility to acute mountain sickness or result in an exaggerated increase in pulmonary artery systolic pressure with normobaric hypoxia. This data suggest hypobaric hypoxia is integral to the increased susceptibility to acute mountain sickness previously reported in those with patent foramen ovale, and patent foramen ovale presence alone does not contribute to the hypoxic pulmonary pressor response. ABSTRACT: Acute mountain sickness (AMS) develops following rapid ascent to altitude, but its exact causes remain unknown. A patent foramen ovale (PFO) is a right-to-left intracardiac shunt present in ∼30% of the population that has been shown to increase AMS susceptibility with high altitude hypoxia. Additionally, high altitude pulmonary edema (HAPE), is a severe type of altitude illness characterized by an exaggerated pulmonary pressure response, and there is a greater prevalence of PFO in those with a history of HAPE. However, whether hypoxia, per se, is causing the increased incidence of AMS in those with a PFO and whether a PFO is associated with an exaggerated increase in pulmonary pressure in those without a history of HAPE is unknown. Participants (n = 36) matched for biological sex (18 female) and the presence or absence of a PFO (18 PFO+) were exposed to 7-10 hours of normobaric hypoxia equivalent to 4755 m. Presence and severity of AMS was determined using the Lake Louise AMS scoring system. Pulmonary artery systolic pressure, cardiac output, and total pulmonary resistance were measured using ultrasound. We found no significant association of PFO with incidence or severity of AMS and no association of PFO with arterial oxygen saturation. Additionally, there was no effect of a PFO on pulmonary pressure, cardiac output, or total pulmonary resistance. These data suggest that hypobaric hypoxia is necessary for those with a PFO to have increased incidence of AMS and that presence of PFO is not associated with an exaggerated pulmonary pressor response. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kaitlyn G DiMarco
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Kara M Beasley
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Karina Shah
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Julia P Speros
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Jonathan E Elliott
- VA Portland Health Care System, Portland, OR, USA.,Oregon Health and Science University, Department of Neurology, Portland, OR, USA
| | - Steven S Laurie
- KBR, Cardiovascular and Vision Laboratory, NASA Johnson Space Center, Houston, TX, USA
| | - Joseph W Duke
- Northern Arizona University, Department of Biological Sciences, Flagstaff, AZ, USA
| | | | | | - Jerold A Hawn
- Oregon Heart and Vascular Institute, Springfield, OR, USA
| | - Robert C Roach
- University of Colorado Anschutz Medical Campus, Altitude Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Aurora, CO, USA
| | - Andrew T Lovering
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| |
Collapse
|
5
|
Shaw DM, Cabre G, Gant N. Hypoxic Hypoxia and Brain Function in Military Aviation: Basic Physiology and Applied Perspectives. Front Physiol 2021; 12:665821. [PMID: 34093227 PMCID: PMC8171399 DOI: 10.3389/fphys.2021.665821] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/22/2021] [Indexed: 01/04/2023] Open
Abstract
Acute hypobaric hypoxia (HH) is a major physiological threat during high-altitude flight and operations. In military aviation, although hypoxia-related fatalities are rare, incidences are common and are likely underreported. Hypoxia is a reduction in oxygen availability, which can impair brain function and performance of operational and safety-critical tasks. HH occurs at high altitude, due to the reduction in atmospheric oxygen pressure. This physiological state is also partially simulated in normobaric environments for training and research, by reducing the fraction of inspired oxygen to achieve comparable tissue oxygen saturation [normobaric hypoxia (NH)]. Hypoxia can occur in susceptible individuals below 10,000 ft (3,048 m) in unpressurised aircrafts and at higher altitudes in pressurised environments when life support systems malfunction or due to improper equipment use. Between 10,000 ft and 15,000 ft (4,572 m), brain function is mildly impaired and hypoxic symptoms are common, although both are often difficult to accurately quantify, which may partly be due to the effects of hypocapnia. Above 15,000 ft, brain function exponentially deteriorates with increasing altitude until loss of consciousness. The period of effective and safe performance of operational tasks following exposure to hypoxia is termed the time-of-useful-consciousness (TUC). Recovery of brain function following hypoxia may also lag beyond arterial reoxygenation and could be exacerbated by repeated hypoxic exposures or hyperoxic recovery. This review provides an overview of the basic physiology and implications of hypoxia for military aviation and discusses the utility of hypoxia recognition training.
Collapse
Affiliation(s)
- David M Shaw
- Aviation Medicine Unit, Royal New Zealand Air Force Base Auckland, Auckland, New Zealand.,School of Sport, Exercise and Nutrition, Massey University, Auckland, New Zealand
| | - Gus Cabre
- Aviation Medicine Unit, Royal New Zealand Air Force Base Auckland, Auckland, New Zealand
| | - Nicholas Gant
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Aebi MR, Bourdillon N, Kunz A, Bron D, Millet GP. Specific effect of hypobaria on cerebrovascular hypercapnic responses in hypoxia. Physiol Rep 2021; 8:e14372. [PMID: 32097541 PMCID: PMC7058173 DOI: 10.14814/phy2.14372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
It remains unknown whether hypobaria plays a role on cerebrovascular reactivity to CO2 (CVR). The present study evaluated the putative effect of hypobaria on CVR and its influence on cerebral oxygen delivery (cDO2) in five randomized conditions (i.e., normobaric normoxia, NN, altitude level of 440 m; hypobaric hypoxia, HH at altitude levels of 3,000 m and 5,500 m; normobaric hypoxia, NH, altitude simulation of 5,500 m; and hypobaric normoxia, HN). CVR was assessed in nine healthy participants (either students in aviation or pilots) during a hypercapnic test (i.e., 5% CO2). We obtained CVR by plotting middle cerebral artery velocity versus end‐tidal CO2 pressure (PETCO2) using a sigmoid model. Hypobaria induced an increased slope in HH (0.66 ± 0.33) compared to NH (0.35 ± 0.19) with a trend in HN (0.46 ± 0.12) compared to NN (0.23 ± 0.12, p = .069). PETCO2 was decreased (22.3 ± 2.4 vs. 34.5 ± 2.8 mmHg and 19.9 ± 1.3 vs. 30.8 ± 2.2 mmHg, for HN vs. NN and HH vs. NH, respectively, p < .05) in hypobaric conditions when compared to normobaric conditions with comparable inspired oxygen pressure (141 ± 1 vs. 133 ± 3 mmHg and 74 ± 1 vs. 70 ± 2 mmHg, for NN vs. HN and NH vs. HH, respectively) During hypercapnia, cDO2 was decreased in 5,500 m HH (p = .046), but maintained in NH when compared to NN. To conclude, CVR seems more sensitive (i.e., slope increase) in hypobaric than in normobaric conditions. Moreover, hypobaria potentially affected vasodilation reserve (i.e., MCAv autoregulation) and brain oxygen delivery during hypercapnia. These results are relevant for populations (i.e., aviation pilots; high‐altitude residents as miners; mountaineers) occasionally exposed to hypobaric normoxia.
Collapse
Affiliation(s)
- Mathias R Aebi
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Becare SA, Renens, Switzerland
| | - Andres Kunz
- Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Denis Bron
- Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Aebi MR, Bourdillon N, Noser P, Millet GP, Bron D. Cognitive Impairment During Combined Normobaric vs. Hypobaric and Normoxic vs. Hypoxic Acute Exposure. Aerosp Med Hum Perform 2020; 91:845-851. [PMID: 33334404 DOI: 10.3357/amhp.5616.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION: Exposure to hypoxia has a deleterious effect on cognitive function; however, the putative effect of hypobaria remains unclear. The present study aimed to evaluate cognitive performance in pilot trainees who were exposed to acute normobaric (NH) and hypobaric hypoxia (HH). Of relevance for military pilots, we also aimed to assess cognitive performance in hypobaric normoxia (HN).METHODS: A total of 16 healthy pilot trainees were exposed to 4 randomized conditions (i.e., normobaric normoxia, NN, altitude level of 440 m; HH at 5500 m; NH, altitude simulation of 5500 m; and HN). Subjects performed a cognitive assessment (KLT-R test). Cerebral oxygen delivery (cDO₂) was estimated based middle cerebral artery blood flow velocity (MCAv) and pulse oxygen saturation (Spo₂) monitored during cognitive assessment.RESULTS: Percentage of errors increased in NH (14.3 9.1%) and HH (12.9 6.4%) when compared to NN (6.5 4.1%) and HN (6.0 4.0%). Number of calculations accomplished was lower only in HH than in NN and HN. When compared to NN, cDO₂ decreased in NH and HH.DISCUSSION: Cognitive performance was decreased similarly in acute NH and HH. The cDO₂ reduction in NH and HH implies insufficient MCAv increase to ensure cognitive performance maintenance. The present study suggests negligible hypobaric influence on cognitive performance in hypoxia and normoxia.Aebi MR, Bourdillon N, Noser P, Millet GP, Bron D. Cognitive impairment during combined normobaric vs. hypobaric and normoxic vs. hypoxic acute exposure. Aerosp Med Hum Perform. 2020; 91(11):845851.
Collapse
|
8
|
Aebi MR, Bourdillon N, Bron D, Millet GP. Minimal Influence of Hypobaria on Heart Rate Variability in Hypoxia and Normoxia. Front Physiol 2020; 11:1072. [PMID: 32973566 PMCID: PMC7472461 DOI: 10.3389/fphys.2020.01072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction The present study evaluated the putative effect of hypobaria on resting HRV in normoxia and hypoxia. Methods Fifteen young pilot trainees were exposed to five different conditions in a randomized order: normobaric normoxia (NN, PB = 726 ± 5 mmHg, FIO2 = 20.9%), hypobaric normoxia (HN, PB = 380 ± 6 mmHg, FIO2≅40%), normobaric hypoxia (NH, PB = 725 ± 4 mmHg, FIO2≅11%); and hypobaric hypoxia (HH at 3000 and 5500 m, HH3000 and HH5500, PB = 525 ± 6 and 380 ± 8 mmHg, respectively, FIO2 = 20.9%). HRV and pulse arterial oxygen saturation (SpO2) were measured at rest seated during a 6 min period in each condition. HRV parameters were analyzed (Kubios HVR Standard, V 3.0) for time (RMSSD) and frequency (LF, HF, LF/HF ratio, and total power). Gas exchanges were collected at rest for 10 min following HRV recording. Results SpO2 decreased in HH3000 (95 ± 3) and HH5500 (81 ± 5), when compared to NN (99 ± 0). SpO2 was higher in NH (86 ± 4) than HH5500 but similar between HN (98 ± 2) and NN. Participants showed lower RMSSD and total power values in NH and HH5500 when compared to NN. In hypoxia, LF/HF ratio was greater in HH5500 than NH, whereas in normoxia, LF/HF ratio was lower in HN than NN. Minute ventilation was higher in HH5500 than in all other conditions. Discussion The present study reports a slight hypobaric effect either in normoxia or in hypoxia on some HRV parameters. In hypoxia, with a more prominent sympathetic activation, the hypobaric effect is likely due to the greater ventilation stimulus and larger desaturation. In normoxia, the HRV differences may come from the hyperoxic breathing and slight breathing pattern change due to hypobaria in HN.
Collapse
Affiliation(s)
- Mathias Roland Aebi
- Swiss Aeromedical Center, Swiss Air Force, Dübendorf, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Armasuisse, Wissenschaft and Technologie, Thun, Switzerland
- *Correspondence: Mathias Roland Aebi,
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Be.care SA, Renens, Switzerland
| | - Denis Bron
- Swiss Aeromedical Center, Swiss Air Force, Dübendorf, Switzerland
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Cardio-respiratory, oxidative stress and acute mountain sickness responses to normobaric and hypobaric hypoxia in prematurely born adults. Eur J Appl Physiol 2020; 120:1341-1355. [PMID: 32270264 DOI: 10.1007/s00421-020-04366-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE We compared the effects of hypobaric and normobaric hypoxia on select cardio-respiratory responses, oxidative stress and acute mountain sickness (AMS) severity in prematurely born individuals, known to exhibit blunted hypoxic ventilatory response. METHODS Sixteen prematurely born but otherwise healthy males underwent two 8-h hypoxic exposures under: (1) hypobaric hypoxic [HH; terrestrial altitude 3840 m; PiO2:90.2 (0.5) mmHg; BP: 478 (2) mmHg] and (2) normobaric hypoxic [NH; PiO2:90.6 (0.9) mmHg; FiO2:0.142 (0.001)] condition. Resting values of capillary oxyhemoglobin saturation (SpO2), heart rate (HR) and blood pressure were measured before and every 2 h during the exposures. Ventilatory responses and middle cerebral artery blood flow velocity (MCAv) were assessed at rest and during submaximal cycling before and at 4 and 8 h. Plasmatic levels of selected oxidative stress and antioxidant markers and AMS symptoms were also determined at these time points. RESULTS HH resulted in significantly lower resting (P = 0.010) and exercise (P = 0.004) SpO2 as compared to NH with no significant differences in the ventilatory parameters, HR or blood pressure. No significant differences between conditions were found in resting or exercising MCAv and measured oxidative stress markers. Significantly lower values of ferric-reducing antioxidant power (P = 0.037) were observed during HH as opposed to NH. AMS severity was higher at 8 h compared to baseline (P = 0.002) with no significant differences between conditions. CONCLUSION These data suggest that, in prematurely born adults, 8-h exposure to hypobaric, as opposed to normobaric hypoxia, provokes greater reductions in systemic oxygenation and antioxidant capacity. Further studies investigating prolonged hypobaric exposures in this population are warranted. REGISTRATION NCT02780908 (ClinicalTrials.gov).
Collapse
|