1
|
Uenaka E, Ojima K, Suzuki T, Kobayashi K, Muroya S, Nishimura T. Murf1 alters myosin replacement rates in cultured myotubes in a myosin isoform-dependent manner. In Vitro Cell Dev Biol Anim 2024; 60:748-759. [PMID: 38758432 DOI: 10.1007/s11626-024-00916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Skeletal muscle tissue increases or decreases its volume by synthesizing or degrading myofibrillar proteins. The ubiquitin-proteasome system plays a pivotal role during muscle atrophy, where muscle ring finger proteins (Murf) function as E3 ubiquitin ligases responsible for identifying and targeting substrates for degradation. Our previous study demonstrated that overexpression of Ozz, an E3 specific to embryonic myosin heavy chain (Myh3), precisely reduced the Myh3 replacement rate in the thick filaments of myotubes (E. Ichimura et al., Physiol Rep. 9:e15003, 2021). These findings strongly suggest that E3 plays a critical role in regulating myosin replacement. Here, we hypothesized that the Murf isoforms, which recognize Myhs as substrates, reduced the myosin replacement rates through the enhanced Myh degradation by Murfs. First, fluorescence recovery after a photobleaching experiment was conducted to assess whether Murf isoforms affected the GFP-Myh3 replacement. In contrast to Murf2 or Murf3 overexpression, Murf1 overexpression selectively facilitated the GFP-Myh3 myosin replacement. Next, to examine the effects of Murf1 overexpression on the replacement of myosin isoforms, Cherry-Murf1 was coexpressed with GFP-Myh1, GFP-Myh4, or GFP-Myh7 in myotubes. Intriguingly, Murf1 overexpression enhanced the myosin replacement of GFP-Myh4 but did not affect those of GFP-Myh1 or GFP-Myh7. Surprisingly, overexpression of Murf1 did not enhance the ubiquitination of proteins. These results indicate that Murf1 selectively regulated myosin replacement in a Myh isoform-dependent fashion, independent of enhanced ubiquitination. This suggests that Murf1 may have a role beyond functioning as a ubiquitin ligase E3 in thick filament myosin replacement.
Collapse
Affiliation(s)
- Emi Uenaka
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, 9 Kita, 9 Nishi, Sapporo, Hokkaido, 060-8589, Japan
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino, Tokyo, 180-8585, Japan
| | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Motooka 744, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Ken Kobayashi
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, 9 Kita, 9 Nishi, Sapporo, Hokkaido, 060-8589, Japan
| | - Susumu Muroya
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
- Laboratory of Meat Science and Production, Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan
| | - Takanori Nishimura
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, 9 Kita, 9 Nishi, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
2
|
Lai QC, Zheng J, Mou J, Cui CY, Wu QC, M Musa Rizvi S, Zhang Y, Li TM, Ren YB, Liu Q, Li Q, Zhang C. Identification of hub genes in calcific aortic valve disease. Comput Biol Med 2024; 172:108214. [PMID: 38508057 DOI: 10.1016/j.compbiomed.2024.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Calcific aortic valve disease (CAVD) is a heart valve disorder characterized primarily by calcification of the aortic valve, resulting in stiffness and dysfunction of the valve. CAVD is prevalent among aging populations and is linked to factors such as hypertension, dyslipidemia, tobacco use, and genetic predisposition, and can result in becoming a growing economic and health burden. Once aortic valve calcification occurs, it will inevitably progress to aortic stenosis. At present, there are no medications available that have demonstrated effectiveness in managing or delaying the progression of the disease. In this study, we mined four publicly available microarray datasets (GSE12644 GSE51472, GSE77287, GSE233819) associated with CAVD from the GEO database with the aim of identifying hub genes associated with the occurrence of CAVD and searching for possible biological targets for the early prevention and diagnosis of CAVD. This study provides preliminary evidence for therapeutic and preventive targets for CAVD and may provide a solid foundation for subsequent biological studies.
Collapse
Affiliation(s)
- Qian-Cheng Lai
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Sichuan Provincial People's Hospital, Chengdu, 610000, Sichuan, China
| | - Jie Zheng
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian Mou
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chun-Yan Cui
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing-Chen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Syed M Musa Rizvi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tian-Mei Li
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ying-Bo Ren
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing Liu
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Hejiang Traditional Chinese Medicine Hospital, Luzhou, 646000, Sichuan, China.
| | - Qun Li
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Ojima K, Kigaki M, Ichimura E, Suzuki T, Kobayashi K, Muroya S, Nishimura T. Endogenous slow and fast myosin dynamics in myofibers isolated from mice expressing GFP-Myh7 and Kusabira Orange-Myh1. Am J Physiol Cell Physiol 2022; 323:C520-C535. [PMID: 35759444 DOI: 10.1152/ajpcell.00415.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle consists of slow and fast myofibers in which different myosin isoforms are expressed. Approximately 300 myosins form a single thick filament in the myofibrils, where myosin is continuously exchanged. However, endogenous slow and fast myosin dynamics have not been fully understood. To elucidate those dynamics, here we generated mice expressing green fluorescence protein-tagged slow myosin heavy chain (GFP-Myh7) and Kusabira Orange fluorescence protein-tagged fast myosin heavy chain (KuO-Myh1). First, these mice enabled us to distinguish between GFP- and KuO-myofibers under fluorescence microscopy: GFP-Myh7 and KuO-Myh1 were exclusively expressed in slow myofibers and fast myofibers, respectively. Next, to monitor endogenous myosin dynamics, fluorescence recovery after photobleaching (FRAP) was conducted. The mobile fraction (Mf) of GFP-Myh7 and that of KuO-Myh1 were almost constant values independent of the regions of the myofibers and the muscle portions where the myofibers were isolated. Intriguingly, proteasome inhibitor treatment significantly decreased the Mf in GFP-Myh7 but not in KuO-Myh1 myofibers, indicating that the response to a disturbance in protein turnover depended on muscle fiber type. Taken together, the present results indicated that the mice we generated are promising tools not only for distinguishing between GFP- and KuO-myofibers but also for studying the dynamics of endogenous myosin isoforms by live-cell fluorescence imaging.
Collapse
Affiliation(s)
- Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan
| | - Masahiro Kigaki
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Emi Ichimura
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ken Kobayashi
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Susumu Muroya
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan
| | - Takanori Nishimura
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Ichimura E, Ojima K, Muroya S, Kobayashi K, Nishimura T. Thick filament-associated myosin undergoes frequent replacement at the tip of the thick filament. FEBS Open Bio 2022; 12:852-863. [PMID: 35138697 PMCID: PMC8972040 DOI: 10.1002/2211-5463.13379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 11/08/2022] Open
Abstract
Myosin plays a fundamental role in muscle contraction. Approximately 300 myosins form a bipolar thick filament, in which myosin is continuously replaced by protein turnover. However, it is unclear how rapidly this process occurs and whether the myosin exchange rate differs depending on the region of the thick filament. To answer this question, we first measured myosin release and insertion rates over a short period and monitored myotubes expressing a photoconvertible fluorescence protein-tagged myosin, which enabled us to monitor myosin release and insertion simultaneously. About 20% of myosins were replaced within 10 min, while 70% of myosins were exchanged over 10 h with symmetrical and biphasic alteration of myosin release and insertion rates. Next, a fluorescence pulse-chase assay was conducted to investigate whether myosin is incorporated into specific regions in the thick filament. Newly synthesized myosin was located at the tip of the thick filament rather than the center in the first 7 min of pulse-chase labeling and was observed in the remainder of the thick filament by 30 min. These results suggest that the myosin replacement rate differs depending on the regions of the thick filament. We concluded that myosin release and insertion occur concurrently and that myosin is more frequently exchanged at the tip of the thick filament.
Collapse
Affiliation(s)
- Emi Ichimura
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Koichi Ojima
- Muscle Biology Research UnitDivision of Animal Products ResearchInstitute of Livestock and Grassland Science, NAROTsukubaJapan
| | - Susumu Muroya
- Muscle Biology Research UnitDivision of Animal Products ResearchInstitute of Livestock and Grassland Science, NAROTsukubaJapan
| | - Ken Kobayashi
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Takanori Nishimura
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| |
Collapse
|