1
|
Alizadeh H, Parsaeifar A, Mohammadi Mirzaei R. Meteorin-like protein (Metrnl): a key exerkine in exercise-mediated cardiovascular health. Arch Physiol Biochem 2025:1-15. [PMID: 40289582 DOI: 10.1080/13813455.2025.2497272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/11/2025] [Accepted: 04/20/2025] [Indexed: 04/30/2025]
Abstract
CONTEXT Cardiovascular diseases (CVDs) remain a leading global cause of mortality, necessitating non‑pharmacological interventions such as exercise. Meteorin‑like protein (Metrnl), an exercise‑induced myokine and adipokine, has emerged as a critical mediator of exercise‑mediated cardiovascular benefits, though its specific mechanisms and clinical implications remain underexplored. OBJECTIVE This review synthesizes current evidence on Metrnl's role as a key exerkine in cardiovascular health, focusing on its exercise‑induced regulatory mechanisms, tissue‑specific effects, and therapeutic potential for CVD management. METHODS A comprehensive analysis of preclinical and clinical studies was conducted, encompassing molecular, metabolic, and anti‑inflammatory pathways linked to Metrnl. Literature from PubMed, Scopus, and Web of Science was systematically reviewed to evaluate Metrnl's role in exercise‑mediated cardiovascular adaptations. RESULTS Exercise‑induced Metrnl enhances endothelial function, vascular remodeling, and metabolic regulation via AMPK, PPARγ, and KIT receptor signaling. It promotes glucose/lipid metabolism, angiogenesis, and anti‑inflammatory responses, reducing atherosclerotic risks and improving cardiac repair post‑infarction. Clinically, Metrnl levels correlate with CVD severity, acting as a biomarker for risk stratification. Acute exercise elevates Metrnl, while chronic training effects vary by modality and population. Paradoxically, elevated plasma Metrnl in acute cardiac events predicts adverse outcomes, whereas reduced levels in chronic conditions (e.g., diabetes, heart failure) reflect metabolic dysregulation. DISCUSSION Metrnl bridges exercise benefits to cardiovascular health through inter‑organ crosstalk, yet discrepancies exist in its chronic exercise‑mediated regulation. Its dual role as a protective mediator and stress‑responsive biomarker underscores context‑dependent interpretations. Unresolved questions include receptor specificity, tissue autonomy, and therapeutic delivery strategies. CONCLUSION Metrnl is a pivotal exerkine with promising diagnostic and therapeutic potential for CVDs. Translating its exercise‑mediated benefits into clinical applications requires further human trials to validate mechanisms and optimize interventions. Harnessing Metrnl could revolutionize strategies for CVD prevention and rehabilitation, leveraging exercise's molecular advantages.
Collapse
Affiliation(s)
- Hamid Alizadeh
- Exercise Physiology, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Ahmad Parsaeifar
- Exercise Physiology, University of Mazandaran, Babolsar, Mazandaran, Iran
| | | |
Collapse
|
2
|
Sammut MJ, Thorne BR, Melling CWJ. Skeletal muscle growth to combat diabetes and obesity: the potential role of muscle-secreted factors. Obesity (Silver Spring) 2025; 33:435-451. [PMID: 39948829 PMCID: PMC11897867 DOI: 10.1002/oby.24223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 03/14/2025]
Abstract
As the prevalence of obesity and metabolic disease continues to climb, the need for effective therapeutic interventions remains high. The growth of skeletal muscle (SkM) greatly influences systemic metabolism across the whole body, making this tissue an important therapeutic target to combat the rise of metabolic dysfunction. Transgenic rodent models of targeted SkM growth exhibit profound improvements in various remote tissues, including adipose tissue and the liver. It is currently unclear how selective stimulation of SkM growth alters the metabolism of distant tissues; however, evidence suggests that muscle-secreted factors may be involved. Here, we aim to provide basic biomedical researchers with a summary of the current knowledge regarding various muscle-secreted factors regulated by anabolic pathways and proteins in SkM, as well as their systemic metabolic effects, to implicate them in the whole-body metabolic effects of SkM growth. In this review, we also identify several knowledge gaps in this field, future directions of investigation, and implications for therapeutic interventions such as resistance exercise and pharmacology.
Collapse
Affiliation(s)
- Mitchell J. Sammut
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
| | - Benjamin R. Thorne
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
| | - C. W. James Melling
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
- Department of Physiology & Pharmacology, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| |
Collapse
|
3
|
Kusano T, Sotani Y, Takeda R, Hatano A, Kawata K, Kano R, Matsumoto M, Kano Y, Hoshino D. Time-series transcriptomics reveals distinctive mRNA expression dynamics associated with gene ontology specificity and protein expression in skeletal muscle after electrical stimulation-induced resistance exercise. FASEB J 2024; 38:e70153. [PMID: 39545720 PMCID: PMC11698011 DOI: 10.1096/fj.202401420rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Resistance exercise upregulates and downregulates the expression of a wide range of genes in skeletal muscle. However, detailed analysis of mRNA dynamics such as response rates and temporal patterns of the transcriptome after resistance exercise has not been performed. We aimed to clarify the dynamics of time-series transcriptomics after resistance exercise. We used electrical stimulation-induced muscle contraction as a resistance exercise model (5 sets × 10 times of 3 s of 100-Hz electrical stimulation) on the tibialis anterior muscle of rats and measured the transcriptome in the muscle before and at 0, 1, 3, 6, and 12 h after muscle contractions by RNA sequencing. We also examined the relationship between the parameters of mRNA dynamics and the increase in protein expression at 12 h after muscle contractions. We found that the function of the upregulated genes differed after muscle contractions depending on their response rate. Genes related to muscle differentiation and response to mechanical stimulus were enriched in the sustainedly upregulated genes. Furthermore, there was a positive correlation between the magnitude of upregulated mRNA expression and the corresponding protein expression level at 12 h after muscle contractions. Although it has been theoretically suggested, this study experimentally demonstrated that the magnitude of the mRNA response after electrical stimulation-induced resistance exercise contributes to skeletal muscle adaptation via increases in protein expression. These findings suggest that mRNA expression dynamics such as response rate, a sustained upregulated expression pattern, and the magnitude of the response contribute to mechanisms underlying adaptation to resistance exercise.
Collapse
Affiliation(s)
- Tatsuya Kusano
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| | - Yuta Sotani
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| | - Reo Takeda
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaIbarakiJapan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataNiigataJapan
| | - Kentaro Kawata
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaIbarakiJapan
| | - Ryotaro Kano
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataNiigataJapan
| | - Yutaka Kano
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| | - Daisuke Hoshino
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| |
Collapse
|
4
|
Delfan M, Radkia F, Juybari RA, Daneshyar S, Willems ME, Saeidi A, Hackney AC, Laher I, Zouhal H. Unveiling the Effects of Interval Resistance Training and Chlorella Vulgaris Supplementation on Meteorin-like Protein and Oxidative Stress in Obese Men. Curr Dev Nutr 2024; 8:104428. [PMID: 39279784 PMCID: PMC11402038 DOI: 10.1016/j.cdnut.2024.104428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 09/18/2024] Open
Abstract
Background Dysregulation of adipocyte function occurs in obesity. Meteorin-like protein (Metrnl) is a newly discovered modulator of inflammation, metabolism, and differentiation of human adipocytes. The dietary supplement Chlorella Vulgaris (CV) reduces hyperlipidemia, hyperglycemia, and oxidative stress in clinical trials. Objectives To explore the impact of 12 wks of interval resistance training (IRT) and CV supplementation on plasma levels of Metrnl and oxidative stress in males with obesity. Methods Forty-four obese men (BMI: 32.0 ± 1.5 kg/m2, weight: 101.1 ± 2.2 kg, age: 23-35 years) were randomly assigned into 4 groups (n = 11/group): control (CON), CV supplement (CV), IRT, and CV + IRT (CVIRT). The IRT was performed for 12 wks (3 sessions per week). The treatment consisted of a daily intake of CV (1800 mg capsule) or placebo capsules. Blood samples were collected 48 hours before and after the interventions to analyze biomedical measurements. Results The IRT and CVIRT groups had elevations in plasma Metrnl, superoxide dismutase, and total antioxidant capacity levels (all P < 0.0001), and reductions in malondialdehyde (P < 0.0001). Supplementation with CV significantly reduced malondialdehyde (P < 0.001) and increased total antioxidant capacity (P < 0.0001) but failed to alter superoxide dismutase or Metrnl (P > 0.05). Conclusions Although IRT and its combination with CV hold promise for improving Metrnl levels and oxidative status in obesity, combining IRT and CV do not yield greater benefits than IRT alone. Although standalone CV supplementation could favorably impact certain markers of oxidative stress, the effectiveness of CV supplementation appears to have a relatively limited effect across assessed biomarkers and requires further investigation.
Collapse
Affiliation(s)
- Maryam Delfan
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Fatemeh Radkia
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Raheleh Amadeh Juybari
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Saeed Daneshyar
- Department of Physical Education, Hamedan University of Technology, Hamedan, Iran
| | - Mark Et Willems
- Institute of Applied Sciences, University of Chichester, Chichester, United Kingdom
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Anthony C Hackney
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé), Rennes, France
- Institut International des Sciences du Sport, Irodouer, France
| |
Collapse
|
5
|
Dong WS, Hu C, Hu M, Gao YP, Hu YX, Li K, Ye YJ, Zhang X. Metrnl: a promising biomarker and therapeutic target for cardiovascular and metabolic diseases. Cell Commun Signal 2024; 22:389. [PMID: 39103830 PMCID: PMC11301845 DOI: 10.1186/s12964-024-01767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024] Open
Abstract
Modern human society is burdened with the pandemic of cardiovascular and metabolic diseases. Metrnl is a widely distributed secreted protein in the body, involved in regulating glucose and lipid metabolism and maintaining cardiovascular system homeostasis. In this review, we present the predictive and therapeutic roles of Metrnl in various cardiovascular and metabolic diseases, including atherosclerosis, ischemic heart disease, cardiac remodeling, heart failure, hypertension, chemotherapy-induced myocardial injury, diabetes mellitus, and obesity.
Collapse
Affiliation(s)
- Wen-Sheng Dong
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China
| | - Can Hu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Clinical Research Center for Medical Imaging in Hubei Province, Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Min Hu
- Department of Cardiology, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Peng Gao
- Department of Cardiology, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu-Xin Hu
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China
| | - Kang Li
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China
| | - Yun-Jia Ye
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China
| | - Xin Zhang
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
6
|
Eseoğlu İ, Yılmaz AK, Anıl B, Korkmaz E, Akdemir E, Yılmaz C, Kehribar L, Aydın NG, Ermiş E, Yoldaş B, İmamoğlu O. Effects of Electro-Muscle Stimulation Exercise Combined with Mat Pilates on Pain, Anxiety, and Strength in Sedentary Females with Fibromyalgia: A Single-Blind Randomized Controlled Trial. J Pers Med 2024; 14:697. [PMID: 39063951 PMCID: PMC11278430 DOI: 10.3390/jpm14070697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Fibromyalgia syndrome (FM) is a chronic pain disorder that is ranked as one of the four most common rheumatological diseases in the world. This study aims to investigate the effects of an eight-week mat Pilates and electro-muscle stimulation (EMS) with combined mat Pilates exercises on pain, depression, anxiety, and strength in sedentary women. METHODS This study is a single-blind randomized controlled trial. A total of 30 sedentary female patients (Pilates (n = 15), EMS (n = 15)) diagnosed with FM were included in the study. The patients were subjected to Beck Depression (BDIs) and Anxiety Inventories (BAIs); a Fibromyalgia Impact Questionnaire (FIQ); five different Single-Leg Hop Tests (SLHTs); modified push-up (MPU), Handgrip Strength (HGS), Deep Squat (DSQ), V-Sit Flexor, bent-arm hang (BA), sit-up and Biering-Sørensen tests; and anthropometric tests before and after the 8-week exercise program. RESULTS The eight weeks of mat Pilates exercises combined with mat Pilates and EMS revealed significant results (p < 0.05) in anthropometric data (abdomen, lower abdomen, hips) (p < 0.05) except for the results of chest circumference measurements (p > 0.05). In addition, there were statistically significant positive results in BDIs, BAIs, FIQs, lower extremity (all SLHTs and DSQ), upper extremity (MPU, HGS, BA), and core (V-SIT, sit-up, Biering-Sørensen test) strength test findings (p < 0.05). CONCLUSIONS Combining the mat Pilates exercises with EMS is an effective and reliable method to improve the pain, anxiety, depression, and strength of female patients diagnosed with FM.
Collapse
Affiliation(s)
- İsmail Eseoğlu
- Vocational School of Health Services, Dokuz Eylül University, İzmir 35340, Türkiye;
| | - Ali Kerim Yılmaz
- Faculty of Yasar Doğu Sport Sciences, Ondokuz Mayıs University, Samsun 55270, Türkiye; (A.K.Y.); (B.A.); (E.K.); (E.E.); (O.İ.)
| | - Berna Anıl
- Faculty of Yasar Doğu Sport Sciences, Ondokuz Mayıs University, Samsun 55270, Türkiye; (A.K.Y.); (B.A.); (E.K.); (E.E.); (O.İ.)
| | - Esra Korkmaz
- Faculty of Yasar Doğu Sport Sciences, Ondokuz Mayıs University, Samsun 55270, Türkiye; (A.K.Y.); (B.A.); (E.K.); (E.E.); (O.İ.)
| | - Enes Akdemir
- Faculty of Yasar Doğu Sport Sciences, Ondokuz Mayıs University, Samsun 55270, Türkiye; (A.K.Y.); (B.A.); (E.K.); (E.E.); (O.İ.)
| | - Coşkun Yılmaz
- Kelkit Aydın Doğan Vocational School, Gümüşhane University, Gümüşhane 29600, Türkiye;
| | - Lokman Kehribar
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Dokuz Eylül University, İzmir 35340, Türkiye;
| | - Nur Gökçe Aydın
- Department of Medical Ecology and Hydroclimatology, Samsun Training and Research Hospital, Samsun 55090, Türkiye;
| | - Egemen Ermiş
- Faculty of Yasar Doğu Sport Sciences, Ondokuz Mayıs University, Samsun 55270, Türkiye; (A.K.Y.); (B.A.); (E.K.); (E.E.); (O.İ.)
| | - Burak Yoldaş
- Department of Orthopedics and Traumatology, Samsun Havza State Hospital, Samsun 55700, Türkiye
| | - Osman İmamoğlu
- Faculty of Yasar Doğu Sport Sciences, Ondokuz Mayıs University, Samsun 55270, Türkiye; (A.K.Y.); (B.A.); (E.K.); (E.E.); (O.İ.)
| |
Collapse
|
7
|
Takeda R, Tabuchi A, Nonaka Y, Kano R, Sudo M, Kano Y, Hoshino D. Cmah deficiency blunts cellular senescence in adipose tissues and improves whole-body glucose metabolism in aged mice. Geriatr Gerontol Int 2023; 23:958-964. [PMID: 37968438 DOI: 10.1111/ggi.14732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
AIM Cytidine monophosphate-N-acetylneuraminic acid (Neu5Ac) hydroxylase (Cmah) is an enzyme, which converts Neu5Ac to the sialic acid Neu5Gc. Neu5Gc is thought to increase inflammatory cytokines, which are, in part, produced in senescent cells of adipose tissues. Cellular senescence in adipose tissues induces whole-body aging and impaired glucose metabolism. Therefore, we hypothesized that Cmah deficiency would prevent cellular senescence in adipose tissues and impaired glucose metabolism. METHODS Wild-type (WT) and Cmah knockout (KO) mice aged 24-25 months were used. Whole-body metabolism was assessed using a metabolic gas analysis system. We measured blood glucose and insulin concentrations after oral glucose administration. The size of the lipid droplets in the liver was quantified. Markers of cellular senescence and senescence-associated secretory phenotypes were measured in adipose tissues. RESULTS Cmah KO had significantly increased VO2 and energy expenditure (P < 0.01). Unlike glucose, the insulin concentration after oral glucose administration was significantly lower in the Cmah KO group than in the WT group (P < 0.001). Lipid droplets in the liver were significantly lower in the Cmah KO group than in the WT group (P < 0.05). The markers of cellular senescence and senescence-associated secretory phenotypes in the adipose tissues were significantly lower in the Cmah KO group than in the WT group (P < 0.05). CONCLUSIONS Cmah deficiency blunted cellular senescence in adipose tissues and improved whole-body glucose metabolism. These characteristics in aged Cmah KO mice might be associated with higher energy expenditure. Geriatr Gerontol Int 2023; 23: 958-964.
Collapse
Affiliation(s)
- Reo Takeda
- Department of Engineering Science, The University of Electro-communications, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ayaka Tabuchi
- Department of Engineering Science, The University of Electro-communications, Tokyo, Japan
| | - Yudai Nonaka
- Institute of Liberal Arts and Sciences, Kanazawa University, Ishikawa, Japan
| | - Ryotaro Kano
- Department of Engineering Science, The University of Electro-communications, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Mizuki Sudo
- Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Yutaka Kano
- Department of Engineering Science, The University of Electro-communications, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Tokyo, Japan
| | - Daisuke Hoshino
- Department of Engineering Science, The University of Electro-communications, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
8
|
Yalçın T, Kaya S, Kuloğlu T, Yiğin A. N-Acetylcysteine May Regulate Altered Meteorin-Like Levels in Testicular Tissue due to Aluminum Exposure. Biol Trace Elem Res 2023; 201:5335-5345. [PMID: 37016183 DOI: 10.1007/s12011-023-03656-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Aluminum (AL) is a heavy metal known to have toxic effects on the reproductive system. It is known that N-acetylcysteine (NAC), which has an antioxidant effect, is a useful chelator for heavy metals. This study aimed to determine whether NAC may reduce AL-induced oxidative stress, inflammation, and germ cell apoptosis in testicular tissues and its effects on meteorin-like (METRNL) levels, which are known to play a role in energy metabolism. In this experimental study, 28 Sprague-Dawley male rats were randomly divided into 4 groups (n = 7): control, AL (30 mg/kg/day AL), AL + NAC (30 mg/kg/day AL + 150 mg/kg/day NAC), and NAC (150 mg/kg/day NAC). All AL and NAC applications were performed intraperitoneally for 14 days. At the end of the experiment, the effects of AL and/or NAC applications on testicular tissue were examined histomorphometrically, histopathologically, immunohistochemically, and biochemically. It was determined that AL exposure caused histomorphometric and histopathological changes, oxidative stress, apoptosis of germ cells, and inflammation in testicular tissues. In addition, AL caused an increase in METRNL levels. It was determined that NAC treatment significantly reduced the negative effects of AL. NAC therapy may be a protective strategy in reproductive toxicity due to AL exposure.
Collapse
Affiliation(s)
- Tuba Yalçın
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey
| | - Sercan Kaya
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey.
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Akın Yiğin
- Department of Genetics, Faculty of Veterinary Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
9
|
Liu J, Jia S, Yang Y, Piao L, Wang Z, Jin Z, Bai L. Exercise induced meteorin-like protects chondrocytes against inflammation and pyroptosis in osteoarthritis by inhibiting PI3K/Akt/NF-κB and NLRP3/caspase-1/GSDMD signaling. Biomed Pharmacother 2023; 158:114118. [PMID: 36527845 DOI: 10.1016/j.biopha.2022.114118] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The production of metrnl, a novel adipomyokine, is induced upon exercise in adipose tissue and skeletal muscle. In this study, we investigated the anti-inflammatory and antipyroptotic effects of exercise-induced metrnl producted in rats in vitro and in vivo. Forty Sprague-Dawley rats were divided randomly into five groups: control (CG), osteoarthritis (OA) with sedentary lifestyle (OAG), OA with low intensity exercise (OAL), OA with moderate intensity exercise (OAM), and OA with high intensity exercise (OAH). The correlation between the level of metrnl and OA degree was detected using ELISA, X-ray imaging, histology, and immunohistochemistry in vivo. Primary chondrocytes were preincubated with recombinant metrnl before interleukin-1β administration to verify the anti-inflammatory and antipyroptotic effects of metrnl. Western blotting and quantitative reverse transcription (qRT)-PCR were used to evaluate the differences in protein and mRNA expression between groups, respectively. Reactive oxygen species (ROS) assay, immunofluorescence, transmission electron microscopy (TEM), and flow cytometry were used to evaluate morphological changes and pyroptosis in chondrocytes. In the moderate-intensity treadmill exercise group, the severity of OA showed maximum relief and the metrnl levels had the most significant increase. Metrnl exerted its anti-inflammatory effect through the suppression of the PI3K/Akt/NF-κB pathway in IL-1β-induced OA chondrocytes, which was accompanied with the recovery of collagen II expression and the attenuation of MMP13 and ADAMTS5. Moreover, metrnl ameliorated chondrocyte pyroptosis by inhibiting the activation of the nod-like receptor protein-3/caspase-1/gasdermin D cascade. In conclusion, moderate-intensity exercise improves inflammation and pyroptosis by increasing metrnl release, which inhibits the PI3K/Akt/NF-κB and further NLRP3/caspase-1/GSDMD signaling pathways.
Collapse
Affiliation(s)
- Jiabao Liu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Shuangshuo Jia
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Longhuan Piao
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Ziyuan Wang
- Department of Orthopaedics Surgery, Central Hospital of Shenyang Medical College, Shenyang 110000, China
| | - Zhuangzhuang Jin
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
10
|
Li Z, Gao Z, Sun T, Zhang S, Yang S, Zheng M, Shen H. Meteorin-like/Metrnl, a novel secreted protein implicated in inflammation, immunology, and metabolism: A comprehensive review of preclinical and clinical studies. Front Immunol 2023; 14:1098570. [PMID: 36911663 PMCID: PMC9998503 DOI: 10.3389/fimmu.2023.1098570] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Meteorin-like, also known as Metrnl, Meteorin-β, Subfatin, and Cometin, is a novel secreted protein exerting pleiotropic effects on inflammation, immunology, and metabolism. Earlier research on this hormone focused on regulating energy expenditure and glucose homeostasis. Consequently, several studies attempted to characterize the molecule mechanism of Metrnl in glucose metabolism and obesity-related disorders but reported contradictory clinical results. Recent studies gradually noticed its multiple protective functions in inflammatory immune regulations and cardiometabolic diseases, such as inducing macrophage activation, angiogenesis, tissue remodeling, bone formation, and preventing dyslipidemias. A comprehensive understanding of this novel protein is essential to identify its significance as a potential therapeutic drug or a biomarker of certain diseases. In this review, we present the current knowledge on the physiology of Metrnl and its roles in inflammation, immunology, and metabolism, including animal/cell interventional preclinical studies and human clinical studies. We also describe controversies regarding the data of circulation Metrnl in different disease states to determine its clinical application better.
Collapse
Affiliation(s)
- Zhuoqi Li
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Ziyu Gao
- Department of Thyroid Surgery, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Tao Sun
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Shipeng Zhang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Shengnan Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Meilin Zheng
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Hui Shen
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| |
Collapse
|
11
|
Martínez-Gayo A, Félix-Soriano E, Sáinz N, González-Muniesa P, Moreno-Aliaga MJ. Changes Induced by Aging and Long-Term Exercise and/or DHA Supplementation in Muscle of Obese Female Mice. Nutrients 2022; 14:nu14204240. [PMID: 36296923 PMCID: PMC9610919 DOI: 10.3390/nu14204240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and aging promote chronic low-grade systemic inflammation. The aim of the study was to analyze the effects of long-term physical exercise and/or omega-3 fatty acid Docosahexaenoic acid (DHA) supplementation on genes or proteins related to muscle metabolism, inflammation, muscle damage/regeneration and myokine expression in aged and obese mice. Two-month-old C57BL/6J female mice received a control or a high-fat diet for 4 months. Then, the diet-induced obese (DIO) mice were distributed into four groups: DIO, DIO + DHA, DIO + EX (treadmill training) and DIO + DHA + EX up to 18 months. Mice fed a control diet were sacrificed at 2, 6 and 18 months. Aging increased the mRNA expression of Tnf-α and decreased the expression of genes related to glucose uptake (Glut1, Glut4), muscle atrophy (Murf1, Atrogin-1, Cas-9) and myokines (Metrnl, Il-6). In aged DIO mice, exercise restored several of these changes. It increased the expression of genes related to glucose uptake (Glut1, Glut4), fatty acid oxidation (Cpt1b, Acox), myokine expression (Fndc5, Il-6) and protein turnover, decreased Tnf-α expression and increased p-AKT/AKT ratio. No additional effects were observed when combining exercise and DHA. These data suggest the effectiveness of long-term training to prevent the deleterious effects of aging and obesity on muscle dysfunction.
Collapse
Affiliation(s)
- Alejandro Martínez-Gayo
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Elisa Félix-Soriano
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- IdISNA–Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (P.G.-M.); (M.J.M.-A.)
| | - María J. Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- IdISNA–Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (P.G.-M.); (M.J.M.-A.)
| |
Collapse
|
12
|
Alizadeh H. Meteorin-like protein (Metrnl): A metabolic syndrome biomarker and an exercise mediator. Cytokine 2022; 157:155952. [PMID: 35780711 DOI: 10.1016/j.cyto.2022.155952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Metrnl is a secreted protein able to activate different intracellular signaling pathways in adipocytes, macrophages, myocytes and cardiomyocytes with physiological effects of the browning of white adipose tissue (BWT), insulin sensitivity, inflammation inhibition, skeletal muscle regeneration and heart protection. Shown to be regulated by obesity, diabetes, caloric restriction, weight loss and heart diseases, Metrnl is definitely involved in metabolic turbulences, and may play roles in metabolic syndrome (MetS). However, due to the conflicting data yielded, Metrnl is still far from clinical application as a diagnostic and/or a therapeutic agent or even a therapeutic target in MetS-related diseases such as type 2 diabetes (T2D) and obesity. Nevertheless, blood Metrnl levels as well as Metrnl as a cardiokine have been reported to play cardioprotective roles against heart diseases. Considering the established metabolic and anti-inflammatory hallmarks, exercise-induced Metrnl (as a myokine) is regarded as an exercise mediator in improving obesity-induced complications such as insulin resistance, T2D and inflammation. Besides, due to its healing role in muscle damage, Metrnl is also a potential therapeutic candidate to enhance regeneration with ageing or other inflammatory myopathies like Duchenne muscular dystrophy (DMD). Therefore, there are still many exercise-related questions unanswered on Metrnl, such as Metrnl-mediated fat browning in humans, exercise effects on heart Metrnl production and secretion and the effects of other exercise-induced skeletal muscle stressors like hypoxia and oxidative in Metrnl production other than exercise-induced muscle damage.
Collapse
Affiliation(s)
- Hamid Alizadeh
- Exercise Physiology, University of Mazandaran, Babolsar, Mazandaran, Iran.
| |
Collapse
|
13
|
Takeda R, Nonaka Y, Kakinoki K, Miura S, Kano Y, Hoshino D. Effect of endurance training and PGC-1α overexpression on calculated lactate production volume during exercise based on blood lactate concentration. Sci Rep 2022; 12:1635. [PMID: 35102189 PMCID: PMC8803982 DOI: 10.1038/s41598-022-05593-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
Lactate production is an important clue for understanding metabolic and signal responses to exercise but its measurement is difficult. Therefore, this study aimed (1) to develop a method of calculating lactate production volume during exercise based on blood lactate concentration and compare the effects between endurance exercise training (EX) and PGC-1α overexpression (OE), (2) to elucidate which proteins and enzymes contribute to changes in lactate production due to EX and muscle PGC-1α OE, and (3) to elucidate the relationship between lactate production volume and signaling phosphorylations involved in mitochondrial biogenesis. EX and PGC-1α OE decreased muscle lactate production volume at the absolute same-intensity exercise, but only PGC-1α OE increased lactate production volume at the relative same-intensity exercise. Multiple linear regression revealed that phosphofructokinase, monocarboxylate transporter (MCT)1, MCT4, and citrate synthase equally contribute to the lactate production volume at high-intensity exercise within physiological adaptations, such as EX, not PGC-1α OE. We found that an exercise intensity-dependent increase in the lactate production volume was associated with a decrease in glycogen concentration and an increase in P-AMPK/T-AMPK. This suggested that the calculated lactate production volume was appropriate and reflected metabolic and signal responses but further modifications are needed for the translation to humans.
Collapse
Affiliation(s)
- Reo Takeda
- Bioscience and Technology Program, Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo, 182-8585, Chofu, Japan
| | - Yudai Nonaka
- Bioscience and Technology Program, Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo, 182-8585, Chofu, Japan
- Institute of Liberal Arts and Science, Kanazawa University, Ishikawa, Japan
| | | | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yutaka Kano
- Bioscience and Technology Program, Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo, 182-8585, Chofu, Japan
| | - Daisuke Hoshino
- Bioscience and Technology Program, Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo, 182-8585, Chofu, Japan.
| |
Collapse
|
14
|
Role of Distinct Fat Depots in Metabolic Regulation and Pathological Implications. Rev Physiol Biochem Pharmacol 2022; 186:135-176. [PMID: 35915363 DOI: 10.1007/112_2022_73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
People suffering from obesity and associated metabolic disorders including diabetes are increasing exponentially around the world. Adipose tissue (AT) distribution and alteration in their biochemical properties play a major role in the pathogenesis of these diseases. Emerging evidence suggests that AT heterogeneity and depot-specific physiological changes are vital in the development of insulin resistance in peripheral tissues like muscle and liver. Classically, AT depots are classified into white adipose tissue (WAT) and brown adipose tissue (BAT); WAT is the site of fatty acid storage, while BAT is a dedicated organ of metabolic heat production. The discovery of beige adipocyte clusters in WAT depots indicates AT heterogeneity has a more central role than hither to ascribed. Therefore, we have discussed in detail the current state of understanding on cellular and molecular origin of different AT depots and their relevance toward physiological metabolic homeostasis. A major focus is to highlight the correlation between altered WAT distribution in the body and metabolic pathogenesis in animal models and humans. We have also underscored the disparity in the molecular (including signaling) changes in various WAT tissues during diabetic pathogenesis. Exercise-mediated beneficial alteration in WAT physiology/distribution that protects against metabolic disorders is evolving. Here we have discussed the depot-specific biochemical adjustments induced by different forms of exercise. A detailed understanding of the molecular details of inter-organ crosstalk via substrate utilization/storage and signaling through chemokines provide strategies to target selected WAT depots to pharmacologically mimic the benefits of exercise countering metabolic diseases including diabetes.
Collapse
|
15
|
Verdú E, Homs J, Boadas-Vaello P. Physiological Changes and Pathological Pain Associated with Sedentary Lifestyle-Induced Body Systems Fat Accumulation and Their Modulation by Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13333. [PMID: 34948944 PMCID: PMC8705491 DOI: 10.3390/ijerph182413333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle is associated with overweight/obesity, which involves excessive fat body accumulation, triggering structural and functional changes in tissues, organs, and body systems. Research shows that this fat accumulation is responsible for several comorbidities, including cardiovascular, gastrointestinal, and metabolic dysfunctions, as well as pathological pain behaviors. These health concerns are related to the crosstalk between adipose tissue and body systems, leading to pathophysiological changes to the latter. To deal with these health issues, it has been suggested that physical exercise may reverse part of these obesity-related pathologies by modulating the cross talk between the adipose tissue and body systems. In this context, this review was carried out to provide knowledge about (i) the structural and functional changes in tissues, organs, and body systems from accumulation of fat in obesity, emphasizing the crosstalk between fat and body tissues; (ii) the crosstalk between fat and body tissues triggering pain; and (iii) the effects of physical exercise on body tissues and organs in obese and non-obese subjects, and their impact on pathological pain. This information may help one to better understand this crosstalk and the factors involved, and it could be useful in designing more specific training interventions (according to the nature of the comorbidity).
Collapse
Affiliation(s)
- Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
- Department of Physical Therapy, EUSES-University of Girona, 17190 Salt, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| |
Collapse
|
16
|
Kironenko TA, Milovanova KG, Zakharova AN, Sidorenko SV, Klimanova EA, Dyakova EY, Orlova AA, Negodenko ES, Kalinnikova YG, Orlov SN, Kapilevich LV. Effect of Dynamic and Static Load on the Concentration of Myokines in the Blood Plasma and Content of Sodium and Potassium in Mouse Skeletal Muscles. BIOCHEMISTRY (MOSCOW) 2021; 86:370-381. [PMID: 33838636 DOI: 10.1134/s0006297921030123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Modulation of cytokine production by physical activity is of considerable interest, since it might be a promising strategy for correcting metabolic processes at both cellular and systemic levels. The content of IL-6, IL-8, and IL-15 in the plasma and the concentration of monovalent cations in the skeletal muscles of trained and untrained mice were studied at different periods after static and dynamic exercises. Dynamic loads caused an increase in the IL-6 content and decrease in the IL-15 content in the plasma of untrained mice, but produced no effect on the concentration of IL-8. In trained mice, the effect of a single load on the concentration of IL-6 and IL-15 in the plasma was enhanced, while the concentration of IL-8 decreased. Static loads produced a similar, but more pronounced effect on the plasma concentration of IL-6 and IL-15 compared the dynamic exercises; however, the concentration of IL-8 in response to the static exercise increased significantly. Prior training reinforced the described response for all the myokines studied. Dynamic load (swimming) increased the intracellular content of sodium but decreased the content of potassium in the mouse musculus soleus. Similar response was observed after the static load (grid hanging) in the musculus biceps; but no correlation of this response with the prior training was found. Possible mechanisms involved in the regulation of cytokine secretion after exercise are discussed, including triggering of gene transcription in response to changes in the [Na+]i/[K+]I ratio.
Collapse
Affiliation(s)
| | | | | | | | - Elizaveta A Klimanova
- National Research Tomsk State University, Tomsk, 634050, Russia. .,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Anna A Orlova
- National Research Tomsk State University, Tomsk, 634050, Russia
| | | | | | - Sergei N Orlov
- National Research Tomsk State University, Tomsk, 634050, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | |
Collapse
|
17
|
Atakan MM, Koşar ŞN, Güzel Y, Tin HT, Yan X. The Role of Exercise, Diet, and Cytokines in Preventing Obesity and Improving Adipose Tissue. Nutrients 2021; 13:nu13051459. [PMID: 33922998 PMCID: PMC8145589 DOI: 10.3390/nu13051459] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity continues to rise worldwide despite evidence-based public health recommendations. The promise to adopt a healthy lifestyle is increasingly important for tackling this global epidemic. Calorie restriction or regular exercise or a combination of the two is accepted as an effective strategy in preventing or treating obesity. Furthermore, the benefits conferred by regular exercise to overcome obesity are attributed not only to reduced adiposity or reduced levels of circulating lipids but also to the proteins, peptides, enzymes, and metabolites that are released from contracting skeletal muscle or other organs. The secretion of these molecules called cytokines in response to exercise induces browning of white adipose tissue by increasing the expression of brown adipocyte-specific genes within the white adipose tissue, suggesting that exercise-induced cytokines may play a significant role in preventing obesity. In this review, we present research-based evidence supporting the effects of exercise and various diet interventions on preventing obesity and adipose tissue health. We also discuss the interplay between adipose tissue and the cytokines secreted from skeletal muscle and other organs that are known to affect adipose tissue and metabolism.
Collapse
Affiliation(s)
- Muhammed Mustafa Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Şükran Nazan Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Yasemin Güzel
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Hiu Tung Tin
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
- Correspondence: ; Tel.: +61-3-9919-4024; Fax: +61-3-9919-5615
| |
Collapse
|