1
|
Prodel E, Moreira M, Gondim M, Rocha H, Mira P, Nobrega A. Relationship between resting augmentation index and spontaneous cardiac baroreflex sensitivity during handgrip exercise in postmenopausal women. Braz J Med Biol Res 2025; 58:e14152. [PMID: 39907405 PMCID: PMC11793149 DOI: 10.1590/1414-431x2024e14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/22/2024] [Indexed: 02/06/2025] Open
Abstract
The stiffening of the conductance arteries is a hallmark of ageing and increases drastically after menopause. Therefore, the augmentation index (AIx), a surrogate for arterial stiffness, could be related to the decline in baroreflex sensitivity. We sought to investigate the relationship between resting AIx and spontaneous cardiac baroreflex sensitivity (cBRS) during handgrip exercise in ageing women. Thirteen young women (YW: 24±5 years; 24±2 kg/m2) and nine postmenopausal women (PMW: 60±5 years; 26±3 kg/m2) underwent the protocol, which consisted of 10 min of supine resting followed by 3 min of static handgrip exercise at 40% of the maximal voluntary force. The AIx was provided by the aortic pressure waveform and cBRS was calculated using the sequence technique, and vagal activity was accessed via heart rate variability using the root mean square of successive differences (RMSSD) index. Resting AIx was higher in PMW compared to YW (YW: 8±10%; PMW: 23±8%; P<0.01), while the cBRS (YW: 16±12 ms/mmHg; PMW: 10±5 ms/mmHg; P=0.08) and RMSSD (YW: 46±35 ms; PMW: 34±12 ms; P=0.26) were similar in YW and PMW. At rest, there was no significant (P>0.05) relationship between the AIx and cBRS in YW and PMW. However, in PMW, a negative (slope=-0.22) and strong (r=-0.70; P=0.03) relationship was observed between AIx and cBRS for the increment of blood pressure during the handgrip exercise. The stiffening of the arterial tree is one possible mechanism to explain the decrease of spontaneous cardiac baroreflex sensitivity during exercise in postmenopausal women.
Collapse
Affiliation(s)
- E. Prodel
- Laboratório de Ciências do Exercício, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - M.F.S.C. Moreira
- Departamento de Educação Física, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - M.L. Gondim
- Laboratório de Ciências do Exercício, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - H.N.M. Rocha
- Laboratório de Ciências do Exercício, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
- Laboratório de Cardiometabologia, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - P.A.C. Mira
- Laboratório de Ciências do Exercício, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - A.C.L. Nobrega
- Laboratório de Ciências do Exercício, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| |
Collapse
|
2
|
Mann LM, Wright MD, Thompson BP, Chang JC, Chan JS, Foster GE, Dominelli PB. The menstrual phase does not impact chemosensitivity during exercise. Physiol Rep 2024; 12:e70169. [PMID: 39715696 DOI: 10.14814/phy2.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
At rest, the menstrual cycle phase impacts ventilation and chemosensitivity. However, during exercise there is inconclusive evidence that the menstrual cycle phase affects ventilation or chemosensitivity. We sought to examine the influence of menstrual phase and hormonal birth control (BC) on chemosensitivity. We tested 12 males and 20 females (10 BC; 10 normally menstruating, NBC) on three occasions. Day 1 was a maximal exercise test and days 2 (follicular phase) and 3 (luteal phase) consisted of three bouts of chemosensitivity testing during cycle exercise at 30% of peak work rate. Females-BC and males completed day 3 approximately 2 weeks after day 2, with females-BC tested during the active phase of their birth control. There were no differences between the two experimental days for any groups for any (hypercapnia, hypoxia, and hyperoxia) chemosensitivity tests, p > 0.05. Females-BC had a significantly lower average response to transient hypercapnia than both females-NBC and males (38% and 42% lower, respectively, p < 0.05). Females-NBC had a significantly smaller change in ventilation to hyperoxia compared to males, -11.7 ± 5.9 versus -17.9 ± 5.4%, respectively (p < 0.05). We conclude that the day-to-day variability in chemosensitivity is not different between males, females-BC and NBC.
Collapse
Affiliation(s)
- Leah M Mann
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Madeline D Wright
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Benjamin P Thompson
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jou-Chung Chang
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jason S Chan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Glen E Foster
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Paolo B Dominelli
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
- Faculty of Kinesiology, University of Calgary, Kelowna, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Asirvatham-Jeyaraj N, Anselmo M, Chantigian DP, Larson M, Lee EJ, Keller-Ross ML. Influence of endogenous and exogenous hormones on the cardiovascular response to lower extremity exercise and group III/IV activation in young females. Am J Physiol Regul Integr Comp Physiol 2024; 327:R379-R388. [PMID: 39034814 PMCID: PMC11483072 DOI: 10.1152/ajpregu.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Oral contraceptive (OC) use can increase resting blood pressure (BP) in females as well as contribute to greater activation of group III/IV afferents during upper body exercise. It is unknown, however, whether an exaggerated BP response occurs during lower limb exercise in OC users. We sought to elucidate the group III/IV afferent activity-mediated BP and heart rate responses while performing lower extremity tasks during early and late follicular phases in young, healthy females. Females not taking OCs (NOC: n = 8; age: 25 ± 4 yr) and those taking OCs (OC: n = 10; age: 23 ± 2 yr) completed a continuous knee extension/flexion passive stretch (mechanoreflex) and cycling exercise with subsystolic cuff occlusion (exercise pressor reflex), which was followed by a 2-min postexercise circulatory occlusion (PECO) (metaboreflex). Data collection occurred on two occasions: once during the early follicular phase (days 1-4) and once during the late follicular phase (days 10-14) of their menstrual cycle (NOC) or during the placebo and active pill phases (OC). Resting mean arterial BP and heart rate were not different between phases in NOC and OC participants (P > 0.05). Hemodynamic responses to metaboreflex, mechanoreflex, and collective exercise pressor reflex activation were not different between phases in both groups (P > 0.05). In conclusion, although OCs are known to increase BP at rest, our findings indicate that neither endogenous nor exogenous (OC) sex hormones modulate BP during large, lower limb muscle exercise with or without group III/IV afferent activation in young, healthy females.NEW & NOTEWORTHY Sex differences in the cardiovascular response to exercise have been demonstrated and may be dependent on sex hormone levels. Furthermore, oral contraceptives (OCs) have been shown to exaggerate the blood pressure response to upper extremity exercise. The results of this study indicate that neither endogenous nor exogenous (OC) sex hormones modulate BP during lower extremity dynamic exercise or with group III/IV afferent activation in young, healthy females.
Collapse
Affiliation(s)
- Ninitha Asirvatham-Jeyaraj
- Cardiometabolic and Neuromodulation Research Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Miguel Anselmo
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Daniel P Chantigian
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mia Larson
- Lillehei Clinical Research Unit, University of Minnesota, Cancer and Cardiovascular Research Center, Minnesota, United States
| | - Emma J Lee
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Manda L Keller-Ross
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
4
|
Pereira TJ, Edgell H. The influence of oral contraceptives on the exercise pressor reflex in the upper and lower body. Physiol Rep 2024; 12:e16144. [PMID: 38991985 PMCID: PMC11239320 DOI: 10.14814/phy2.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Previous research has demonstrated that oral contraceptive (OC) users have enhanced cardiorespiratory responses to arm metaboreflex activation (i.e., postexercise circulatory occlusion, PECO) and attenuated pressor responses to leg passive movement (PM) compared to non-OC users (NOC). We investigated the cardiorespiratory responses to arm or leg metaboreflex and mechanoreflex activation in 32 women (OC, n = 16; NOC, n = 16) performing four trials: 40% handgrip or 80% plantarflexion followed by PECO and arm or leg PM. OC and NOC increased mean arterial pressure (MAP) similarly during handgrip, plantarflexion and arm/leg PECO compared to baseline. Despite increased ventilation (VE) during exercise, none of the women exhibited higher VE during arm or leg PECO. OC and NOC similarly increased MAP and VE during arm or leg PM compared to baseline. Therefore, OC and NOC were similar across pressor and ventilatory responses to arm or leg metaboreflex and mechanoreflex activation. However, some differences due to OC may have been masked by disparities in muscle strength. Since women increase VE during exercise, we suggest that while women do not display a ventilatory response to metaboreflex activation (perhaps due to not reaching a theoretical metabolite threshold to stimulate VE), the mechanoreflex may drive VE during exercise in women.
Collapse
Affiliation(s)
- T. J. Pereira
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - H. Edgell
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
- Muscle Health Research CentreYork UniversityTorontoOntarioCanada
| |
Collapse
|
5
|
Niggli A, Rothenbühler M, Sachs M, Leeners B. Can Wrist-Worn Medical Devices Correctly Identify Ovulation? SENSORS (BASEL, SWITZERLAND) 2023; 23:9730. [PMID: 38139575 PMCID: PMC10747116 DOI: 10.3390/s23249730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
(1) Background: Hormonal fluctuations across the menstrual cycle lead to multiple changes in physiological parameters such as body temperature, cardiovascular function, respiratory rate and perfusion. Electronic wearables analyzing those parameters might present a convenient alternative to urinary ovulation tests for predicting the fertile window. (2) Methods: We conducted a prospective observational study including women aged 18-45 years without current hormonal therapy who used a wrist-worn medical device and urinary ovulation tests for a minimum of three cycles. We analyzed the accuracy of both the retrospective and prospective algorithms using a generalized linear mixed-effects model. The findings were compared to real-world data from bracelet users who also reported urinary ovulation tests. (3) Results: A total of 61 study participants contributing 205 cycles and 6081 real-life cycles from 3268 bracelet users were included in the analysis. The mean error in identifying ovulation with the wrist-worn medical device retrospective algorithm in the clinical study was 0.31 days (95% CI -0.13 to 0.75). The retrospective algorithm identified 75.4% of fertile days, and the prospective algorithm identified 73.8% of fertile days correctly within the pre-specified equivalence limits (±2 days). The quality of the retrospective algorithm in the clinical study could be confirmed by real-world data. (4) Conclusion: Our data indicate that wearable sensors may be used to accurately detect the periovulatory period.
Collapse
Affiliation(s)
- Angela Niggli
- Department of Reproductive Endocrinology, University Hospital of Zürich, Frauenklinikstrasse 10, 8091 Zürich, Switzerland; (M.S.); (B.L.)
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | | | - Maike Sachs
- Department of Reproductive Endocrinology, University Hospital of Zürich, Frauenklinikstrasse 10, 8091 Zürich, Switzerland; (M.S.); (B.L.)
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital of Zürich, Frauenklinikstrasse 10, 8091 Zürich, Switzerland; (M.S.); (B.L.)
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
6
|
Pereira TJ, Bouakkar J, Johnston H, Pakosh M, Drake JD, Edgell H. The effects of oral contraceptives on resting autonomic function and the autonomic response to physiological stressors: a systematic review. Clin Auton Res 2023; 33:859-892. [PMID: 37971640 DOI: 10.1007/s10286-023-00996-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE This systematic review aimed to summarize how oral contraceptives (OC) affect resting autonomic function and the autonomic response to a variety of physiological stressors. METHODS A search strategy was created to retrieve citations investigating physiological responses comparing OC users to non-users (NOC) in response to autonomic reflex activation. RESULTS A total of 6148 citations were identified across databases from inception to June 2, 2022, and 3870 citations were screened at the abstract level after deduplication. Then, 133 texts were assessed at full-text level, and only 40 studies met eligibility requirements. Included citations were grouped by the aspect of autonomic function assessed, including autonomic reflex (i.e., baroreflex, chemoreflex, mechanoreflex, metaboreflex, and venoarterial reflex), or indicators (i.e., heart rate variability, pulse wave velocity, and sympathetic electrodermal activity), and physiological stressors that may alter autonomic function (i.e., auditory, exercise, mental or orthostatic stress, altitude, cold pressor test, sweat test, and vasodilatory infusions). CONCLUSION OC influence the physiological responses to chemoreflex, mechanoreflex, and metaboreflex activation. In terms of autonomic indices and physiological stressors, there are more inconsistencies within the OC literature, which may be due to estrogen dosage within the OC formulation (i.e., heart rate variability) or the intensity of the stressor (exercise intensity/duration or orthostatic stress). Further research is required to elucidate the effects of OC on these aspects of autonomic function because of the relatively small amount of available research. Furthermore, researchers should more clearly define or stratify OC use by duration, dose, and/or hormone cycling to further elucidate the effects of OC.
Collapse
Affiliation(s)
- T J Pereira
- School of Kinesiology and Health Science, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - J Bouakkar
- School of Kinesiology and Health Science, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - H Johnston
- School of Kinesiology and Health Science, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - M Pakosh
- Library & Information Services, University Health Network, Toronto, ON, Canada
| | - J D Drake
- School of Kinesiology and Health Science, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - H Edgell
- School of Kinesiology and Health Science, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
- Library & Information Services, University Health Network, Toronto, ON, Canada.
- Muscle Health Research Centre, York University, Toronto, ON, Canada.
| |
Collapse
|
7
|
Lee JB, Thompson KMA, Teixeira AL, Burr JF, Millar PJ. Cardiovascular responses to combined mechanoreflex and metaboreflex activation in healthy adults: effects of sex and low- versus high-hormone phases in females. J Appl Physiol (1985) 2023; 135:1102-1114. [PMID: 37795529 DOI: 10.1152/japplphysiol.00775.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Females generally have smaller blood pressure (BP) responses to isolated muscle mechanoreflex and metaboreflex activation compared with males, which may explain sex differences in BP responses to voluntary exercise. The mechanoreflex may be sensitized during exercise, but whether mechanoreflex-metaboreflex interactions differ by sex or variations in sex hormones remains unknown. Thirty-one young healthy subjects (females, n = 16) performed unilateral passive cycling (mechanoreflex), active cycling (40% peak Watts), postexercise circulatory occlusion (PECO; metaboreflex), and passive cycling combined with PECO (combined mechanoreflex and metaboreflex activation). Beat-to-beat BP, heart rate, inactive leg vascular conductance, and active leg muscle oxygenation were measured. Ten females underwent exploratory testing during low- and high-hormone phases of their self-reported menstrual cycle or oral contraceptive use. Systolic BP and heart rate responses did not differ between sexes during active cycling [Δ30 ± 9 vs. 29 ± 11 mmHg (males vs. females), P = 0.9; Δ33 ± 8 vs. 35 ± 6 beats/min, P = 0.4] or passive cycling with PECO (Δ26 ± 11 vs. 21 ± 10 mmHg, P = 0.3; Δ14 ± 7 vs. 18 ± 15 beats/min, P = 0.3). Passive cycling with PECO revealed additive, not synergistic, effects for systolic BP [males: Δ23 ± 14 vs. 26 ± 11 mmHg (sum of isolated passive cycling and PECO vs. combined activation); females: Δ26 ± 11 vs. 21 ± 12 mmHg, interaction P = 0.05]. Results were consistent in subset analyses with sex differences in active cycling BP (P > 0.1) and exploratory analyses of hormone phase (P > 0.4). Despite a lack of statistical equivalence, no differences in cardiovascular responses were found during combined mechanoreflex-metaboreflex activation between sexes or hormone levels. These results provide preliminary data regarding the involvement of muscle mechanoreflex-metaboreflex interactions in mediating sex differences in voluntary exercise BP responses.NEW & NOTEWORTHY The muscle mechanoreflex may be sensitized by metabolites during exercise. We show that cardiovascular responses to combined mechanoreflex (passive cycling) and metaboreflex (postexercise circulatory occlusion) activation are primarily additive and do not differ between males and females, or across variations in sex hormones in females. Our findings provide new insight into the contributions of muscle mechanoreflex-metaboreflex interactions as a cause for prior reports that females have smaller blood pressure responses to voluntary exercise.
Collapse
Affiliation(s)
- Jordan B Lee
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kyle M A Thompson
- Human Performance and Health Research Lab, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - André L Teixeira
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jamie F Burr
- Human Performance and Health Research Lab, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Guluzade NA, Huggard JD, Duffin J, Keir DA. A test of the interaction between central and peripheral respiratory chemoreflexes in humans. J Physiol 2023; 601:4591-4609. [PMID: 37566804 DOI: 10.1113/jp284772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
How central and peripheral chemoreceptor drives to breathe interact in humans remains contentious. We measured the peripheral chemoreflex sensitivity to hypoxia (PChS) at various isocapnic CO2 tensions (P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) to determine the form of the relationship between PChS and centralP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Twenty participants (10F) completed three repetitions of modified rebreathing tests with end-tidalP O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ (P ET O 2 ${P_{{\mathrm{ET}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) clamped at 150, 70, 60 and 45 mmHg. End-tidalP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ (P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ),P ET O 2 ${P_{{\mathrm{ET}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , ventilation (V ̇ $\dot{V}$ E ) and calculated oxygen saturation (SC O2 ) were measured breath-by-breath by gas-analyser and pneumotach. TheV ̇ $\dot{V}$ E -P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ relationship of repeat-trials were linear-interpolated, combined, averaged into 1 mmHg bins, and fitted with a double-linear function (V ̇ $\dot{V}$ E S, L min-1 mmHg-1 ). PChS was computed at intervals of 1 mmHg ofP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ as follows: the difference inV ̇ $\dot{V}$ E between the three hypoxic profiles and the hyperoxic profile (∆V ̇ $\dot{V}$ E ) was calculated; three ∆V ̇ $\dot{V}$ E values were plotted against corresponding SC O2 ; and linear regression determined PChS (Lmin-1 mmHg-1 %SC O2 -1 ). These processing steps were repeated at eachP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ to produce the PChS vs. isocapnicP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ relationship. These were fitted with linear and polynomial functions, and Akaike information criterion identified the best-fit model. One-way repeated measures analysis of variance assessed between-condition differences.V ̇ $\dot{V}$ E S increased (P < 0.0001) with isoxicP ET O 2 ${P_{{\mathrm{ET}}{{\mathrm{O}}_{\mathrm{2}}}}}$ from 3.7 ± 1.5 L min-1 mmHg-1 at 150 mmHg to 4.4 ± 1.8, 5.0 ± 1.6 and 6.0 ± 2.2 Lmin-1 mmHg-1 at 70, 60 and 45 mmHg, respectively. Mean SC O2 fell progressively (99.3 ± 0%, 93.7 ± 0.1%, 90.4 ± 0.1% and 80.5 ± 0.1%; P < 0.0001). In all individuals, PChS increased withP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , and this relationship was best described by a linear model in 75%. Despite increasing central chemoreflex activation, PChS increased linearly withP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ indicative of an additive central-peripheral chemoreflex response. KEY POINTS: How central and peripheral chemoreceptor drives to breathe interact in humans remains contentious. We measured peripheral chemoreflex sensitivity to hypoxia (PChS) at various isocapnic carbon dioxide tensions (P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) to determine the form of the relationship between PChS and centralP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Participants performed three repetitions of modified rebreathing with end-tidalP O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ fixed at 150, 70, 60 and 45 mmHg. PChS was computed at intervals of 1 mmHg of end-tidalP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ (P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) as follows: the difference inV ̇ $\dot{V}$ E between the three hypoxic profiles and the hyperoxic profile (∆V ̇ $\dot{V}$ E ) was calculated; three ∆V ̇ $\dot{V}$ E values were plotted against corresponding calculated oxygen saturation (SC O2 ); and linear regression determined PChS (Lmin-1 mmHg-1 %SC O2 -1 ). In all individuals, PChS increased withP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , and this relationship was best described by a linear (rather than polynomial) model in 15 of 20. Most participants did not exhibit a hypo- or hyper-additive effect of central chemoreceptors on the peripheral chemoreflex indicating that the interaction was additive.
Collapse
Affiliation(s)
- Nasimi A Guluzade
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - Joshua D Huggard
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - James Duffin
- Department of Anaesthesia and Pain Management, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Thornhill Research Inc., Toronto, ON, Canada
| | - Daniel A Keir
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
9
|
Leahy MG, Kipp S, Benbaruj JM, Charkoudian N, Foster GE, Koehle MS, Sheel AW. Effects of sex and ageing on the human respiratory muscle metaboreflex. J Physiol 2023; 601:689-702. [PMID: 36453597 DOI: 10.1113/jp283838] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Intense inspiratory muscle work evokes a sympathetically mediated pressor reflex, termed the respiratory muscle metaboreflex, in which young females demonstrate an attenuated response relative to males. However, the effects of ageing and female sex hormones on the respiratory muscle metaboreflex are unclear. We tested the hypothesis that the pressor response to inspiratory work would be similar between older males and females, and higher relative to their younger counterparts. Healthy, normotensive young (26 ± 3 years) males (YM; n = 10) and females (YF; n = 10), as well as older (64 ± 5 years) males (OM; n = 10) and females (OF; n = 10), performed inspiratory pressure threshold loading (PTL) to task failure. Older adults had a greater mean arterial pressure (MAP) response to PTL than young (P < 0.001). YF had a lower MAP compared to YM (+10 ± 6 vs. +19 ± 15 mmHg, P = 0.026); however, there was no difference observed between OF and OM (+26 ± 11 vs. +27 ± 11 mmHg, P = 0.162). Older adults had a lower heart rate response to PTL than young (P = 0.002). There was no effect of sex between young females and males (+19 ± 9 and +27 ± 11 bpm, P = 0.186) or older females and males (+17 ± 7 and +20 ± 7 bpm, P = 0.753). We conclude the respiratory muscle metaboreflex response is heightened in older adults, and the sex effect between older males and post-menopause females is absent, suggesting an effect of circulating sex hormones. KEY POINTS: The arterial blood pressure response to the respiratory muscle metaboreflex is greater in older males and females. Compared to sex-matched young individuals, there is no sex differences in the blood pressure response between older males and post-menopause females. Our results suggest the differences between males and females in the cardiovascular response to high levels of inspiratory muscle work is abolished with reduced circulating female sex hormones.
Collapse
Affiliation(s)
- Michael G Leahy
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Shalaya Kipp
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Jenna M Benbaruj
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Nisha Charkoudian
- Thermal & Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, BC, Canada
| | - Michael S Koehle
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
- Divison of Sport Medicine, University of British Columbia, Vancouver, BC, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Barranca C, Pereira TJ, Edgell H. Oral contraceptive use and menstrual cycle influence acute cerebrovascular response to standing. Auton Neurosci 2023; 244:103054. [PMID: 36516546 DOI: 10.1016/j.autneu.2022.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To determine if the menstrual cycle and oral contraceptives (OC) influence responses to acute orthostatic stress and if these factors are clinically relevant to the diagnosis of initial orthostatic hypotension (iOH). METHODS Young, healthy women were recruited, including OC users (n = 12) and non-users (NOC; n = 9). Women were tested during the low hormone (LH; placebo pills; days 2-5 natural cycle) and high hormone (HH; active dose; days 18-24 natural cycle) menstrual phases. Changes in mean arterial pressure, cardiac output, heart rate, the 30:15 heart rate ratio and cerebrovascular resistance indices within 30 s of standing were examined. RESULTS There were no effects of OC or menstrual cycle on hemodynamic responses during standing (all p>0.05). In the LH phase, OC users had a greater fall in mean middle cerebral artery blood velocity (MCAV) compared to NOC (p<0.05). However, this was reversed in the HH phase, where OC users had a reduced fall in mean MCAV (p<0.05). Interestingly, 8 women (OC and NOC) had drops in systolic/diastolic blood pressure meeting the criteria for iOH, and 7 of those 8 women displayed this drop in a single phase of the menstrual cycle. CONCLUSION Our results indicate that chronic versus acute OC use (i.e., long-term use observed via LH phase versus short-term use observed via HH phase) have opposing effects on cerebral blood velocity during standing. Further, our results highlight that multiple assessments across the cycle may be necessary to accurately diagnose iOH, as most women met the diagnostic criteria during a single menstrual phase.
Collapse
Affiliation(s)
- C Barranca
- School of Kinesiology and Health Sciences, York University, Toronto, ON M3J1P3, Canada
| | - T J Pereira
- School of Kinesiology and Health Sciences, York University, Toronto, ON M3J1P3, Canada
| | - H Edgell
- School of Kinesiology and Health Sciences, York University, Toronto, ON M3J1P3, Canada; Muscle Health Research Centre, York University, Toronto, ON, Canada.
| |
Collapse
|
11
|
Guluzade NA, Huggard JD, Keltz RR, Duffin J, Keir DA. Strategies to improve respiratory chemoreflex characterization by Duffin's rebreathing. Exp Physiol 2022; 107:1507-1520. [PMID: 36177675 DOI: 10.1113/ep090668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? We assessed the test-retest variability of respiratory chemoreflex characterization by Duffin's modified rebreathing method and explored whether signal averaging of repeated trials improves confidence in parameter estimation. What is the main finding and its importance? Modified rebreathing is a reproducible method to characterize responses of central and peripheral respiratory chemoreflexes. Signal averaging of multiple repeated tests minimizes within- and between-test variability, improves the confidence of chemoreflex characterization and reduces the minimal change in parameters required to establish an effect. Future experiments that apply this method might benefit from signal averaging to improve its discriminatory effect. ABSTRACT We assessed the test-retest variability of central and peripheral respiratory chemoreflex characterization by Duffin's modified rebreathing method and explored whether signal averaging of repeated trials improves confidence in parameter estimation. Over four laboratory visits, 13 participants (mean ± SD age, 25 ± 5 years) performed six repetitions of modified rebreathing in isoxic-hypoxic conditions [end-tidal P O 2 ${P_{{{\rm{O}}_{\rm{2}}}}}$ ( P ET , O 2 ${P_{{\rm{ET,}}{{\rm{O}}_{\rm{2}}}}}$ ) = 50 mmHg] and isoxic-hyperoxic conditions ( P ET , O 2 ${P_{{\rm{ET,}}{{\rm{O}}_{\rm{2}}}}}$ = 150 mmHg). End-tidal P C O 2 ${P_{{\rm{C}}{{\rm{O}}_{\rm{2}}}}}$ ( P ET , C O 2 ${P_{{\rm{ET,C}}{{\rm{O}}_{\rm{2}}}}}$ ), P ET , O 2 ${P_{{\rm{ET,}}{{\rm{O}}_{\rm{2}}}}}$ and minute ventilation ( V ̇ $\dot {\rm V}$ E ) were measured breath-by-breath, by gas analyser and pneumotachograph. The V ̇ $\dot {\rm V}$ E versus P ET , C O 2 ${P_{{\rm{ET,C}}{{\rm{O}}_{\rm{2}}}}}$ relationships were fitted with a piecewise model to estimate the ventilatory recruitment threshold (VRT) and the slope above the VRT ( V ̇ $\dot {\rm V}$ E S). Breath-by-breath data from the three within- and between-day trials were averaged using two approaches [simple average (fit then average) and ensemble average (average then fit)] and compared with a single-trial fit. Variability was assessed by intraclass correlation (ICC) and coefficient of variance (CV), and the minimal detectable change was computed for each approach using two independent sets of three trials. Within days, the VRT and V ̇ $\dot {\rm V}$ E S exhibited excellent test-retest variability in both hyperoxic conditions (VRT: ICC = 0.965, CV = 2.3%; V ̇ $\dot {\rm V}$ E S: ICC = 0.932, CV = 15.5%) and hypoxic conditions (VRT: ICC = 0.970, CV = 2.9%; V ̇ $\dot {\rm V}$ E S: ICC = 0.891, CV = 17.2%). Between-day reproducibility was also excellent (hyperoxia, VRT: ICC = 0.930, CV = 2.2%; V ̇ $\dot {\rm V}$ E S: ICC = 0.918, CV = 14.2%; and hypoxia, VRT: ICC = 0.940, CV = 3.0%; V ̇ $\dot {\rm V}$ E S: ICC = 0.880, CV = 18.1%). Compared with a single-trial fit, there were no differences in VRT or V ̇ $\dot {\rm V}$ E S using the simple average or ensemble average approaches; however, ensemble averaging reduced the minimal detectable change for V ̇ $\dot {\rm V}$ E S from 2.95 to 1.39 L min-1 mmHg-1 (hyperoxia) and from 3.64 to 1.82 L min-1 mmHg-1 (hypoxia). Single trials of modified rebreathing are reproducible; however, signal averaging of repeated trials improves confidence in parameter estimation.
Collapse
Affiliation(s)
- Nasimi A Guluzade
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Joshua D Huggard
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Randi R Keltz
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - James Duffin
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Thornhill Research Inc., Toronto, Ontario, Canada
| | - Daniel A Keir
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada.,Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
12
|
Quinn KM, Roberts L, Cox AJ, Borg DN, Pennell EN, McKeating DR, Fisher JJ, Perkins AV, Minahan C. Blood oxidative stress biomarkers in women: influence of oral contraception, exercise, and N-acetylcysteine. Eur J Appl Physiol 2022; 122:1949-1964. [PMID: 35674828 PMCID: PMC9287208 DOI: 10.1007/s00421-022-04964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/29/2022] [Indexed: 11/30/2022]
Abstract
Purpose To compare physiological responses to submaximal cycling and sprint cycling performance in women using oral contraceptives (WomenOC) and naturally cycling women (WomenNC) and to determine whether N-acetylcysteine (NAC) supplementation mediates these responses. Methods Twenty recreationally trained women completed five exercise trials (i.e., an incremental cycling test, a familiarisation trial, a baseline performance trial and two double-blind crossover intervention trials). During the intervention trials participants supplemented with NAC or a placebo 1 h before exercise. Cardiopulmonary parameters and blood biochemistry were assessed during 40 min of fixed-intensity cycling at 105% of gas-exchange threshold and after 1-km cycling time-trial. Results WomenOC had higher ventilation (β [95% CI] = 0.07 L·min−1 [0.01, 0.14]), malondialdehydes (β = 12.00 mmol·L−1 [6.82, 17.17]) and C-reactive protein (1.53 mg·L−1 [0.76, 2.30]), whereas glutathione peroxidase was lower (β = 22.62 mU·mL−1 [− 41.32, − 3.91]) compared to WomenNC during fixed-intensity cycling. Plasma thiols were higher at all timepoints after NAC ingestion compared to placebo, irrespective of group (all p < 0.001; d = 1.45 to 2.34). For WomenNC but not WomenOC, the exercise-induced increase in malondialdehyde observed in the placebo trial was blunted after NAC ingestion, with lower values at 40 min (p = 0.018; d = 0.73). NAC did not affect cycling time-trial performance. Conclusions Blood biomarkers relating to oxidative stress and inflammation are elevated in WomenOC during exercise. There may be an increased strain on the endogenous antioxidant system during exercise, since NAC supplementation in WomenOC did not dampen the exercise-induced increase in malondialdehyde. Future investigations should explore the impact of elevated oxidative stress on exercise adaptations or recovery from exercise in WomenOC. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-022-04964-w.
Collapse
Affiliation(s)
- Karlee M Quinn
- Griffith Sports Science, Griffith University, Gold Coast, QLD, 4222, Australia. .,Sport Performance Innovation and Knowledge Excellence Unit, Queensland Academy of Sport, Nathan, QLD, 4111, Australia.
| | - Llion Roberts
- Griffith Sports Science, Griffith University, Gold Coast, QLD, 4222, Australia.,Sport Performance Innovation and Knowledge Excellence Unit, Queensland Academy of Sport, Nathan, QLD, 4111, Australia.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amanda J Cox
- School of Medical Science, Griffith University, Gold Coast, QLD, 4222, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - David N Borg
- The Hopkins Centre, Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, 4102, Australia
| | - Evan N Pennell
- School of Medical Science, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Daniel R McKeating
- School of Medical Science, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Joshua J Fisher
- School of Medical Science, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Clare Minahan
- Griffith Sports Science, Griffith University, Gold Coast, QLD, 4222, Australia
| |
Collapse
|
13
|
Pereira TJ, Wasef S, Ivry I, Assadpour E, Adeyinka B, Edgell H. Menstrual cycle and oral contraceptives influence cerebrovascular dynamics during hypercapnia. Physiol Rep 2022; 10:e15373. [PMID: 35822289 PMCID: PMC9277257 DOI: 10.14814/phy2.15373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023] Open
Abstract
Women experience fluctuating orthostatic intolerance during the menstrual cycle, suggesting sex hormones may influence cerebral blood flow. Young (aged 18-30) healthy women, either taking oral contraceptives (OC; n = 14) or not taking OC (NOC; n = 12), were administered hypercapnic gas (5%) for 5 min in the low hormone (LH; placebo pill) and high hormone (HH; active pill) menstrual phases. Hemodynamic and cerebrovascular variables were continuously measured. Cerebral blood velocity changes were monitored using transcranial doppler ultrasound of the middle cerebral artery to determine cerebrovascular reactivity. Cerebral autoregulation was assessed using steady-state analysis (static cerebral autoregulation) and transfer function analysis (dynamic cerebral autoregulation; dCA). In response to hypercapnia, menstrual phase did not influence static cardiovascular or cerebrovascular responses (all p > 0.07); however, OC users had a greater increase of mean middle cerebral artery blood velocity compared to NOC (NOC-LH 12 ± 6 cm/s vs. NOC-HH 16 ± 9 cm/s; OC-LH 18 ± 5 cm/s vs. OC-HH 17 ± 11 cm/s; p = 0.048). In all women, hypercapnia improved high frequency (HF) and very low frequency (VLF) cerebral autoregulation (decreased nGain; p = 0.002 and <0.001, respectively), whereas low frequency (LF) Phase decreased in NOC-HH (p = 0.001) and OC-LH (p = 0.004). Therefore, endogenous sex hormones reduce LF dCA during hypercapnia in the HH menstrual phase. In contrast, pharmaceutical sex hormones (OC use) have no acute influence (HH menstrual phase) yet elicit a chronic attenuation of LF dCA (LH menstrual phase) during hypercapnia.
Collapse
Affiliation(s)
- Tania J. Pereira
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Sara Wasef
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Ilana Ivry
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Elnaz Assadpour
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | | | - Heather Edgell
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
- Muscle Health Research CentreYork UniversityTorontoOntarioCanada
| |
Collapse
|
14
|
Teixeira AL, Vianna LC. The exercise pressor reflex: An update. Clin Auton Res 2022; 32:271-290. [PMID: 35727398 DOI: 10.1007/s10286-022-00872-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
The exercise pressor reflex is a feedback mechanism engaged upon stimulation of mechano- and metabosensitive skeletal muscle afferents. Activation of these afferents elicits a reflex increase in heart rate, blood pressure, and ventilation in an intensity-dependent manner. Consequently, the exercise pressor reflex has been postulated to be one of the principal mediators of the cardiorespiratory responses to exercise. In this updated review, we will discuss classical and recent advancements in our understating of the exercise pressor reflex function in both human and animal models. Particular attention will be paid to the afferent mechanisms and pathways involved during its activation, its effects on different target organs, its potential role in the abnormal cardiovascular response to exercise in diseased states, and the impact of age and biological sex on these responses. Finally, we will highlight some unanswered questions in the literature that may inspire future investigations in the field.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil.
| |
Collapse
|
15
|
Whitaker AA, Aaron SE, Kaufman CS, Kurtz BK, Bai SX, Vidoni ED, Montgomery RN, Billinger SA. Cerebrovascular response to an acute bout of low-volume high-intensity interval exercise and recovery in young healthy adults. J Appl Physiol (1985) 2022; 132:236-246. [PMID: 34882027 PMCID: PMC8759972 DOI: 10.1152/japplphysiol.00484.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/10/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023] Open
Abstract
High-intensity interval exercise (HIIT) is performed widely. However, there is a gap in knowledge regarding the acute cerebrovascular response to low-volume HIIT. Our objective was to characterize the middle cerebral artery blood velocity (MCAv) response during an acute bout of low-volume HIIT in young healthy adults. We hypothesized that MCAv would decrease below the baseline (BL), 1) during HIIT, 2) immediately following HIIT, and 3) 30 min after HIIT. As a secondary objective, we investigated sex differences in the MCAv response during HIIT. Twenty-four young healthy adults completed HIIT [12 males, age = 25 (SD = 2)]. HIIT included 10 min of 1-min high intensity (∼70% estimated maximal Watts) and active recovery (10% estimated maximal Watts) intervals on a recumbent stepper. MCAv, mean arterial pressure (MAP), heart rate (HR), and end-tidal carbon dioxide ([Formula: see text]) were recorded at BL, during HIIT, immediately following HIIT, and 30 min after HIIT. Contrary to our hypothesis, MCAv remained above BL during HIIT. MCAv peaked at minute 3 then decreased concomitantly with [Formula: see text]. MCAv was lower than BL immediately following HIIT (P < 0.001). Thirty minutes after HIIT, MCAv returned to BL (P = 0.47). Compared with men, women had a higher MCAv at BL (P = 0.001), during HIIT (P = 0.009), immediately following HIIT (P = 0.004), and 30 min after HIIT (P = 0.001). MCAv did not decrease below BL during low-volume HIIT. However, MCAv decreased below BL immediately following HIIT and returned to resting values 30 min after HIIT. MCAv also differed between sexes.NEW & NOTEWORTHY We are the first, to our knowledge, to characterize the cerebrovascular and hemodynamic response to low-volume high-intensity interval exercise (HIIT, 1-min intervals) in young healthy adults. Middle cerebral artery blood velocity (MCAv) decreased during the HIIT bout and rebounded during active recovery. Women demonstrated a significantly higher resting MCAv than men and the difference remained during HIIT. Here, we report a novel protocol and characterized the MCAv response during an acute bout of low-volume HIIT.
Collapse
Affiliation(s)
- Alicen A Whitaker
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas
| | - Stacey E Aaron
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas
| | - Carolyn S Kaufman
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Brady K Kurtz
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas
| | - Stephen X Bai
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas
| | - Robert N Montgomery
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Sandra A Billinger
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
16
|
Sims ST, Ware L, Capodilupo ER. Patterns of endogenous and exogenous ovarian hormone modulation on recovery metrics across the menstrual cycle. BMJ Open Sport Exerc Med 2021; 7:e001047. [PMID: 34367655 PMCID: PMC8291316 DOI: 10.1136/bmjsem-2021-001047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction As the number of female athletes competing rises globally, training methodologies should reflect sex differences across critical metrics of adaptation to training. Surrogate markers of the autonomic nervous system (ANS) used for monitoring training load are heart rate variability (HRV) and resting heart rate (RHR). The aim was to investigate ovarian hormone effects on standard recovery metrics (HRV, RHR, respiratory rate (RR) and sleep duration) across a large population of female athletes. Methods A retrospective study analysed 362 852 days of data representing 13 535 menstrual cycles (MC) from 4594 respondents (natural MC n=3870, BC n=455, progestin-only n=269) for relationships and/or differences between endogenous and exogenous ovarian hormones on ANS. Results HRV and return to baseline (recovery) decreased as resting HR and RR increased (p<0.001) from the early follicular to the late luteal phase of the MC. Patterning was paradoxical across phases for users of combined hormonal contraception (BC) as compared with the patterning of the MC. HRV and recovery start elevated and drop off quickly during the withdrawal bleed, rising through the active pill weeks (p<0.001). Progestin-only users had similar patterning as the MC. The relationship between normalised recovery and previous day strain is modulated by birth control type. BC exhibited steeper declines in recovery with additional strain-normalised recovery decreases by an additional 0.0055±0.00135 (p<0.001) per unit of strain; with no significant difference between MC and progestin-only (p=0.19). Conclusion The patterning of ANS modulation from ovarian hormones is significantly different between naturally cycling women and those on BC, with the patterning dependent on the type of contraception used.
Collapse
Affiliation(s)
- Stacy T Sims
- SPRINZ, Auckland University of Technology, Auckland, New Zealand.,Te Huataki Waiora School of Health, University of Waikato, Mount Maunganui, Waikato, New Zealand
| | | | | |
Collapse
|
17
|
Assadpour E, Ivry I, Wasef S, Adeyinka B, Murray KR, Edgell H. Oral contraceptives and menstrual cycle influence autonomic reflex function. Physiol Rep 2021; 8:e14550. [PMID: 32889781 PMCID: PMC7507440 DOI: 10.14814/phy2.14550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022] Open
Abstract
Progesterone and its analogues are known to influence ventilation. Therefore, the purpose of this study was to investigate the role of endogenous and pharmaceutical female sex hormones in ventilatory control during the activation of the metaboreflex, mechanoreflex, and CO2 chemoreflex. Women aged 18–30 taking (n = 14) or not taking (n = 12) oral contraceptives (OC and NOC, respectively) were tested in the low hormone (LH) and high hormone (HH) conditions corresponding to the early follicular and mid‐luteal phases (NOC) or placebo and high‐dose pills (OC). Women underwent three randomized trials: (a) 3 min of passive leg movement (PLM), (b) 2 min of 40% maximal voluntary handgrip exercise followed by 2 min of post‐exercise circulatory occlusion (PECO), and (c) 5 min of breathing 5% CO2. We primarily measured hemodynamics and ventilation. During PLM, the OC group had a smaller pressor response (p = .012). During PECO, the OC group similarly exhibited a smaller pressor response (p = .043) and also exhibited a greater ventilatory response (p = .024). Lastly, in response to breathing 5% CO2, women in the HH phase had a greater ventilatory response (p = .022). We found that OC use attenuates the pressor response to both the metaboreflex and mechanoreflex while increasing the ventilatory response to metaboreflex activation. We also found evidence of an enhanced CO2 chemoreflex in the HH phase. We hypothesize that OC effects are from the chronic upregulation of pulmonary and vascular β‐adrenergic receptors. We further suggest that the increased cyclic progesterone in the HH phase enhances the chemoreflex.
Collapse
Affiliation(s)
- Elnaz Assadpour
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Ilana Ivry
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Sara Wasef
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Baithat Adeyinka
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Kevin R Murray
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Heather Edgell
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|