1
|
Noback M, Kenton JA, Klein AK, Hughes ZA, Kruegel AC, Schmid Y, Halberstadt AL, Young JW. Low (micro)doses of 2,5-dimethoxy-4-propylamphetamine (DOPR) increase effortful motivation in low-performing mice. Neuropharmacology 2025; 268:110334. [PMID: 39900138 DOI: 10.1016/j.neuropharm.2025.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
Treating amotivated states remains difficult. Classical psychedelic drugs (5-HT2A receptor agonists) such as LSD and psilocybin have shown therapeutic potential in treating such symptoms, but their development has been hindered by their undesirable hallucinogenic effects. There is increasing evidence that administration of psychedelics at dose levels too low to evoke a hallucinogenic effect ("microdoses") may have therapeutic value in contexts of mood and cognition. 2,5-Dimethoxy-4-propylamphetamine (DOPR) is a psychedelic phenethylamine compound acting as a 5-HT2A receptor agonist. We used a combination of behavioral assays to determine the motivational and hallucinogenic-like effects of DOPR and identify the dose ranges at which each of these effects were observed. In mice, the motivational effects of psychedelic compounds were assessed using the progressive ratio breakpoint task (PRBT, n = 80), a translational assay sensitive to changes in motivation. Psychedelic-like effects were gauged using the mouse head-twitch response (HTR, n = 72) assay, a preclinical readout of psychedelic potential. Significant improvements in PRBT performance were seen at doses as low as 0.0106 mg/kg in animals with low baseline PRBT scores while high-performing PRBT mice were unaffected. DOPR only induced significant HTR at doses ≥0.1 mg/kg. Together, these results indicate that the psychedelic DOPR may increase motivation in those with a low motivated state. Importantly, these effects may be attainable at low doses below the threshold required to induce psychedelic subjective effects. Hence, the ability of low doses of DOPR and other psychedelic drugs to alleviate amotivated states in rodents manipulated to induce disease-relevant states should be investigated.
Collapse
Affiliation(s)
- Michael Noback
- Department of Psychiatry, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093, United States
| | - Johnny A Kenton
- Department of Psychiatry, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093, United States
| | - Adam K Klein
- Gilgamesh Pharmaceuticals, 113 University Place, Suite 1019, New York City, NY, 10003, United States
| | - Zoë A Hughes
- Gilgamesh Pharmaceuticals, 113 University Place, Suite 1019, New York City, NY, 10003, United States
| | - Andrew C Kruegel
- Gilgamesh Pharmaceuticals, 113 University Place, Suite 1019, New York City, NY, 10003, United States
| | - Yasmin Schmid
- Department of Psychiatry, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093, United States
| | - Adam L Halberstadt
- Department of Psychiatry, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093, United States
| | - Jared W Young
- Department of Psychiatry, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093, United States.
| |
Collapse
|
2
|
Garrivet J, Maruani J, Mauries S, Trzepizur W, Lejoyeux M, Gohier B, Geoffroy PA. Increased sleep duration and emotional regulation in patients with major depressive episodes. J Psychiatr Res 2025; 184:210-215. [PMID: 40056640 DOI: 10.1016/j.jpsychires.2025.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
INTRODUCTION Increased total sleep duration complaint is frequently associated with psychiatric disorders. The daytime impact of sleep disorders is directly linked to the management of emotions and behaviors. Complaints of increased total sleep duration in major depressive disorder (MDE) could be a factor in the disruption of emotional regulation, which belongs to specific, atypical and often more severe clinical pictures. METHODS Our study compared aspects of emotional reactivity using the Multidimensional Assessment of Thymic States (MAThyS) according to self-declared complaint of increased total sleep duration among a cohort conducted within the ChronoS Center, assessing for sleep and psychiatric disorders. RESULTS Twenty-one patients were included in the increased sleep duration (ISD) group and 126 patients in the normal or reduced sleep duration (NRSD) group. The frequency and severity of MDE was similar between the two groups, but atypical and seasonal features were more frequent in ISD group. ISD group also reported higher use of cannabis. Regarding emotional reactivity, MAThyS sub-scores in ISD group showing both decreased motivation and interpersonal communication skills compared to NRSD group (p = 0.03 and p = 0.02). CONCLUSION Hypersomnolence complaints with increased sleep duration could lead to decreased motivational and interpersonal communication capacities compared to normal or decreased sleep duration in MDE. Although these results present an interesting perspective for specific psychotherapy and pharmacological, and non-pharmacological treatments as light therapy, focused on wakefulness to enhance interpersonal communication skills and motivation.
Collapse
Affiliation(s)
- Julie Garrivet
- Département de Psychiatrie et Addictologie, CHU Angers, F-49100, Angers, France; Département de Pneumologie et Médecine du Sommeil, CHU Angers, F-49100, Angers, France; Université Angers, Faculté de Santé, F-49100, Angers, France.
| | - Julia Maruani
- Département de Psychiatrie et Addictologie, AP-HP, Hôpital Bichat - Claude Bernard, F-75018, Paris, France; Centre ChronoS, GHU Paris Nord, DMU Neurosciences, Secteur G22, Hôpital Bichat - Claude Bernard, F-75018, Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019, Paris, France
| | - Sibylle Mauries
- Département de Psychiatrie et Addictologie, AP-HP, Hôpital Bichat - Claude Bernard, F-75018, Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019, Paris, France
| | - Wojciech Trzepizur
- Département de Pneumologie et Médecine du Sommeil, CHU Angers, F-49100, Angers, France; INSERM, CNRS, MITOVASC, Université d'Angers, Angers, France
| | - Michel Lejoyeux
- Département de Psychiatrie et Addictologie, AP-HP, Hôpital Bichat - Claude Bernard, F-75018, Paris, France; Centre ChronoS, GHU Paris Nord, DMU Neurosciences, Secteur G22, Hôpital Bichat - Claude Bernard, F-75018, Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019, Paris, France
| | - Bénédicte Gohier
- Département de Psychiatrie et Addictologie, CHU Angers, F-49100, Angers, France; Université d'Angers, Université de Nantes, LPPL, SFR CONFLUENCES, F-49000, Angers, France
| | - Pierre A Geoffroy
- Département de Psychiatrie et Addictologie, AP-HP, Hôpital Bichat - Claude Bernard, F-75018, Paris, France; Centre ChronoS, GHU Paris Nord, DMU Neurosciences, Secteur G22, Hôpital Bichat - Claude Bernard, F-75018, Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019, Paris, France; CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| |
Collapse
|
3
|
Zhao J, Guo Y, Tan Y, Zhang Y, Liu S, Liu Y, Li J, Ruan J, Liu L, Ren Z. Neural evidence of implicit emotion regulation deficits: An explorative study of comparing PTSD with and without alcohol dependence. J Affect Disord 2025; 372:548-563. [PMID: 39701470 DOI: 10.1016/j.jad.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Previous studies have identified psychiatric comorbidity, including alcohol dependence (AD), as a significant factor in treating posttraumatic stress disorder (PTSD), there is a lack of evidence on how best to treat comorbid PTSD and AD. Poor emotion regulation may be a key potential mechanism of PTSD and AD comorbidity. METHODS Seventy-four participants (48 women and 26 men) include three groups: a healthy control group (HC group, N = 20), a PTSD without alcohol dependence group (PTSD without AD group, N = 36), and a PTSD with alcohol dependence group (PTSD with AD group, N = 18). They completed the Shifted Attention Emotion Evaluation Task (SEAT) paradigm while undergoing fMRI. RESULTS Gender and hyperarousal symptoms were found to predict the risk of AD. In the whole-brain fMRI data, compared to PTSD without AD, the PTSD with AD group showed significant deactivations in the left middle Occipital Gyri (BA19_L), the right Rolandic Operculum (BA48_R), and the right Lingual Gyri (BA37_R). Furthermore, AD showed a significant correlation with the right Lingual Gyri (BA37_R) in individuals with PTSD. CONCLUSION These findings reveal possible neural mechanisms underlying the difference between PTSD patients with and without AD. These regions are involved in visual pathways, memory processing, and spatial cognition within the context of implicit emotion regulation. The observed alterations in these areas may serve as neural diagnostic markers for PTSD comorbid with AD and could be potential targets for developing novel treatments.
Collapse
Affiliation(s)
- Junrong Zhao
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Yunxiao Guo
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Yafei Tan
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Yuyi Zhang
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Sijun Liu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Yinong Liu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Jiayi Li
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Jun Ruan
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Lianzhong Liu
- WuhanWudongHospital (Wuhan Second Mental Hospital), Wuhan 430084, China
| | - Zhihong Ren
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| |
Collapse
|
4
|
Halabian A, Radahmadi M. The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review. Rev Neurosci 2024; 35:933-958. [PMID: 39520288 DOI: 10.1515/revneuro-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024]
Abstract
Variations in day length, or photoperiodism, whether natural or artificial light, significantly impact biological, physiological, and behavioral processes within the brain. Both natural and artificial light sources are environmental factors that significantly influence brain functions and mental well-being. Photoperiodism is a phenomenon, occurring either over a 24 h cycle or seasonally and denotes all biological responses of humans and animals to these fluctuations in day and night length. Conversely, artificial light occurrence refers to the presence of light during nighttime hours and/or its absence during the daytime (unnaturally long and short days, respectively). Light at night, which is a form of light pollution, is prevalent in many societies, especially common in certain emergency occupations. Moreover, individuals with certain mental disorders, such as depression, often exhibit a preference for darkness over daytime light. Nevertheless, disturbances in light patterns can have negative consequences, impacting brain performance through similar mechanisms albeit with varying degrees of severity. Furthermore, changes in day length lead to alterations in the activity of receptors, proteins, ion channels, and molecular signaling pathways, all of which can impact brain health. This review aims to summarize the mechanisms by which day length influences brain functions through neural circuits, hormonal systems, neurochemical processes, cellular activity, and even molecular signaling pathways.
Collapse
Affiliation(s)
- Alireza Halabian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western, Ontario, N6A 3K7 London, ON, Canada
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, 48455 Isfahan University of Medical Sciences , 81746-73461 Isfahan, Iran
| |
Collapse
|
5
|
Massaccesi C, Korb S, Götzendorfer S, Chiappini E, Willeit M, Lundström JN, Windischberger C, Eisenegger C, Silani G. Effects of dopamine and opioid receptor antagonism on the neural processing of social and nonsocial rewards. Hum Brain Mapp 2024; 45:e26645. [PMID: 38445523 PMCID: PMC10915723 DOI: 10.1002/hbm.26645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Rewards are a broad category of stimuli inducing approach behavior to aid survival. Extensive evidence from animal research has shown that wanting (the motivation to pursue a reward) and liking (the pleasure associated with its consumption) are mostly regulated by dopaminergic and opioidergic activity in dedicated brain areas. However, less is known about the neuroanatomy of dopaminergic and opioidergic regulation of reward processing in humans, especially when considering different types of rewards (i.e., social and nonsocial). To fill this gap of knowledge, we combined dopaminergic and opioidergic antagonism (via amisulpride and naltrexone administration) with functional neuroimaging to investigate the neurochemical and neuroanatomical bases of wanting and liking of matched nonsocial (food) and social (interpersonal touch) rewards, using a randomized, between-subject, placebo-controlled, double-blind design. While no drug effect was observed at the behavioral level, brain activity was modulated by the administered compounds. In particular, opioid antagonism, compared to placebo, reduced activity in the medial orbitofrontal cortex during consumption of the most valued social and nonsocial rewards. Dopamine antagonism, however, had no clear effects on brain activity in response to reward anticipation. These findings provide insights into the neurobiology of human reward processing and suggest a similar opioidergic regulation of the neural responses to social and nonsocial reward consumption.
Collapse
Affiliation(s)
- Claudia Massaccesi
- Department of Clinical and Health PsychologyUniversity of ViennaViennaAustria
- Department of Cognition, Emotion and Methods in PsychologyUniversity of ViennaViennaAustria
| | - Sebastian Korb
- Department of Cognition, Emotion and Methods in PsychologyUniversity of ViennaViennaAustria
- Department of PsychologyUniversity of EssexColchesterUK
| | | | - Emilio Chiappini
- Department of Clinical and Health PsychologyUniversity of ViennaViennaAustria
| | - Matthaeus Willeit
- Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
| | | | - Christian Windischberger
- MR Center of Excellence, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Christoph Eisenegger
- Department of Cognition, Emotion and Methods in PsychologyUniversity of ViennaViennaAustria
| | - Giorgia Silani
- Department of Clinical and Health PsychologyUniversity of ViennaViennaAustria
| |
Collapse
|
6
|
Mahoney HL, Schmidt TM. The cognitive impact of light: illuminating ipRGC circuit mechanisms. Nat Rev Neurosci 2024; 25:159-175. [PMID: 38279030 DOI: 10.1038/s41583-023-00788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Ever-present in our environments, light entrains circadian rhythms over long timescales, influencing daily activity patterns, health and performance. Increasing evidence indicates that light also acts independently of the circadian system to directly impact physiology and behaviour, including cognition. Exposure to light stimulates brain areas involved in cognition and appears to improve a broad range of cognitive functions. However, the extent of these effects and their mechanisms are unknown. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged as the primary conduit through which light impacts non-image-forming behaviours and are a prime candidate for mediating the direct effects of light on cognition. Here, we review the current state of understanding of these effects in humans and mice, and the tools available to uncover circuit-level and photoreceptor-specific mechanisms. We also address current barriers to progress in this area. Current and future efforts to unravel the circuits through which light influences cognitive functions may inform the tailoring of lighting landscapes to optimize health and cognitive function.
Collapse
Affiliation(s)
- Heather L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
7
|
Cai Y, Deng Z, Yang Q, Pan G, Liang Z, Yang X, Song J, Xiao X, Li S. Metabolomics profiling reveals low blood tyrosine levels as a metabolic feature of newborns from systemic lupus erythematosus pregnancies. Front Immunol 2024; 15:1335042. [PMID: 38357540 PMCID: PMC10864668 DOI: 10.3389/fimmu.2024.1335042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Pregnancy outcomes of patients with systemic lupus erythematosus (SLE) have improved over the past four decades, leading to an increased desire for pregnancy among this cohort. However, the offspring of patients with SLE still face the risks of preterm birth, low birth weight, learning disabilities, and neurological disorders, while the causes underlying these risks remain unclear. Methods In this study, we analyzed the blood metabolic features of neonates born to 30 SLE patients and 52 healthy control mothers by employing tandem mass spectrometry with the dual aims of identifying the etiology of metabolic features specific to infants born from mothers with SLE and providing new insights into the clinical management of such infants. Results We found significant differences in serum metabolite levels between infants born from mothers with SLE and those born from mothers without SLE, including 15 metabolites with reduced serum levels. Further analysis revealed a disrupted tyrosine metabolism pathway in the offspring of mothers with SLE. Discussion By constructing a composite model incorporating various factors, such as serum tyrosine levels, gestational age, and birth weight, we were able to accurately differentiate between newborns of SLE and non-SLE pregnancies. Our data reveal significant differences in serum concentrations of amino acids and acylcarnitines in newborns born to mothers with SLE. We conclude that the reduction of blood L-tyrosine levels is a feature that is characteristic of adverse neurological outcomes in infants born from mothers with SLE.
Collapse
Affiliation(s)
- Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Deng
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuping Yang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guixian Pan
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zao Liang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ximei Yang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Song
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Tsujiguchi H, Sakamoto Y, Hara A, Suzuki K, Miyagi S, Nakamura M, Takazawa C, Pham KO, Nguyen TTT, Kambayashi Y, Shimizu Y, Tsuboi H, Ono Y, Hamagishi T, Shibata A, Hayashi K, Konoshita T, Nakamura H. Longitudinal relationship between screen-based sedentary behavior and nutrient intake in Japanese children: an observational epidemiological cohort study. Environ Health Prev Med 2024; 29:15. [PMID: 38479859 PMCID: PMC10957337 DOI: 10.1265/ehpm.23-00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/08/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Concerns regarding the impact of screen-based sedentary behavior on health have been increasing. Therefore, the present study investigated the longitudinal relationship between multiple screen time and nutrient intake in children and adolescents. METHODS The present study was conducted utilizing 3 years longitudinal data. Study subjects were 740 Japanese children aged between 6 and 12 years at baseline and between 9 and 15 years in the follow-up. Screen-based sedentary behavior was assessed using screen time, including television (TV) viewing, personal computer (PC) use, and mobile phone (MP) use. The main outcomes were the intakes of nutrients. Mixed effect multivariate linear regression analyses were used to examine the longitudinal relationship between screen-based sedentary time and nutrient intake. Covariates included in the multivariable analysis consisted of sex, age, solitary eating, skipping breakfast, staying up late, and body weight status, as confounders, and physical inactivity, as mediator. RESULTS In boys, a longer total screen time longitudinally correlated with higher intake of energy and lower intakes of protein, dietary fiber, minerals, and vitamins. In girls, longer total screen time longitudinally associated with higher intake of sucrose and lower intakes of protein, minerals, and vitamins. In boys, a longer TV viewing time was associated with higher intake of sucrose and lower intakes of protein, minerals, and vitamins. In girls, a longer TV viewing time was associated with higher intake of carbohydrates and lower intakes of protein, fat, minerals, and vitamins. In boys, relationships were observed between a longer PC use time and higher intakes of energy as well as lower intakes of protein, minerals, and vitamins. Relationship was observed between longer PC use time and lower intakes of minerals in girls. An increased MP use time was associated with higher intakes of energy, and lower intakes of protein, sucrose, dietary fiber, minerals, and vitamins in boys. A longer MP use time was associated with higher intakes of fat, and salt as well as lower intakes of carbohydrates, protein, minerals, and vitamins in girls. CONCLUSIONS The present results revealed that longer screen-based sedentary behaviors were longitudinally associated with nutrient intake in children and adolescents. Future study is needed to elucidate these relationships.
Collapse
Affiliation(s)
- Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
| | - Yuriko Sakamoto
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
| | - Akinori Hara
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
| | - Keita Suzuki
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
| | - Sakae Miyagi
- Innovative Clinical Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
| | - Masaharu Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
| | - Chie Takazawa
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
| | - Kim Oanh Pham
- Data Management Department, Asia Center for Air Pollution Research, 1182 Sowa Nishi-ku, Niigata, Japan
| | - Thao Thi Thu Nguyen
- Department of Epidemiology, Faculty of Public Health, Haiphong University of Medicine and Pharmacy, 72A Nguyen Binh Khiem, Ngo Quyen (district), Hai Phong, Vietnam
| | - Yasuhiro Kambayashi
- Department of Public Health, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoi-no-oka, Imabari, Ehime, Japan
| | - Yukari Shimizu
- Department of Nursing, Faculty of Health Sciences, Komatsu University, 14-1 He Mukai-motoori-machi, Komatsu, Ishikawa, Japan
| | - Hirohito Tsuboi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
- Graduate School of Human Nursing, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga, Japan
| | - Yasuki Ono
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, Hirosaki University, 1 Bunkyocho, Hirosaki, Aomori, Japan
| | - Toshio Hamagishi
- Department of Nursing and Rehabilitation, Chubu Gakuin University, 2-1 Kirigaoka, Seki, Gifu, Japan
| | - Aki Shibata
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
| | - Koichi Hayashi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
- Department of Food Sciences and Nutrition, School of Human Environmental Sciences, Mukogawa Women’s University, 6-46 Ikebirakicho, Nishinomiya, Hyogo, Japan
| | - Tadashi Konoshita
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaiduki, Eiheiji, Fukui, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan
| |
Collapse
|
9
|
Nunez C, Hoots JK, Schepers ST, Bower M, de Wit H, Wardle MC. Pharmacological investigations of effort-based decision-making in humans: Naltrexone and nicotine. PLoS One 2022; 17:e0275027. [PMID: 36197897 PMCID: PMC9534411 DOI: 10.1371/journal.pone.0275027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
Many mental health disorders are characterized by an impaired ability, or willingness, to exert effort to obtain rewards. This impairment is modeled in effort-based decision tasks, and neuropharmacological studies implicate dopamine in this process. However, other transmitter systems such as opioidergic and cholinergic systems have received less attention. Here, in two separate studies we tested the acute effects of naltrexone and nicotine on effort-based decision-making in healthy adults. In Study 1, we compared naltrexone (50mg and 25mg) to placebo, and in Study 2, a pilot study, we compared nicotine (7mg) to placebo. In both studies, participants completed the Effort Expenditure for Rewards Task (EEfRT), which measured effort-based decision-making related to monetary rewards. Although subjects expended greater effort for larger reward magnitude and when there was a higher probability of receiving the reward, neither naltrexone nor nicotine affected willingness to exert effort for monetary rewards. Although the drugs produced significant and typical drug effects on measures of mood and behavior, they did not alter effort-based decision-making. This has implications both for the clinical use of these drugs, as well as for understanding the neuropharmacology of effort-related behavior.
Collapse
Affiliation(s)
- Cecilia Nunez
- Department of Psychology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Jennifer K. Hoots
- Department of Psychology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Scott T. Schepers
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| | - Michael Bower
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| | - Margaret C. Wardle
- Department of Psychology, University of Illinois Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
10
|
Soutschek A, Jetter A, Tobler PN. Towards a Unifying Account of Dopamine’s Role in Cost-Benefit Decision Making. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 3:179-186. [PMID: 37124350 PMCID: PMC10140448 DOI: 10.1016/j.bpsgos.2022.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 10/18/2022] Open
Abstract
Dopamine is thought to play a crucial role in cost-benefit decision making, but so far there is no consensus on the precise role of dopamine in decision making. Here, we review the literature on dopaminergic manipulations of cost-benefit decision making in humans and evaluate how well different theoretical accounts explain the existing body of evidence. Reduced D2 stimulation tends to increase the willingness to bear delay and risk costs (i.e., wait for later rewards, take riskier options), while increased D1 and D2 receptor stimulation increases willingness to bear effort costs. We argue that the empirical findings can best be explained by combining the strengths of two theoretical accounts: in cost-benefit decision making, dopamine may play a dual role both in promoting the pursuit of psychologically close options (e.g., sooner and safer rewards) and in computing which costs are acceptable for a reward at stake. Moreover, we identify several limiting factors in the study designs of previous investigations that prevented a fuller understanding of dopamine's role in value-based choice. Together, the proposed theoretical framework and the methodological suggestions for future studies may bring us closer to a unifying account of dopamine in healthy and impaired cost-benefit decision making.
Collapse
|
11
|
Brouwer A, van Raalte DH, Lamers F, Rutters F, Elders PJM, Van Someren EJW, Snoek FJ, Beekman ATF, Bremmer MA. Insulin resistance as a marker for the immune-metabolic subtype of depression. J Affect Disord 2021; 295:1371-1376. [PMID: 34565592 DOI: 10.1016/j.jad.2021.08.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Insulin resistance (IR), a marker of metabolic dysregulation and pro-inflammatory state, moderates the antidepressant treatment effect in patients with type 2 diabetes (T2D) and is therefore a potential marker for personalized treatment. Based on data from a light therapy trial (NTR4942), we aimed to evaluate whether 1) depression symptoms differ according to the level of IR, and 2) improvement of specific depression symptoms drive the positive effects of light therapy in those with higher IR. METHODS This secondary analysis in 59 individuals with depression and T2D explored differences in depressive symptom profile (30-item Inventory of Depressive Symptomatology (IDS)) at baseline and in response to light therapy (versus placebo), between lower and higher IR individuals, using Likelihood Ratio tests and Linear-by-linear association. IR was measured using the gold standard, a hyperinsulinemic-euglycaemic clamp. RESULTS At baseline, higher IR individuals reported more symptoms of irritability (p=0.024) anhedonia (no interest in people and activities: p=0.011; absence of pleasure and enjoyment: p=0.021), fatigue (fatigue: p=0.036; physical fatigue: p=0.035) and hypersomnia (p=0.029) relative to persons with lower IR, who reported more insomnia (nightly awakening: p=0.041; early morning awakening: p=0.012). Light therapy led to an improvement across IDS symptoms in higher IR individuals, while in lower IR individuals, light therapy improved early morning awakening (p=0.005) and interest in people and activities (p=0.015), but worsened mood (feeling sad: p=0.001; feeling irritable: p=0.002; interpersonal sensitivity: p=0.014). CONCLUSIONS Results add to the hypothesis of an immune-metabolic subtype of depression, and suggest that IR might be a promising focus for precision medicine.
Collapse
Affiliation(s)
- Annelies Brouwer
- Amsterdam UMC and GGZ inGeest, Dept. of Psychiatry, Amsterdam Public Health Research Institute, Vrije Universiteit, De Boelelaan 1117, 1081 HV, Postbus, 7075, 1007 MB, Amsterdam, the Netherlands.
| | - Daniël H van Raalte
- Amsterdam UMC, Dept. of Internal Medicine, Diabetes Center, Vrije Universiteit, Amsterdam, the Netherlands
| | - Femke Lamers
- Amsterdam UMC and GGZ inGeest, Dept. of Psychiatry, Amsterdam Public Health Research Institute, Vrije Universiteit, De Boelelaan 1117, 1081 HV, Postbus, 7075, 1007 MB, Amsterdam, the Netherlands
| | - Femke Rutters
- Amsterdam UMC, Dept. of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, the Netherlands
| | - Petra J M Elders
- Amsterdam UMC, Dept. of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, the Netherlands
| | - Eus J W Van Someren
- Amsterdam UMC and GGZ inGeest, Dept. of Psychiatry, Amsterdam Public Health Research Institute, Vrije Universiteit, De Boelelaan 1117, 1081 HV, Postbus, 7075, 1007 MB, Amsterdam, the Netherlands; Dept. of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC, Dept. of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Frank J Snoek
- Amsterdam UMC, Dept. of Medical Psychology, Amsterdam Public Health research institute, Vrije Universiteit and University of Amsterdam, Amsterdam, the Netherlands
| | - Aartjan T F Beekman
- Amsterdam UMC and GGZ inGeest, Dept. of Psychiatry, Amsterdam Public Health Research Institute, Vrije Universiteit, De Boelelaan 1117, 1081 HV, Postbus, 7075, 1007 MB, Amsterdam, the Netherlands
| | - Marijke A Bremmer
- Amsterdam UMC and GGZ inGeest, Dept. of Psychiatry, Amsterdam Public Health Research Institute, Vrije Universiteit, De Boelelaan 1117, 1081 HV, Postbus, 7075, 1007 MB, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Soutschek A, Weber SC, Kahnt T, Quednow BB, Tobler PN. Opioid antagonism modulates wanting-related frontostriatal connectivity. eLife 2021; 10:71077. [PMID: 34761749 PMCID: PMC8598157 DOI: 10.7554/elife.71077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Theoretical accounts distinguish between motivational (‘wanting’) and hedonic (‘liking’) dimensions of rewards. Previous animal and human research linked wanting and liking to anatomically and neurochemically distinct brain mechanisms, but it remains unknown how the different brain regions and neurotransmitter systems interact in processing distinct reward dimensions. Here, we assessed how pharmacological manipulations of opioid and dopamine receptor activation modulate the neural processing of wanting and liking in humans in a randomized, placebo-controlled, double-blind clinical trial. Reducing opioid receptor activation with naltrexone selectively reduced wanting of rewards, which on a neural level was reflected by stronger coupling between dorsolateral prefrontal cortex and the striatum under naltrexone compared with placebo. In contrast, reducing dopaminergic neurotransmission with amisulpride revealed no robust effects on behavior or neural activity. Our findings thus provide insights into how opioid receptors mediate neural connectivity related to specifically motivational, not hedonic, aspects of rewards.
Collapse
Affiliation(s)
| | - Susanna C Weber
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zürich, Switzerland
| | - Thorsten Kahnt
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zürich, Switzerland
| | - Philippe N Tobler
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zürich, Switzerland.,Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zürich, Switzerland
| |
Collapse
|
13
|
Dose-response effects of d-amphetamine on effort-based decision-making and reinforcement learning. Neuropsychopharmacology 2021; 46:1078-1085. [PMID: 32722661 PMCID: PMC8115674 DOI: 10.1038/s41386-020-0779-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Effort-related decision-making and reward learning are both dopamine-dependent, but preclinical research suggests they depend on different dopamine signaling dynamics. Therefore, the same dose of a dopaminergic medication could have differential effects on effort for reward vs. reward learning. However, no study has tested how effort and reward learning respond to the same dopaminergic medication within subjects. The current study aimed to test the effect of therapeutic doses of d-amphetamine on effort for reward and reward learning in the same healthy volunteers. Participants (n = 30) completed the Effort Expenditure for Reward Task (EEfRT) measure of effort-related decision-making, and the Probabilistic Reward Task (PRT) measure of reward learning, under placebo and two doses of d-amphetamine (10 mg, and 20 mg). Secondarily, we examined whether the individual characteristics of baseline working memory and willingness to exert effort for reward moderated the effects of d-amphetamine. d-Amphetamine increased willingness to exert effort, particularly at low to intermediate expected values of reward. Computational modeling analyses suggested this was due to decreased effort discounting rather than probability discounting or decision consistency. Both baseline effort and working memory emerged as moderators of this effect, such that d-amphetamine increased effort more in individuals with lower working memory and lower baseline effort, also primarily at low to intermediate expected values of reward. In contrast, d-amphetamine had no significant effect on reward learning. These results have implications for treatment of neuropsychiatric disorders, which may be characterized by multiple underlying reward dysfunctions.
Collapse
|
14
|
Tebar WR, Christofaro DGD, Diniz TA, Lofrano-Prado MC, Botero JP, Correia MDA, Cucato GG, Ritti-Dias RM, do Prado WL. Increased Screen Time Is Associated With Alcohol Desire and Sweetened Foods Consumption During the COVID-19 Pandemic. Front Nutr 2021; 8:630586. [PMID: 33842523 PMCID: PMC8029649 DOI: 10.3389/fnut.2021.630586] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Elevated screen time has been associated with addictive behaviors, such as alcohol and sugar intake and smoking. Considering the substantial increase in screen time caused by social isolation policies, this study aimed to analyze the association of increased screen time in different devices during the COVID-19 pandemic with consumption and increased desire of alcohol, smoking, and sweetened foods in adults. Methods: A sample of 1,897 adults with a mean age of 37.9 (13.3) years was assessed by an online survey, being composed by 58% of women. Participants were asked whether screen time in television, cell phone, and computer increased during the pandemic, as well as how much time is spent in each device. Closed questions assessed the frequency of alcohol and sweetened food consumption, smoking, and an increased desire to drink and smoke during the pandemic. Educational level, age, sex, feeling of stress, anxiety, depression, and use of a screen device for physical activity were covariates. Binary logistic regression models considered adjustment for covariates and for mutual habits. Results: Increased television time was associated with increased desire to drink (OR = 1.46, 95% CI: 1.12; 1.89) and increased sweetened food consumption (OR = 1.53, 95% CI: 1.18; 1.99), while an increase in computer use was negatively associated with consumption of alcohol (OR = 0.68, 95% CI: 0.53; 0.86) and sweetened foods (OR = 0.78, 95% CI: 0.62; 0.98). Increased cell phone time was associated with increased sweetened food consumption during the pandemic (OR = 1.78, 95% CI: 1.18; 2.67). Participants with increased time in the three devices were less likely to consume sweetened foods for ≥5 days per week (OR = 0.63, 95% CI: 0.39; 0.99) but were twice as likely to have sweetened food consumption increased during pandemic (OR = 2.04, 95% CI: 1.07; 3.88). Conclusion: Increased screen time was differently associated with consumption and desire for alcohol and sweets according to screen devices. Increased time in television and cell phones need to be considered for further investigations of behavioral impairments caused by the pandemic.
Collapse
Affiliation(s)
- William R Tebar
- São Paulo State University (UNESP), Faculty of Science and Technology, Presidente Prudente, Brazil
| | - Diego G D Christofaro
- São Paulo State University (UNESP), Faculty of Science and Technology, Presidente Prudente, Brazil
| | - Tiego A Diniz
- University of São Paulo-USP, Post-graduation Program in Cell and Tissue Biology, São Paulo, Brazil
| | | | | | | | - Gabriel G Cucato
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | | | | |
Collapse
|
15
|
Mediatory role of the dopaminergic system through D1 receptor on glycine-induced hypophagia in neonatal broiler-type chickens. Amino Acids 2021; 53:461-470. [PMID: 33649971 DOI: 10.1007/s00726-021-02963-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
The present study aimed to examine the mediatory role of the dopaminergic system in the food intake induced by intracerebroventricular (ICV) injection of glycine in neonatal 3-h feed-deprived (FD3) meat-type chickens. In the first and second experiments, birds were ICV injected using low and high doses of glycine (50, 100 and 200 nmol) and strychnine (50, 100 and 200 nmol), respectively. In experiments 3-9, the behaviorally subeffective doses of dopamine (10 nmol), 6-OHDA (2.5 nmol), SCH 23,390 (D1 antagonist; 5 nmol), AMI-193 (D2 antagonist; 5 nmol), NGB2904 (D3 antagonist; 6.4 nmol) and L-741,742 (D4 antagonist; 6 nmol) were, respectively, co-administrated with glycine (200 nmol) in FD3 5-day-old chicks to investigate possible interplay of dopamine receptors in glycine-induced feeding behavior. Then, cumulative food intake based on body weight percentage (%BW) was determined at 30, 60 and 120 min after the injection. According to the results, dopamine significantly boosted the hypophagia induced by glycine at all-time intervals (p ≤ 0.001). These results combined with the previous findings suggest an interplay between dopamine and glycine in chicken's brain in which D1 receptor-mediated food intake induced by glycine.
Collapse
|
16
|
Using pharmacological manipulations to study the role of dopamine in human reward functioning: A review of studies in healthy adults. Neurosci Biobehav Rev 2020; 120:123-158. [PMID: 33202256 DOI: 10.1016/j.neubiorev.2020.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/08/2023]
Abstract
Dopamine (DA) plays a key role in reward processing and is implicated in psychological disorders such as depression, substance use, and schizophrenia. The role of DA in reward processing is an area of highly active research. One approach to this question is drug challenge studies with drugs known to alter DA function. These studies provide good experimental control and can be performed in parallel in laboratory animals and humans. This review aimed to summarize results of studies using pharmacological manipulations of DA in healthy adults. 'Reward' is a complex process, so we separated 'phases' of reward, including anticipation, evaluation of cost and benefits of upcoming reward, execution of actions to obtain reward, pleasure in response to receiving a reward, and reward learning. Results indicated that i) DAergic drugs have different effects on different phases of reward; ii) the relationship between DA and reward functioning appears unlikely to be linear; iii) our ability to detect the effects of DAergic drugs varies depending on whether subjective, behavioral, imaging measures are used.
Collapse
|
17
|
Sinyakova NA, Bazhenova EY, Kulikova EA, Fursenko DV, Kulikov AV. Effect of the C1473G Polymorphic Variant of the Tryptophan Hydroxylase 2 Gene and Photoperiod Length on the Dopamine System of the Mouse Brain. Mol Biol 2020. [DOI: 10.1134/s0026893320010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Mendoza J. Circadian insights into the biology of depression: Symptoms, treatments and animal models. Behav Brain Res 2019; 376:112186. [PMID: 31473283 DOI: 10.1016/j.bbr.2019.112186] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
In depression, symptoms range from loss of motivation and energy to suicidal thoughts. Moreover, in depression alterations might be also observed in the sleep-wake cycle and in the daily rhythms of hormonal (e.g., cortisol, melatonin) secretion. Both, the sleep-wake cycle and hormonal rhythms, are regulated by the internal biological clock within the hypothalamic suprachiasmatic nucleus (SCN). Therefore, a dysregulation of the internal mechanism of the SCN might lead in the disturbance of temporal physiology and depression. Hence, circadian symptoms in mood disorders can be used as important biomarkers for the prevention and treatment of depression. Disruptions of daily rhythms in physiology and behavior are also observed in animal models of depression, giving thus an important tool of research for the understanding of the circadian mechanisms implicated in mood disorders. This review discusses the alterations of daily rhythms in depression, and how circadian perturbations might lead in mood changes and depressive-like behavior in humans and rodents respectively. The use of animal models with circadian disturbances and depressive-like behaviors will help to understand the central timing mechanisms underlying depression, and how treating the biological clock(s) it may be possible to improve mood.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212 University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France.
| |
Collapse
|
19
|
Lonstein JS, Linning-Duffy K, Yan L. Low Daytime Light Intensity Disrupts Male Copulatory Behavior, and Upregulates Medial Preoptic Area Steroid Hormone and Dopamine Receptor Expression, in a Diurnal Rodent Model of Seasonal Affective Disorder. Front Behav Neurosci 2019; 13:72. [PMID: 31031606 PMCID: PMC6473160 DOI: 10.3389/fnbeh.2019.00072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/25/2019] [Indexed: 01/11/2023] Open
Abstract
Seasonal affective disorder (SAD) involves a number of psychological and behavioral impairments that emerge during the low daytime light intensity associated with winter, but which remit during the high daytime light intensity associated with summer. One symptom frequently reported by SAD patients is reduced sexual interest and activity, but the endocrine and neural bases of this particular impairment during low daylight intensity is unknown. Using a diurnal laboratory rodent, the Nile grass rat (Arvicanthis niloticus), we determined how chronic housing under a 12:12 h day/night cycle involving dim low-intensity daylight (50 lux) or bright high-intensity daylight (1,000 lux) affects males’ copulatory behavior, reproductive organ weight, and circulating testosterone. We also examined the expression of mRNAs for the aromatase enzyme, estrogen receptor 1 (ESR1), and androgen receptor (AR) in the medial preoptic area (mPOA; brain site involved in the sensory and hormonal control of copulation), and mRNAs for the dopamine (DA) D1 and D2 receptors in both the mPOA and nucleus accumbens (NAC; brain site involved in stimulus salience and motivation to respond to reward). Compared to male grass rats housed in high-intensity daylight, males in low-intensity daylight displayed fewer mounts and intromissions when interacting with females, but the groups did not differ in their testes or seminal vesicle weights, or in their circulating levels of testosterone. Males in low-intensity daylight unexpectedly had higher ESR1, AR and D1 receptor mRNA in the mPOA, but did not differ from high-intensity daylight males in D1 or D2 mRNA expression in the NAC. Reminiscent of humans with SAD, dim winter-like daylight intensity impairs aspects of sexual behavior in a male diurnal rodent. This effect is not due to reduced circulating testosterone and is associated with upregulation of mPOA steroid and DA receptors that may help maintain some sexual motivation and behavior under winter-like lighting conditions.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Katrina Linning-Duffy
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Lily Yan
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
20
|
Barbato G, Cirace F, Monteforte E, Costanzo A. Seasonal variation of spontaneous blink rate and beta EEG activity. Psychiatry Res 2018; 270:126-133. [PMID: 30245376 DOI: 10.1016/j.psychres.2018.08.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 06/27/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022]
Abstract
Seasonal variations of the photoperiod have been shown to regulate biological and behavioral functions, with also effects on clinical symptom and course of several psychiatric conditions. Although melatonin is considered the principal signal used to transmit informations about the light and dark cycle, a dopamine (DA) role in regulating seasonal changes has been suggested. Few studies have addressed a seasonal pattern of dopamine, and human studies have been conducted on inter-subject differences, comparing measures obtained during fall-winter with those of spring-summer. We studied within-subject seasonal changes of blink rate (BR), a indirect marker of central DA activity, in 26 normal subjects (15 females and 11 males, mean age: 24.7 ± 4.0) during winter, spring, summer and fall. Occipital EEG activity and subjective measures of vigilance and mood were also assessed to account for variations on arousal and fatigue. A significant seasonal effect was found for BR, with higher rate in summer, and for EEG beta activity, with higher activity in spring and summer. Subjective fatigue was found higher in winter. According to our data, it is possible that higher BR and increased EEG beta activity result by an arousal activation sustained by dopamine systems during the months with a long photoperiod.
Collapse
Affiliation(s)
- Giuseppe Barbato
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| | - Fulvio Cirace
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erika Monteforte
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Antonio Costanzo
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
21
|
Zebrowitz LA, Boshyan J, Ward N, Hanlin L, Wolf JM, Hadjikhani N. Dietary dopamine depletion blunts reward network sensitivity to face trustworthiness. J Psychopharmacol 2018; 32:965-978. [PMID: 29620428 DOI: 10.1177/0269881118758303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Research demonstrating responsiveness of the neural reward network to face trustworthiness has not assessed whether the effects are mediated by dopaminergic function. We filled this gap in the literature by investigating whether dietary dopamine depletion would blunt the sensitivity of neural activation to faces varying in trustworthiness across reward regions as well as the sensitivity of behavioral responses to those faces. As prolactin release is negatively regulated by dopamine, peripheral prolactin levels confirmed the efficacy of our manipulation. The dopamine depletion manipulation moderated neural activation to face trustworthiness in the amygdala, medial orbital frontal cortex, and ventral medial prefrontal cortex. Control participants ( n=20) showed nonlinear and linear neural activation to face trustworthiness in the amygdala and ventral medial prefrontal cortex, and nonlinear activation in the medial orbital frontal cortex, while depleted participants ( n=20) showed only a linear effect in the amygdala. Controls also showed stronger amygdala activation to high trustworthy faces than depleted participants. In contrast to effects on neural activation, dopamine depletion did not blunt the sensitivity of behavioral ratings. While this is the first study to demonstrate that dopamine depletion blunts the sensitivity of the neural reward system to social stimuli, namely faces varying in trustworthiness, future research should investigate behavioral measures that may be more responsive to dopaminergic effects than face ratings. Such research would shed further light on the possibility that individual differences in dopaminergic function that were simulated by our manipulation influence social interactions with people who vary in facial trustworthiness.
Collapse
Affiliation(s)
| | - Jasmine Boshyan
- 1 Department of Psychology, Brandeis University, Waltham, MA, USA.,3 Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Noreen Ward
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Luke Hanlin
- 1 Department of Psychology, Brandeis University, Waltham, MA, USA
| | - Jutta M Wolf
- 1 Department of Psychology, Brandeis University, Waltham, MA, USA
| | - Nouchine Hadjikhani
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA.,4 Gillberg Neuropsychiatry Center, University of Gothenburg, Sweden
| |
Collapse
|
22
|
Abstract
Loss of interest in rewarding activities is a hallmark of many psychiatric disorders and may be relevant for neurodegenerative disorders and patients suffering from brain injury. There is increasing evidence that deficits in reward-related behaviour are more complex than previously described. The traditional view of anhedonia as 'the inability to experience pleasure' may be too limited to fully encompass the types of reward deficit observed in these patients. Developments in methods to measure different aspects of reward processing in humans and animals are starting to provide insights into the complexity of this behaviour. In this article we consider the rodent models which have traditionally been used to study reward deficits in psychiatric disorders and consider their limitations relative to clinical findings. We then discuss work where methods derived from human neuropsychological tests are providing insights into the complexity of reward-related behaviour. Specifically, we consider tasks which investigate different aspects of reward-related behaviour focusing on learning and memory as well as decision-making and consider what these may mean in terms of how we model reward deficits in rodents.
Collapse
|
23
|
Itzhacki J, Clesse D, Goumon Y, Van Someren EJ, Mendoza J. Light rescues circadian behavior and brain dopamine abnormalities in diurnal rodents exposed to a winter-like photoperiod. Brain Struct Funct 2018; 223:2641-2652. [PMID: 29560509 DOI: 10.1007/s00429-018-1655-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/18/2018] [Indexed: 12/17/2022]
Abstract
Seasonal affective disorder (SAD), beyond mood changes, is characterized by alterations in daily rhythms of behavior and physiology. The pathophysiological conditions of SAD involve changes in day length and its first-line treatment is bright light therapy. Animal models using nocturnal rodents have been studied to elucidate the neurobiological mechanisms of depression, but might be ill suited to study the therapeutic effects of light in SAD since they exhibit light-aversive responses. Here Arvicanthis ansorgei, a diurnal rodent, was used to determine behavioral, molecular and brain dopamine changes in response to exposure to a winter-like photoperiod consisting of a light-dark cycle with 8 h of light, under diminished light intensity, and 16 h of darkness. Furthermore, we evaluated whether timed-daily bright light exposure has an effect on behavior and brain physiology of winter-like exposed animals. Arvicanthis under a winter-like condition showed alterations in the synchronization of the locomotor activity rhythm to the light-dark cycle. Moreover, alterations in day-night activity of dopaminergic neurotransmission were revealed in the nucleus accumbens and the dorsal striatum, and in the day-night clock gene expression in the suprachiasmatic nucleus. Interestingly, whereas dopamine disturbances were reversed in animals exposed to daily light at early or late day, altered phase of the daily rhythm of locomotion was reverted only in animals exposed to light at the late day. Moreover, Per2 gene expression in the SCN was also affected by light exposure at late day in winter-like exposed animals. These findings suggest that light induces effects on behavior by mechanisms that rely on both circadian and rhythm-independent pathways influencing the dopaminergic circuitry. This last point might be crucial for understanding the mechanisms of non-pharmacological treatment in SAD.
Collapse
Affiliation(s)
- Jacob Itzhacki
- Institute of Cellular and Integrative Neurosciences, CNRS-UPR3212, 5 rue Blaise Pascal, 67084, Strasbourg Cedex, France.,Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Daniel Clesse
- Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS, UMR 7364 and University of Strasbourg, Strasbourg, France
| | - Yannick Goumon
- Institute of Cellular and Integrative Neurosciences, CNRS-UPR3212, 5 rue Blaise Pascal, 67084, Strasbourg Cedex, France
| | - Eus J Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Integrative Neurophysiology and Psychiatry inGeest, Vrije Universiteit University and Medical Center, Neuroscience Campus, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS-UPR3212, 5 rue Blaise Pascal, 67084, Strasbourg Cedex, France.
| |
Collapse
|
24
|
Cawley E, Tippler M, Coupland NJ, Benkelfat C, Boivin DB, Aan Het Rot M, Leyton M. Dopamine and light: effects on facial emotion recognition. J Psychopharmacol 2017. [PMID: 28633582 DOI: 10.1177/0269881117711707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bright light can affect mood states and social behaviours. Here, we tested potential interacting effects of light and dopamine on facial emotion recognition. Participants were 32 women with subsyndromal seasonal affective disorder tested in either a bright (3000 lux) or dim light (10 lux) environment. Each participant completed two test days, one following the ingestion of a phenylalanine/tyrosine-deficient mixture and one with a nutritionally balanced control mixture, both administered double blind in a randomised order. Approximately four hours post-ingestion participants completed a self-report measure of mood followed by a facial emotion recognition task. All testing took place between November and March when seasonal symptoms would be present. Following acute phenylalanine/tyrosine depletion (APTD), compared to the nutritionally balanced control mixture, participants in the dim light condition were more accurate at recognising sad faces, less likely to misclassify them, and faster at responding to them, effects that were independent of changes in mood. Effects of APTD on responses to sad faces in the bright light group were less consistent. There were no APTD effects on responses to other emotions, with one exception: a significant light × mixture interaction was seen for the reaction time to fear, but the pattern of effect was not predicted a priori or seen on other measures. Together, the results suggest that the processing of sad emotional stimuli might be greater when dopamine transmission is low. Bright light exposure, used for the treatment of both seasonal and non-seasonal mood disorders, might produce some of its benefits by preventing this effect.
Collapse
Affiliation(s)
- Elizabeth Cawley
- 1 Department of Psychiatry, McGill University, Montreal, Canada.,2 Association of Atlantic Universities, Halifax Nova Scotia, Canada
| | - Maria Tippler
- 1 Department of Psychiatry, McGill University, Montreal, Canada
| | | | | | - Diane B Boivin
- 1 Department of Psychiatry, McGill University, Montreal, Canada
| | - Marije Aan Het Rot
- 4 Department of Psychology and School of Behavioral and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Marco Leyton
- 1 Department of Psychiatry, McGill University, Montreal, Canada.,5 Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Canada
| |
Collapse
|
25
|
Khodadadi M, Zendehdel M, Baghbanzadeh A, Babapour V. Consequence of dopamine D2 receptor blockade on the hyperphagic effect induced by cannabinoid CB1 and CB2 receptors in layers. Br Poult Sci 2017; 58:585-593. [PMID: 28728428 DOI: 10.1080/00071668.2017.1357799] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1. Endocannabinoids (ECBs) and their receptors play a regulatory function on several physiological processes such as feed-intake behaviour, mainly in the brain. This study was carried out in order to investigate the effects of the dopaminergic D1 and D2 receptors on CB1/CB2 ECB receptor-induced hyperphagia in 3-h feed-deprived neonatal layer chickens. 2. A total of 8 experiments were designed to explore the interplay of these two modulatory systems on feed intake in neonatal chickens. In Experiment 1, chickens were intracerebroventricular (ICV) injected with control solution, l-DOPA (levo-dihydroxyphenylalanine as precursor of dopamine; 125 nmol), 2-AG (2-arachidonoylglycerol as CB1 receptor agonist; 2 µg) and co-administration of l-DOPA (125 nmol) plus 2-AG (2 µg). Experiments 2-4 were similar to Experiment 1 except birds were injected with either 6-OHDA (6-hydroxydopamine as dopamine synthesis inhibitor; 150 nmol), SCH23390 (D1 receptor antagonist; 5 nmol) and AMI-193 (D2 receptor antagonist; 5 nmol) instead of l-DOPA, respectively. Additionally, Experiments 5-8 followed the previous ones using the same dose of l-DOPA, 6-OHDA and dopamine antagonists except that birds were injected with CB65 (CB2 receptor agonist; 5 µg) instead of 2-AG. Coadministrations were at the same dose for each experiment. Cumulative feed intakes were measured until 120 min after each injection. 3. ICV administration of 6-OHDA and AMI-193 significantly attenuated 2-AG-induced hyperphagia. Interestingly, the hyperphagic effect of CB65 was significantly attenuated by administration of l-DOPA, whereas the administration of 6-OHDA and AMI-193 together amplified the hyperphagic effect of CB65. 4. It was concluded that cannabinoid-induced feeding behaviour is probably modulated by dopamine receptors in neonatal layer-type chickens. It seems that their interaction may be mediated by the D2-dopamine receptor.
Collapse
Affiliation(s)
- M Khodadadi
- a Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - M Zendehdel
- a Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - A Baghbanzadeh
- a Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - V Babapour
- a Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| |
Collapse
|
26
|
|
27
|
O’Hara CB, Keyes A, Renwick B, Giel KE, Campbell IC, Schmidt U. Evidence that Illness-Compatible Cues Are Rewarding in Women Recovered from Anorexia Nervosa: A Study of the Effects of Dopamine Depletion on Eye-Blink Startle Responses. PLoS One 2016; 11:e0165104. [PMID: 27764214 PMCID: PMC5072564 DOI: 10.1371/journal.pone.0165104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 09/28/2016] [Indexed: 01/01/2023] Open
Abstract
In anorexia nervosa (AN), motivational salience is attributed to illness-compatible cues (e.g., underweight and active female bodies) and this is hypothesised to involve dopaminergic reward circuitry. We investigated the effects of reducing dopamine (DA) transmission on the motivational processing of AN-compatible cues in women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15). This involved the acute phenylalanine and tyrosine depletion (APTD) procedure and a startle eye-blink modulation (SEM) task. In a balanced amino acid state, AN REC showed an increased appetitive response (decreased startle potentiation) to illness-compatible cues (underweight and active female body pictures (relative to neutral and non-active cues, respectively)). The HC had an aversive response (increased startle potentiation) to the same illness-compatible stimuli (relative to neutral cues). Importantly, these effects, which may be taken to resemble symptoms observed in the acute stage of illness and healthy behaviour respectively, were not present when DA was depleted. Thus, AN REC implicitly appraised underweight and exercise cues as more rewarding than did HC and the process may, in part, be DA-dependent. It is proposed that the positive motivational salience attributed to cues of emaciation and physical activity is, in part, mediated by dopaminergic reward processes and this contributes to illness pathology. These observations are consistent with the proposal that, in AN, aberrant reward-based learning contributes to the development of habituation of AN-compatible behaviours.
Collapse
Affiliation(s)
- Caitlin B. O’Hara
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Section of Eating Disorders, London, United Kingdom
- * E-mail: caitlin.b.o’
| | - Alexandra Keyes
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Section of Eating Disorders, London, United Kingdom
| | - Bethany Renwick
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Section of Eating Disorders, London, United Kingdom
| | - Katrin E. Giel
- Medical University Hospital Tübingen, Department of Psychosomatic Medicine and Psychotherapy, Tübingen, Germany
| | - Iain C. Campbell
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Section of Eating Disorders, London, United Kingdom
| | - Ulrike Schmidt
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Section of Eating Disorders, London, United Kingdom
| |
Collapse
|
28
|
Shnitko TA, Taylor SC, Stringfield SJ, Zandy SL, Cofresí RU, Doherty JM, Lynch WB, Boettiger CA, Gonzales RA, Robinson DL. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain. Psychopharmacology (Berl) 2016; 233:2045-2054. [PMID: 26944052 PMCID: PMC4864125 DOI: 10.1007/s00213-016-4259-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022]
Abstract
RATIONALE Dopamine plays a critical role in striatal and cortical function, and depletion of the dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce dopamine and probe the role of dopamine in behavior. This method has been shown to alter addiction-related behaviors and cognitive functioning presumably by reducing dopamine transmission, but it is unclear what specific aspects of dopamine transmission are altered. OBJECTIVES We performed this study to confirm that administration of an amino acid mixture omitting phenylalanine and tyrosine (Phe/Tyr[-]) reduces tyrosine tissue content in the prefrontal cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[-] administration reduces phasic dopamine release in the NAc. METHODS Rats were injected with a Phe/Tyr[-] amino acid mixture, a control amino acid mixture, or saline. High-performance liquid chromatography was used to determine the concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic voltammetry in the NAc core after injection with either the Phe/Tyr[-] mixture or the control amino acid solution. RESULTS Phe/Tyr[-] reduced tyrosine content in the PFC and NAc, but dopamine and norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[-] decreased the frequency of dopamine transients, but not their amplitude, in freely moving rats. CONCLUSIONS These results indicate that depletion of tyrosine via Phe/Tyr[-] decreases phasic dopamine transmission, providing insight into the mechanism by which this method modifies dopamine-dependent behaviors in human imaging studies.
Collapse
Affiliation(s)
- Tatiana A. Shnitko
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Sarah C. Taylor
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Sierra J. Stringfield
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Shannon L. Zandy
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Roberto U. Cofresí
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - James M. Doherty
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - William B. Lynch
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Charlotte A. Boettiger
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA,Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Rueben A. Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Multi-facetted impulsivity following nigral degeneration and dopamine replacement therapy. Neuropharmacology 2016; 109:69-77. [PMID: 27216859 PMCID: PMC5405054 DOI: 10.1016/j.neuropharm.2016.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/24/2022]
Abstract
Impulse control disorders (ICDs) are debilitating side effects of dopamine replacement therapy (DRT) in Parkinson’s disease (PD) that severely affect the quality of life of patients. While DRT, the pattern and extent of neurodegeneration, and prodromic factors of vulnerability (e.g. impulsivity) have all been hypothesized to play a role in the development of ICDs, their respective, and potentially interacting, contributions remain to be established. High impulsive (HI), Intermediate (Int) or low impulsive (LI) rats were identified based on their performance in both a differential reinforcement of low rate of responding (DRL) and a fixed consecutive number (FCN) schedules, that operationalize two independent facets of impulsivity, waiting and action inhibition (motor impulsivity). We investigated whether high impulsivity trait influenced the progressive development of a parkinsonian state induced by viral-mediated overexpression of α-synuclein, and whether impulsivity trait and nigrostriatal neurodegeneration independently or jointly influenced the effects of DRT on impulse control. α-synuclein-induced nigrostriatal neurodegeneration increased both waiting and motor impulsivity. The D2/D3 dopamine receptor agonist pramipexole exacerbated motor impulsivity more than waiting. However, the pramipexole-induced increase in waiting impulsivity observed in both sham and lesioned rats, was more pronounced in HI lesioned rats, which displayed a restricted α-synuclein-induced dopaminergic neurodegeneration. Thus, a PD-like nigrostriatal lesion increases both motor and waiting impulsivity, but its interaction with a pre-existing impulsivity trait, which, at the cellular level, confers resilience to dopaminergic neurodegeneration, worsens the detrimental effects of D2/D3 dopamine receptor agonists on inhibitory control. Degeneration of the substantia nigra increases both waiting and action impulsivity. Reduced alpha-synuclein-induced degeneration in high impulsive rats. Pramipexole increases waiting and action impulsivity in sham and lesioned rats. Exacerbated effect of pramipexole in high impulsive vs. low impulsive lesioned rats.
Collapse
|
30
|
O’Hara CB, Keyes A, Renwick B, Leyton M, Campbell IC, Schmidt U. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa. PLoS One 2016; 11:e0145894. [PMID: 26808920 PMCID: PMC4726788 DOI: 10.1371/journal.pone.0145894] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN.
Collapse
Affiliation(s)
- Caitlin B. O’Hara
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Section of Eating Disorders, London, United Kingdom
- * E-mail: caitlin.b.o’
| | - Alexandra Keyes
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Section of Eating Disorders, London, United Kingdom
| | - Bethany Renwick
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Section of Eating Disorders, London, United Kingdom
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Iain C. Campbell
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Section of Eating Disorders, London, United Kingdom
| | - Ulrike Schmidt
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Section of Eating Disorders, London, United Kingdom
| |
Collapse
|
31
|
Larson MJ, Clayson PE, Primosch M, Leyton M, Steffensen SC. The Effects of Acute Dopamine Precursor Depletion on the Cognitive Control Functions of Performance Monitoring and Conflict Processing: An Event-Related Potential (ERP) Study. PLoS One 2015; 10:e0140770. [PMID: 26492082 PMCID: PMC4619587 DOI: 10.1371/journal.pone.0140770] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
Abstract
Studies using medications and psychiatric populations implicate dopamine in cognitive control and performance monitoring processes. However, side effects associated with medication or studying psychiatric groups may confound the relationship between dopamine and cognitive control. To circumvent such possibilities, we utilized a randomized, double-blind, placebo-controlled, within-subjects design wherein participants were administered a nutritionally-balanced amino acid mixture (BAL) and an amino acid mixture deficient in the dopamine precursors tyrosine (TYR) and phenylalanine (PHE) on two separate occasions. Order of sessions was randomly assigned. Cognitive control and performance monitoring were assessed using response times (RT), error rates, the N450, an event-related potential (ERP) index of conflict monitoring, the conflict slow potential (conflict SP), an ERP index of conflict resolution, and the error-related negativity (ERN) and error positivity (Pe), ERPs associated with performance monitoring. Participants were twelve males who completed a Stroop color-word task while ERPs were collected four hours following acute PHE and TYR depletion (APTD) or balanced (BAL) mixture ingestion in two separate sessions. N450 and conflict SP ERP amplitudes significantly differentiated congruent from incongruent trials, but did not differ as a function of APTD or BAL mixture ingestion. Similarly, ERN and Pe amplitudes showed significant differences between error and correct trials that were not different between APTD and BAL conditions. Findings indicate that acute dopamine precursor depletion does not significantly alter cognitive control and performance monitoring ERPs. Current results do not preclude the role of dopamine in these processes, but suggest that multiple methods for dopamine-related hypothesis testing are needed.
Collapse
Affiliation(s)
- Michael J. Larson
- Department of Psychology, Brigham Young University, Provo, Utah, United States of America, 84602
- Neuroscience Center, Brigham Young University, Provo, Utah, United States of America, 84602
- * E-mail:
| | - Peter E. Clayson
- Department of Psychology, Brigham Young University, Provo, Utah, United States of America, 84602
- Department of Psychology, University of California Los Angeles, Los Angeles, California, United States of America, 90095
| | - Mark Primosch
- Department of Psychology, Brigham Young University, Provo, Utah, United States of America, 84602
| | - Marco Leyton
- Department of Psychiatry, McGill University, 1033 Pine Ave. W., Montreal, QC, Canada, H3A 1A1
| | - Scott C. Steffensen
- Department of Psychology, Brigham Young University, Provo, Utah, United States of America, 84602
- Neuroscience Center, Brigham Young University, Provo, Utah, United States of America, 84602
| |
Collapse
|
32
|
Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol Biochem Behav 2015; 133:1-6. [DOI: 10.1016/j.pbb.2015.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/20/2015] [Accepted: 03/12/2015] [Indexed: 11/21/2022]
|
33
|
Translational Assessment of Reward and Motivational Deficits in Psychiatric Disorders. Curr Top Behav Neurosci 2015; 28:231-62. [PMID: 26873017 DOI: 10.1007/7854_2015_5004] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Deficits in reward and motivation are common symptoms characterizing several psychiatric and neurological disorders. Such deficits may include anhedonia, defined as loss of pleasure, as well as impairments in anticipatory pleasure, reward valuation, motivation/effort, and reward learning. This chapter describes recent advances in the development of behavioral tasks used to assess different aspects of reward processing in both humans and non-human animals. While earlier tasks were generally developed independently with limited cross-species correspondence, a newer generation of translational tasks has emerged that are theoretically and procedurally analogous across species and allow parallel testing, data analyses, and interpretation between human and rodent behaviors. Such enhanced conformity between cross-species tasks will facilitate investigation of the neurobiological mechanisms underlying discrete reward and motivated behaviors and is expected to improve our understanding and treatment of neuropsychiatric disorders characterized by reward and motivation deficits.
Collapse
|
34
|
D'Amour-Horvat V, Leyton M. Impulsive actions and choices in laboratory animals and humans: effects of high vs. low dopamine states produced by systemic treatments given to neurologically intact subjects. Front Behav Neurosci 2014; 8:432. [PMID: 25566001 PMCID: PMC4274964 DOI: 10.3389/fnbeh.2014.00432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/26/2014] [Indexed: 11/13/2022] Open
Abstract
Increases and decreases in dopamine (DA) transmission have both been suggested to influence reward-related impulse-control. The present literature review suggests that, in laboratory animals, the systemic administration of DA augmenters preferentially increases susceptibility to premature responding; with continued DA transmission, reward approach behaviors are sustained. Decreases in DA transmission, in comparison, diminish the appeal of distal and difficult to obtain rewards, thereby increasing susceptibility to temporal discounting and other forms of impulsive choice. The evidence available in humans is not incompatible with this model but is less extensive.
Collapse
Affiliation(s)
| | - Marco Leyton
- Department of Psychology, McGill University Montreal, QC, Canada ; Department of Psychiatry, McGill University Montreal, QC, Canada ; Center for Studies in Behavioral Neurobiology, Concordia University Montreal, QC, Canada
| |
Collapse
|
35
|
Barja-Fernandez S, Leis R, Casanueva FF, Seoane LM. Drug development strategies for the treatment of obesity: how to ensure efficacy, safety, and sustainable weight loss. Drug Des Devel Ther 2014; 8:2391-400. [PMID: 25489237 PMCID: PMC4257050 DOI: 10.2147/dddt.s53129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The prevalence of obesity has increased worldwide, and approximately 25%-35% of the adult population is obese in some countries. The excess of body fat is associated with adverse health consequences. Considering the limited efficacy of diet and exercise in the current obese population and the use of bariatric surgery only for morbid obesity, it appears that drug therapy is the only available method to address the problem on a large scale. Currently, pharmacological obesity treatment options are limited. However, new antiobesity drugs acting through central nervous system pathways or the peripheral adiposity signals and gastrointestinal tract are under clinical development. One of the most promising approaches is the use of peptides that influence the peripheral satiety signals and brain-gut axis such as GLP-1 analogs. However, considering that any antiobesity drug may affect one or several of the systems that control food intake and energy expenditure, it is unlikely that a single pharmacological agent will be effective as a striking obesity treatment. Thus, future strategies to treat obesity will need to be directed at sustainable weight loss to ensure maximal safety. This strategy will probably require the coadministration of medications that act through different mechanisms.
Collapse
Affiliation(s)
- S Barja-Fernandez
- Grupo Fisiopatología Endocrina, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Departamento de Pediatría, Universidad de Santiago de Compostela (USC), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - R Leis
- Departamento de Pediatría, Universidad de Santiago de Compostela (USC), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - FF Casanueva
- CIBER Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Santiago de Compostela, Spain
- Laboratorio de Endocrinología Molecular y Celular, Universidad de Santiago de Compostela (USC) Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - LM Seoane
- Grupo Fisiopatología Endocrina, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Santiago de Compostela, Spain
| |
Collapse
|
36
|
Stewart AE, Roecklein KA, Tanner S, Kimlin MG. Possible contributions of skin pigmentation and vitamin D in a polyfactorial model of seasonal affective disorder. Med Hypotheses 2014; 83:517-25. [PMID: 25270233 DOI: 10.1016/j.mehy.2014.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 08/07/2014] [Accepted: 09/10/2014] [Indexed: 01/01/2023]
Abstract
Seasonal affective disorder (SAD) is a polyfactorial and polygenetic disorder that involves biological and psychological sub-mechanisms that differentially involve depression, seasonality, circadian rhythms, retinal sensitivity, iris pigmentation, sleep factors, and the neurotransmitters involved with these systems. Within the framework of the polyfactorial conceptualization of SAD, we review the possible contributions of vitamin D3 with respect to the aforementioned sub-mechanisms. We hypothesize that rather than functioning primarily as a proximal or direct sub-mechanism in the etiology of SAD, vitamin D likely functions in a more foundational and regulative role in potentiating the sub-mechanisms associated with the depressive and seasonality factors. There are several reasons for this position: 1. vitamin D levels fluctuate in the body seasonally, with a lag, in direct relation to seasonally-available sunlight; 2. lower vitamin D levels have been observed in depressed patients (as well as in patients with other psychiatric disorders) compared to controls; 3. vitamin D levels in the central nervous system affect the production of both serotonin and dopamine; and 4. vitamin D and vitamin D responsive elements are found throughout the midbrain regions and are especially concentrated in the hypothalamus, a region that encompasses the circadian timing systems and much of its neural circuitry. We also consider the variable of skin pigmentation as this may affect levels of vitamin D in the body. We hypothesize that people with darker skin pigmentation may experience greater risks for lower vitamin D levels that, especially following their migration to regions of higher latitude, could contribute to the emergence of SAD and other psychiatric and physical health problems.
Collapse
|
37
|
Abstract
Food is a potent natural reward and food intake is a complex process. Reward and gratification associated with food consumption leads to dopamine (DA) production, which in turn activates reward and pleasure centers in the brain. An individual will repeatedly eat a particular food to experience this positive feeling of gratification. This type of repetitive behavior of food intake leads to the activation of brain reward pathways that eventually overrides other signals of satiety and hunger. Thus, a gratification habit through a favorable food leads to overeating and morbid obesity. Overeating and obesity stems from many biological factors engaging both central and peripheral systems in a bi-directional manner involving mood and emotions. Emotional eating and altered mood can also lead to altered food choice and intake leading to overeating and obesity. Research findings from human and animal studies support a two-way link between three concepts, mood, food, and obesity. The focus of this article is to provide an overview of complex nature of food intake where various biological factors link mood, food intake, and brain signaling that engages both peripheral and central nervous system signaling pathways in a bi-directional manner in obesity.
Collapse
Affiliation(s)
- Minati Singh
- Department of Pediatrics, University of Iowa Iowa City, IA, USA ; Department of Pediatrics, HHMI, University of Iowa Iowa City, IA, USA
| |
Collapse
|
38
|
Leyton M, Vezina P. Dopamine ups and downs in vulnerability to addictions: a neurodevelopmental model. Trends Pharmacol Sci 2014; 35:268-76. [PMID: 24794705 PMCID: PMC4041845 DOI: 10.1016/j.tips.2014.04.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/17/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
Abstract
Addictions are commonly presaged by problems in childhood and adolescence. For many individuals this starts with the early expression of impulsive risk-taking, social gregariousness, and oppositional behaviors. Here we propose that these early diverse manifestations reflect a heightened ability of emotionally salient stimuli to activate dopamine pathways that foster behavioral approach. If substance use is initiated, these at-risk youth can also develop heightened responses to drug-paired cues. Through conditioning and drug-induced sensitization, these effects strengthen and accumulate, leading to responses that exceed those elicited by other rewards. At the same time, cues not paired with drug become associated with comparatively lower dopamine release, accentuating further the difference between drug and non-drug rewards. Together, these enhancing and inhibiting processes steer a pre-existing vulnerability toward a disproportionate concern for drugs and drug-related stimuli. Implications for prevention and treatment are discussed.
Collapse
Affiliation(s)
- Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Department of Psychology, McGill University, Montreal, Quebec, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada.
| | - Paul Vezina
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA; Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|