1
|
Riaz Z, Hussain M, Parveen S, Sultana M, Saeed S, Ishaque U, Faiz Z, Tayyab M. In Silico Analysis: Genome-Wide Identification, Characterization and Evolutionary Adaptations of Bone Morphogenetic Protein (BMP) Gene Family in Homo sapiens. Mol Biotechnol 2024; 66:3336-3356. [PMID: 37914865 DOI: 10.1007/s12033-023-00944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
We systematically analyzed BMP gene family in H. sapiens to elucidate genetic structure, phylogenetic relationships, adaptive evolution and tissue-specific expression pattern. Total of 13 BMPs genes were identified in the H. sapiens genome. Bone morphogenetic proteins (BMPs) are composed of a variable number of exons ranging from 2 to 21. They exhibit a molecular weight ranging from 31,081.81 to 82,899.61 Da. These proteins possess hydrophilic characteristics, display thermostability, and exhibit a pH range from acidic to basic. We identified four segmental and two tandem duplication events in BMP gene family of H. sapiens. All of the vertebrate species that were studied show the presence of BMPs 1, 2, 3, 4, 5, 6, 7, 8A, and 15, however only Homo sapiens demonstrated the presence of BMP9 and BMP11. The pathway and process enrichment analysis of BMPs genes showed that these were considerably enriched in positive regulation of pathway-restricted SMAD protein phosphorylation (92%) and cartilage development (77%) biological processes. These genes exhibited positive selection signals that were shown to be conserved across vertebrate lineages. The results showed that BMP2/3/5/6/8a/15 proteins underwent adaptive selection at many amino acid locations and increased positive selection was detected in TGF-β propeptide and TGF-β super family domains which were involved in dorso-ventral patterning, limb bud development. More over the expression pattern of BMP genes revealed that BMP1 and BMP5; BMP4 and BMP6 exhibited substantially identical expression patterns in all tissues while BMP10, BMP15, and BMP3 showed tissue-specific expression.
Collapse
Affiliation(s)
- Zainab Riaz
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Hussain
- Department of Veterinary and Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Shakeela Parveen
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan.
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Punjab, Pakistan.
| | - Mehwish Sultana
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
| | - Saba Saeed
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
- Institue of Zoology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Urwah Ishaque
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
| | - Zunaira Faiz
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Tayyab
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| |
Collapse
|
2
|
Faiz Z, Parveen S, Saeed S, Tayyab M, Sultana M, Hussain M, Shafqat Z. Comparative genomic studies on the TGF-β superfamily in blue whale. Mamm Genome 2024; 35:228-240. [PMID: 38467865 DOI: 10.1007/s00335-024-10031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024]
Abstract
TGF-β supergene family has a wide range of physiological functions including cell adhesion, motility, proliferation, apoptosis, and differentiation. We systematically analyzed and characterized the TGF-β gene superfamily from the whole blue whale (Balaenoptera musculus) genome, using comparative genomic and evolutionary analysis. We identified 30 TGF-β genes and were split into two subgroups, BMP-like and TGF-like. All TGF-β proteins demonstrating a basic nature, with the exception of BMP1, BMP2, BMP10, GDF2, MSTN, and NODAL modulator, had acidic characteristics. All the blue whale (B. musculus) TGF-β proteins, excluding BMP1, are thermostable based on aliphatic index. The instability index showed all proteins except the NODAL modulator was unstable. TGF-β proteins showed a hydrophilic character, with the exception of GDF1 and INHBC. Moreover, all the detected TGF-β genes showed evolutionary conserved nature. A segmental duplication was indicated by TGF-β gene family, and the Ka/Ks ratio showed that the duplicated gene pairs were subjected to selection pressure, indicating both purifying and positive selection pressure. Two possible recombination breakpoints were also predicted. This study provides insights into the genetic characterization and evolutionary aspects of the TGF-β superfamily in blue whales (B. musculus).
Collapse
Affiliation(s)
- Zunaira Faiz
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
| | - Shakeela Parveen
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan.
| | - Saba Saeed
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Tayyab
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Mehwish Sultana
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Hussain
- Department of Veterinary and Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Zainab Shafqat
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
| |
Collapse
|
3
|
Korableva NN, Berestnev EV, Kiselyov SM, Chipsanova NF. Fibrodysplasia Ossificans Progressiva: Literature Review and Case Report. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i6s.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background. Fibrodysplasia ossificans progressiva (FOP) is a genetic disease of the heterotopic ossification group associated with the mutation in ACVR1/ALK2 gene. FOP is characterized by progressive heterotopic endochondral ossification of connective tissue that occurs in postnatal period. It leads to formation of qualitatively normal bone in extraskeletal areas. Congenital hallux deformity is typical for this disease. The clinical picture is characterized by aggravations that are usually caused by trauma or viral infections. Formation of Heterotopic ossificate formation can be observed during aggravations. There is no etiological treatment for FOP. Systemic glucocorticosteroids, non-steroidal anti-inflammatory drug (NSAIDs), mast cell stabilisers, antileukotriene drugs and bisphosphonates can be used in these patients. Clinical case description. The child was born with congenital hallux deformity typical for FOP. The disease onset was noted at the age of 2 years 8 months with a tumor-like painful mass on the neck. Oncological (lymphoproliferative) disease was suspected but biopsy from the lesion did not confirm its malignant nature. The child was consulted by pediatric rheumatologist who has diagnosed FOP. Etanercept and zoledronic acid were administrated, though etanercept was later discontinued. For now, the child receives zoledronic acid infusions 2 times per year and daily NSAIDs. Conclusion. The difficulties in FOP diagnosing are associated to its sporadic nature and clinical picture similarity to other diseases. Suspected malignancy leads to biopsy that is highly undesirable in FOP patients due to high risk of iatrogenic complications.
Collapse
|
4
|
Deficiency of MMP-10 Aggravates the Diseased Phenotype of Aged Dystrophic Mice. Life (Basel) 2021; 11:life11121398. [PMID: 34947929 PMCID: PMC8705381 DOI: 10.3390/life11121398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 01/03/2023] Open
Abstract
Matrix metalloproteinases (MMPs) have been implicated in the progression of muscular dystrophy, and recent studies have reported the role of MMP-10 in skeletal muscle pathology of young dystrophic mice. Nevertheless, its involvement in dystrophin-deficient hearts remains unexplored. Here, we aimed to investigate the involvement of MMP-10 in the progression of severe muscular dystrophy and to characterize MMP-10 loss in skeletal and cardiac muscles of aged dystrophic mice. We examined the histopathological effect of MMP-10 ablation in aged mdx mice, both in the hind limb muscles and heart tissues. We found that MMP-10 loss compromises survival rates of aged mdx mice, with skeletal and cardiac muscles developing a chronic inflammatory response. Our findings indicate that MMP-10 is implicated in severe muscular dystrophy progression, thus identifying a new area of research that could lead to future therapies for dystrophic muscles.
Collapse
|
5
|
Valdés-Fernández J, López-Martínez T, Ripalda-Cemboráin P, Calvo IA, Sáez B, Romero-Torrecilla JA, Aldazabal J, Muiños-López E, Montiel V, Orbe J, Rodríguez JA, Páramo JA, Prósper F, Granero-Moltó F. Molecular and Cellular Mechanisms of Delayed Fracture Healing in Mmp10 (Stromelysin 2) Knockout Mice. J Bone Miner Res 2021; 36:2203-2213. [PMID: 34173256 DOI: 10.1002/jbmr.4403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/08/2022]
Abstract
The remodeling of the extracellular matrix is a central function in endochondral ossification and bone homeostasis. During secondary fracture healing, vascular invasion and bone growth requires the removal of the cartilage intermediate and the coordinate action of the collagenase matrix metalloproteinase (MMP)-13, produced by hypertrophic chondrocytes, and the gelatinase MMP-9, produced by cells of hematopoietic lineage. Interfering with these MMP activities results in impaired fracture healing characterized by cartilage accumulation and delayed vascularization. MMP-10, Stromelysin 2, a matrix metalloproteinase with high homology to MMP-3 (Stromelysin 1), presents a wide range of putative substrates identified in vitro, but its targets and functions in vivo and especially during fracture healing and bone homeostasis are not well defined. Here, we investigated the role of MMP-10 through bone regeneration in C57BL/6 mice. During secondary fracture healing, MMP-10 is expressed by hematopoietic cells and its maximum expression peak is associated with cartilage resorption at 14 days post fracture (dpf). In accordance with this expression pattern, when Mmp10 is globally silenced, we observed an impaired fracture-healing phenotype at 14 dpf, characterized by delayed cartilage resorption and TRAP-positive cell accumulation. This phenotype can be rescued by a non-competitive transplant of wild-type bone marrow, indicating that MMP-10 functions are required only in cells of hematopoietic linage. In addition, we found that this phenotype is a consequence of reduced gelatinase activity and the lack of proMMP-9 processing in macrophages. Our data provide evidence of the in vivo function of MMP-10 during endochondral ossification and defines the macrophages as the lead cell population in cartilage removal and vascular invasion. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | | | - Purificación Ripalda-Cemboráin
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain.,Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Isabel A Calvo
- Hematology-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Borja Sáez
- Hematology-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | | | - Javier Aldazabal
- Tissue Engineering Group, TECNUN-Universidad de Navarra, San Sebastián, Spain
| | | | - Verónica Montiel
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Josune Orbe
- Atherotrombosis, Cardiovascular Disease Program, CIMA, Instituto de Investigación Sanitaria de Navarra (IdiSNA), CIBERCV, Pamplona, Spain
| | - José Antonio Rodríguez
- Atherotrombosis, Cardiovascular Disease Program, CIMA, Instituto de Investigación Sanitaria de Navarra (IdiSNA), CIBERCV, Pamplona, Spain
| | - José Antonio Páramo
- Atherotrombosis, Cardiovascular Disease Program, CIMA, Instituto de Investigación Sanitaria de Navarra (IdiSNA), CIBERCV, Pamplona, Spain.,Department of Hematology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prósper
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain.,Hematology-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Department of Hematology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Froilán Granero-Moltó
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain.,Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
6
|
The Bone Regeneration Capacity of BMP-2 + MMP-10 Loaded Scaffolds Depends on the Tissue Status. Pharmaceutics 2021; 13:pharmaceutics13070979. [PMID: 34209593 PMCID: PMC8308972 DOI: 10.3390/pharmaceutics13070979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022] Open
Abstract
Biomaterials-mediated bone formation in osteoporosis (OP) is challenging as it requires tissue growth promotion and adequate mineralization. Based on our previous findings, the development of scaffolds combining bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 10 (MMP-10) shows promise for OP management. To test our hypothesis, scaffolds containing BMP-2 + MMP-10 at variable ratios or BMP-2 + Alendronate (ALD) were prepared. Systems were characterized and tested in vitro on healthy and OP mesenchymal stem cells and in vivo bone formation was studied on healthy and OP animals. Therapeutic molecules were efficiently encapsulated into PLGA microspheres and embedded into chitosan foams. The use of PLGA (poly(lactic-co-glycolic acid)) microspheres as therapeutic molecule reservoirs allowed them to achieve an in vitro and in vivo controlled release. A beneficial effect on the alkaline phosphatase activity of non-OP cells was observed for both combinations when compared with BMP-2 alone. This effect was not detected on OP cells where all treatments promoted a similar increase in ALP activity compared with control. The in vivo results indicated a positive effect of the BMP-2 + MMP-10 combination at both of the doses tested on tissue repair for OP mice while it had the opposite effect on non-OP animals. This fact can be explained by the scaffold’s slow-release rate and degradation that could be beneficial for delayed bone regeneration conditions but had the reverse effect on healthy animals. Therefore, the development of adequate scaffolds for bone regeneration requires consideration of the tissue catabolic/anabolic balance to obtain biomaterials with degradation/release behaviors suited for the existing tissue status.
Collapse
|
7
|
Matos AA, Oliveira FA, Machado AC, Saldanha LL, Tokuhara CK, Souza LP, Vilegas W, Dionísio TJ, Santos C, Peres-Buzalaf C, Dokkedal AL, Oliveira R. An extract from Myracrodruon urundeuva inhibits matrix mineralization in human osteoblasts. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:192-201. [PMID: 30905790 DOI: 10.1016/j.jep.2019.03.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phytotherapy based on plant-derived compounds is an alternative medicinal strategy for the relief of symptoms and the curing of diseases. The leaves of Myracrodruon urundeuva a medicinal plant also known as "aroeira", has been used in traditional medicine as healing, antiulcer and anti-inflammatory to treat skeletal diseases in Brazil, but its role in bone cell toxicity, as well as in bone formation, remains to be established. AIM OF THE STUDY We sought to determine the in vitro osteogenic effects of a hydroalcoholic M. urundeuva leaves extract in primary human osteoblasts. MATERIALS AND METHODS Cell viability, reactive oxygen species (ROS) production, alkaline phosphatase (ALP) activity and matrix mineralization were evaluated by MTT assay, DCFH-DA probe, colorimetric-based enzymatic assay and Alizarin Red-staining, respectively. Besides, the matrix metalloproteinase (MMP)-2 and progressive ankylosis protein homolog (ANKH) gene expression were determined by real-time RT-qPCR and MMP-2 activity by zymography. RESULTS Exposure of osteoblasts to M. urundeuva extract significantly decreased viability and increased reactive oxygen species (ROS) production, regardless of the extract concentration. The M. urundeuva extract at 10 μg/mL also downregulated matrix metalloproteinase (MMP)-2, while upregulating progressive ankylosis protein homolog (ANKH) gene expression. By contrast, the MMP-2 activity was unchanged. The M. urundeuva extract at 10 μg/mL also reduced alkaline phosphatase (ALP) activity and mineralization. CONCLUSIONS Overall, our findings suggest that the inhibition of osteogenic differentiation and matrix mineralization promoted by M. urundeuva may be due more to an increase in oxidative stress than to the modulation of MMP-2 and ANKH expression.
Collapse
Affiliation(s)
- Adriana Arruda Matos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | - Flávia Amadeu Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | - Alessandra Cury Machado
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | | | - Cintia Kazuko Tokuhara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | - Leonardo Perez Souza
- Chemistry Institute, Department of Organic Chemistry, UNESP, Araraquara, SP, Brazil.
| | - Wagner Vilegas
- Chemistry Institute, Department of Organic Chemistry, UNESP, Araraquara, SP, Brazil.
| | - Thiago José Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | - Carlos Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | - Camila Peres-Buzalaf
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade do Sagrado Coração, Bauru, SP, Brazil.
| | - Anne Lígia Dokkedal
- Department of Biological Sciences, School of Science, UNESP, Bauru, SP, Brazil.
| | - Rodrigo Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| |
Collapse
|
8
|
Purroy A, Roncal C, Orbe J, Meilhac O, Belzunce M, Zalba G, Villa-Bellosta R, Andrés V, Parks WC, Páramo JA, Rodríguez JA. Matrix metalloproteinase-10 deficiency delays atherosclerosis progression and plaque calcification. Atherosclerosis 2018; 278:124-134. [DOI: 10.1016/j.atherosclerosis.2018.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 02/01/2023]
|
9
|
Cheishvili D, Parashar S, Mahmood N, Arakelian A, Kremer R, Goltzman D, Szyf M, Rabbani SA. Identification of an Epigenetic Signature of Osteoporosis in Blood DNA of Postmenopausal Women. J Bone Miner Res 2018; 33:1980-1989. [PMID: 29924424 DOI: 10.1002/jbmr.3527] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/17/2018] [Accepted: 06/06/2018] [Indexed: 12/31/2022]
Abstract
Osteoporosis is one of the most common age-related progressive bone diseases in elderly people. Approximately one in three women and one in five men are predisposed to developing osteoporosis. In postmenopausal women, a reduction in BMD leads to an increased risk of fractures. In the current study, we delineated the DNA methylation signatures in whole blood samples of postmenopausal osteoporotic women. We obtained whole blood DNA from 22 normal women and 22 postmenopausal osteoporotic women (51 to 89 years old) from the Canadian Multicenter Osteoporosis Study (CaMos) cohort. These DNA samples were subjected to Illumina Infinium human methylation 450 K analysis. Illumina 450K raw data were analyzed by Genome Studio software. Analysis of the female participants with early and advanced osteoporosis resulted in the generation of a list of 1233 differentially methylated CpG sites when compared with age-matched normal women. T test, ANOVA, and post hoc statistical analyses were performed, and 77 significantly differentially methylated CpG sites were identified. From the 13 most significant genes, ZNF267, ABLIM2, RHOJ, CDKL5, and PDCD1 were selected for their potential role in bone biology. A weighted polygenic DNA methylation score of these genes predicted osteoporosis at an early stage with high sensitivity and specificity and correlated with measures of bone density. Pyrosequencing analysis of these genes was performed to validate the results obtained from Illumina 450 K methylation analysis. The current study provides proof of principal for the role of DNA methylation in osteoporosis. Using whole blood DNA methylation analysis, women at risk of developing osteoporosis can be identified before a diagnosis of osteoporosis is made using BMD as a screening method. Early diagnosis will help to select patients who might benefit from early therapeutic intervention. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- David Cheishvili
- Department of Pharmacology and Therapeutics, McGill University Health Center, Montreal, QC, Canada
| | - Surabhi Parashar
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Niaz Mahmood
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Ani Arakelian
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Richard Kremer
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - David Goltzman
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University Health Center, Montreal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
10
|
Reyes R, Rodríguez JA, Orbe J, Arnau MR, Évora C, Delgado A. Combined sustained release of BMP2 and MMP10 accelerates bone formation and mineralization of calvaria critical size defect in mice. Drug Deliv 2018. [PMID: 29516759 PMCID: PMC6058487 DOI: 10.1080/10717544.2018.1446473] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effect of dual delivery of bone morphogenetic protein-2 (BMP-2) and matrix metalloproteinase 10 (MMP10) on bone regeneration was investigated in a murine model of calvarial critical-size defect, hypothesizing that it would result in an enhanced bone formation. Critical-size calvarial defects (4 mm diameter) were created in mice and PLGA microspheres preloaded with either BMP-2, MMP10 or a microsphere combination of both were transplanted into defect sites at different doses. Empty microspheres were used as the negative control. Encapsulation efficiency was assessed and in vivo release kinetics of BMP-2 and MMP10 were examined over 14 days. Histological analyses were used to analyze bone formation after four and eight weeks. Combination with MMP10 (30 ng) significantly enhanced BMP-2 (600 ng)-mediated osteogenesis, as confirmed by the increase in percentage of bone fill (p < .05) at four weeks. Moreover, it also increased mineral apposition rate (p < .05), measured by double labeling with tetracycline and calceine. MMP10 accelerates bone repair by enhancing BMP-2-promoted bone healing and improving the mineralization rate. In conclusion combination of MMP10 and BMP-2 may become a promising strategy for repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Ricardo Reyes
- a Department of Biochemistry, Microbiology, Cell Biology and Genetics , Universidad de La Laguna , La Laguna , Spain.,b Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna , La Laguna , Spain
| | - Jose Antonio Rodríguez
- c Laboratorio de Aterotrombosis, Área de Ciencias Cardiovasculares, CIMA-Universidad de Navarra , Pamplona , Spain.,d CIBER de Enfermedades Cardiovasculares (CIBER-CV) , Madrid , Spain.,e IdiSNA-Health Research Institute of Navarra , Pamplona , Spain
| | - Josune Orbe
- c Laboratorio de Aterotrombosis, Área de Ciencias Cardiovasculares, CIMA-Universidad de Navarra , Pamplona , Spain.,d CIBER de Enfermedades Cardiovasculares (CIBER-CV) , Madrid , Spain.,e IdiSNA-Health Research Institute of Navarra , Pamplona , Spain
| | - María Rosa Arnau
- f Servicio de Estabulario, Universidad de La Laguna , La Laguna , Spain
| | - Carmen Évora
- b Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna , La Laguna , Spain.,g Department of Chemical Engineering and Pharmaceutical Technology , Universidad de La Laguna , La Laguna , Spain
| | - Araceli Delgado
- b Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna , La Laguna , Spain.,g Department of Chemical Engineering and Pharmaceutical Technology , Universidad de La Laguna , La Laguna , Spain
| |
Collapse
|
11
|
Zeng LR, Zhu FB, Wang JY, Hou Q, Yue ZS, Yan SG, Quan RF, Zhang YL. Local influence of high molecular polyethylene particles on heterotopic ossification. Exp Ther Med 2017; 13:2934-2938. [PMID: 28587363 PMCID: PMC5450723 DOI: 10.3892/etm.2017.4327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/06/2017] [Indexed: 11/06/2022] Open
Abstract
We studied the effect of molecular polyethylene particles on local heterotopic ossification. A total of 36 healthy Sprague-Dawley rats were randomly divided into the control group (n=18) and the observation group (n=18). High molecular polyethylene particles were injected to rupture Achilles tendon position in the observation group, and normal saline was injected in the control group. X-ray examinations were conducted on Achilles tendon in the 4th, 8th and 12th week after operation. The incidence rate of heterotopic ossification was evaluated, and bone trabecula morphological structure was studied under optical microscope after hematoxylin and eosin staining. Bone morphogenetic protein 2 (BMP-2), transforming growth factor-β (TGF-β), interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), runt-related transcription factor 2 (Runx2) and matrix metalloproteinase-9 (MMP-9) expression levels were also measured. Our results showed that heterotopic ossification incidence in the observation group was significantly lower than that in the control group. Achilles tendon structure in the control group increased in volume, and its texture was harder and cartilage-like. In the observation group, trabecular bone volume, thickness and quantity were more than those observed in the control group. BMP-2, TGF-β, IL-1, TNF-α, Runx2 and MMP-9 levels in the observation group were significantly lower than those in the control group. We concluded that, high molecular polyethylene particles had a significant inhibiting effect on local heterotopic ossification.
Collapse
Affiliation(s)
- Lin-Ru Zeng
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Fang-Bing Zhu
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Jian-Yue Wang
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Qiao Hou
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Zhen-Shuang Yue
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Shi-Gui Yan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Ren-Fu Quan
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Ying-Liang Zhang
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| |
Collapse
|
12
|
Kawao N, Yano M, Tamura Y, Okumoto K, Okada K, Kaji H. Role of osteoclasts in heterotopic ossification enhanced by fibrodysplasia ossificans progressiva-related activin-like kinase 2 mutation in mice. J Bone Miner Metab 2016. [PMID: 26204847 DOI: 10.1007/s00774-015-0701-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a disorder of skeletal malformations and progressive heterotopic ossification. The constitutively activating mutation (R206H) of the bone morphogenetic protein type 1 receptor, activin-like kinase 2 (ALK2), is responsible for the pathogenesis of FOP. Although transfection of the causal mutation of FOP into myoblasts enhances osteoclast formation by transforming growth factor-β (TGF-β), the role of osteoclasts in heterotopic ossification is unknown. We therefore examined the effects of alendronate, SB431542 and SB203580 on heterotopic ossification induced by the causal mutation of FOP. Total bone mineral content as well as numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated and alkaline phosphatase (ALP)-positive cells in heterotopic bone were significantly higher in muscle tissues implanted with ALK2 (R206H)-transfected mouse myoblastic C2C12 cells than in the tissues implanted with empty vector-transfected cells in nude mice. Alendronate, an aminobisphosphonate, did not affect total mineral content or numbers of TRAP-positive multinucleated and ALP-positive cells in heterotopic bone, which were enhanced by the implantation of ALK2 (R206H)-transfected C2C12 cells, although it significantly decreased serum levels of cross-linked C-telopeptide of type I collagen, a bone resorption index. Moreover, neither SB431542, an inhibitor of TGF-β receptor type I kinase, nor SB203580, an inhibitor of p38 mitogen-activated protein kinase, affected the increase in heterotopic ossification due to the implantation of ALK2 (R206H)-transfected C2C12 cells. In conclusion, the present study indicates that osteoclast inhibition does not affect heterotopic ossification enhanced by FOP-related mutation.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan
| | - Masato Yano
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan
| | - Yukinori Tamura
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan
| | - Katsumi Okumoto
- Life Science Research Institute, Kinki University, Osaka, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan.
| |
Collapse
|
13
|
Pandruvada SN, Gonzalez OA, Kirakodu S, Gudhimella S, Stromberg AJ, Ebersole JL, Orraca L, Gonzalez-Martinez J, Novak MJ, Huja SS. Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. J Clin Periodontol 2016; 43:408-17. [PMID: 26859687 DOI: 10.1111/jcpe.12528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
Abstract
AIM Cellular and molecular immunoinflammatory changes in gingival tissues drive alveolar bone loss in periodontitis. Since ageing is a risk factor for periodontitis, we sought to identify age-related gingival transcriptome changes associated with bone metabolism in both healthy and in naturally occurring periodontitis. MATERIALS AND METHODS Adult (12-16 years) and aged (18-23 years) non-human primates (M. mulatta) (n = 24) were grouped into healthy and periodontitis. Gingival tissue samples were obtained and subjected to microarray analysis using the Gene Chip Macaque Genome Array. Gene expression profiles involved in osteoclast/osteoblast proliferation, adhesion and function were evaluated and compared across and between the age groups. QPCR was also performed on selected genes to validate microarray data. RESULTS Healthy aged tissues showed a gene profile expression that suggest enhancement of osteoclastic adhesion, proliferation/survival and function (SPP1, TLR4, MMP8 and TFEC) and impaired osteoblastic activity (SMEK3P and SMAD5). The gingival transcriptome in both adult and aged animals with naturally occurring periodontitis (FOS, IL6, TLR4, MMP9, MMP10 and SPP1 genes) was consistent with a local inflammatory response driving towards bone/connective tissue destruction. CONCLUSION A pro-osteoclastogenic gingival transcriptome is associated with periodontitis irrespective of age; however; a greater bone-destructive molecular environment is associated with ageing in healthy tissues.
Collapse
Affiliation(s)
- Subramanya N Pandruvada
- Division of Orthodontics, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Sudha Gudhimella
- Division of Orthodontics, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | | | - Jeffrey L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Luis Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, PR, USA
| | | | - Michael J Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Sarandeep S Huja
- Division of Orthodontics, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
14
|
Sánchez-Duffhues G, Hiepen C, Knaus P, Ten Dijke P. Bone morphogenetic protein signaling in bone homeostasis. Bone 2015; 80:43-59. [PMID: 26051467 DOI: 10.1016/j.bone.2015.05.025] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/11/2015] [Accepted: 05/20/2015] [Indexed: 01/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are cytokines belonging to the transforming growth factor-β (TGF-β) superfamily. They play multiple functions during development and tissue homeostasis, including regulation of the bone homeostasis. The BMP signaling pathway consists in a well-orchestrated manner of ligands, membrane receptors, co-receptors and intracellular mediators, that regulate the expression of genes controlling the normal functioning of the bone tissues. Interestingly, BMP signaling perturbation is associated to a variety of low and high bone mass diseases, including osteoporosis, bone fracture disorders and heterotopic ossification. Consistent with these findings, in vitro and in vivo studies have shown that BMPs have potent effects on the activity of cells regulating bone function, suggesting that manipulation of the BMP signaling pathway may be employed as a therapeutic approach to treat bone diseases. Here we review the recent advances on BMP signaling and bone homeostasis, and how this knowledge may be used towards improved diagnosis and development of novel treatment modalities. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands
| | - Christian Hiepen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany.
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands.
| |
Collapse
|
15
|
Kawao N, Kaji H. Interactions Between Muscle Tissues and Bone Metabolism. J Cell Biochem 2015; 116:687-95. [DOI: 10.1002/jcb.25040] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine; Kinki University Faculty of Medicine; Osakasayama Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine; Kinki University Faculty of Medicine; Osakasayama Japan
| |
Collapse
|
16
|
Liskova J, Babchenko O, Varga M, Kromka A, Hadraba D, Svindrych Z, Burdikova Z, Bacakova L. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films. Int J Nanomedicine 2015; 10:869-84. [PMID: 25670900 PMCID: PMC4315565 DOI: 10.2147/ijn.s73628] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nanocrystalline diamond (NCD) films are promising materials for bone implant coatings because of their biocompatibility, chemical resistance, and mechanical hardness. Moreover, NCD wettability can be tailored by grafting specific atoms. The NCD films used in this study were grown on silicon substrates by microwave plasma-enhanced chemical vapor deposition and grafted by hydrogen atoms (H-termination) or oxygen atoms (O-termination). Human osteoblast-like Saos-2 cells were used for biological studies on H-terminated and O-terminated NCD films. The adhesion, growth, and subsequent differentiation of the osteoblasts on NCD films were examined, and the extracellular matrix production and composition were quantified. The osteoblasts that had been cultivated on the O-terminated NCD films exhibited a higher growth rate than those grown on the H-terminated NCD films. The mature collagen fibers were detected in Saos-2 cells on both the H-terminated and O-terminated NCD films; however, the quantity of total collagen in the extracellular matrix was higher on the O-terminated NCD films, as were the amounts of calcium deposition and alkaline phosphatase activity. Nevertheless, the expression of genes for osteogenic markers – type I collagen, alkaline phosphatase, and osteocalcin – was either comparable on the H-terminated and O-terminated films or even lower on the O-terminated films. In conclusion, the higher wettability of the O-terminated NCD films is promising for adhesion and growth of osteoblasts. In addition, the O-terminated surface also seems to support the deposition of extracellular matrix proteins and extracellular matrix mineralization, and this is promising for better osteoconductivity of potential bone implant coatings.
Collapse
Affiliation(s)
- Jana Liskova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Oleg Babchenko
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Marian Varga
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Alexander Kromka
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Daniel Hadraba
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Zdenek Svindrych
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Zuzana Burdikova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
17
|
Molecular, phenotypic aspects and therapeutic horizons of rare genetic bone disorders. BIOMED RESEARCH INTERNATIONAL 2014; 2014:670842. [PMID: 25530967 PMCID: PMC4230237 DOI: 10.1155/2014/670842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/12/2014] [Accepted: 08/24/2014] [Indexed: 12/21/2022]
Abstract
A rare disease afflicts less than 200,000 individuals, according to the National Organization for Rare Diseases (NORD) of the United States. Over 6,000 rare disorders affect approximately 1 in 10 Americans. Rare genetic bone disorders remain the major causes of disability in US patients. These rare bone disorders also represent a therapeutic challenge for clinicians, due to lack of understanding of underlying mechanisms. This systematic review explored current literature on therapeutic directions for the following rare genetic bone disorders: fibrous dysplasia, Gorham-Stout syndrome, fibrodysplasia ossificans progressiva, melorheostosis, multiple hereditary exostosis, osteogenesis imperfecta, craniometaphyseal dysplasia, achondroplasia, and hypophosphatasia. The disease mechanisms of Gorham-Stout disease, melorheostosis, and multiple hereditary exostosis are not fully elucidated. Inhibitors of the ACVR1/ALK2 pathway may serve as possible therapeutic intervention for FOP. The use of bisphosphonates and IL-6 inhibitors has been explored to be useful in the treatment of fibrous dysplasia, but more research is warranted. Cell therapy, bisphosphonate polytherapy, and human growth hormone may avert the pathology in osteogenesis imperfecta, but further studies are needed. There are still no current effective treatments for these bone disorders; however, significant promising advances in therapeutic modalities were developed that will limit patient suffering and treat their skeletal disabilities.
Collapse
|
18
|
Abstract
The clinical significance of sarcopenia and osteoporosis has increased with the increase in the population of older people. Sarcopenia is defined by decreased muscle mass and impaired muscle function, which is related to osteoporosis independently and dependently. Numerous lines of clinical evidence suggest that lean body mass is positively related to bone mass, which leads to reduced fracture risk. Genetic, endocrine and mechanical factors affect both muscle and bone simultaneously. Vitamin D, the growth hormone/insulin-like growth factor I axis and testosterone are physiologically and pathologically important as endocrine factors. These findings suggest the presence of interactions between muscle and bone, which might be very important for understanding the physiology and pathophysiology of sarcopenia and osteoporosis. Muscle/bone relationships include two factors: local control of muscle to bone and systemic humoral interactions between muscle and bone. As a putative local inducer of muscle ossification, we found Tmem119, a parathyroid hormone-responsive osteoblast differentiation factor. Moreover, osteoglycin might be one of the muscle-derived humoral bone anabolic factors. This issue may be important for the development of novel drugs and biomarkers for osteoporosis and sarcopenia. Further research will be necessary to clarify the details of the linkage of muscle and bone.
Collapse
Affiliation(s)
- Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Shao X, Cao X, Song G, Zhao Y, Shi B. Metformin rescues the MG63 osteoblasts against the effect of high glucose on proliferation. J Diabetes Res 2014; 2014:453940. [PMID: 24812633 PMCID: PMC4000639 DOI: 10.1155/2014/453940] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/02/2014] [Accepted: 03/26/2014] [Indexed: 02/07/2023] Open
Abstract
AIMS. To study the proliferation of osteoblasts and genes expression under normal glucose, high glucose, and metformin (Met). METHODS. MG63 osteoblast-like cells were cultured in osteogenic medium supplemented with normal glucose (glucose 5.5 mmol/L) or high glucose (glucose 16.7 mmol/L) and metformin + high glucose (Met 300 μmol/L + glucose 16.7 mmol/L). Proliferation was detected with CCK-8 assay at days 1, 3, and 7. Real-time PCR and Western blot were performed to compare the expression of collagen I (Col I), osteocalcin (OCN), osteoprotegerin (OPG), receptor activator for NF- κB ligand (RANKL), and metal matrix proteinases 1 and 2 (MMP1, MMP2). Alkaline phosphatase (ALP) activity was also detected at days 6, 12, and 18. RESULTS. Exposure to high glucose inhibited the proliferation of osteoblasts (P < 0.05), with suppressed OCN and OPG. Meanwhile, Col I, RANKL, MMP1, and MMP2 were unaffected. Metformin attenuated the suppression on proliferation with increased expression of Col I, OCN, and OPG, meanwhile suppressing MMP1 and MMP2. High glucose lowered the intracellular ALP, while metformin raised it. Metformin attenuated the downregulation of ALP completely at day 6, partly at day 12, but not at day 18. CONCLUSIONS. Metformin attenuated the suppression effect of high glucose to the osteoblast proliferation and gene expression, more prominently in earlier stage.
Collapse
Affiliation(s)
- Xinyu Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China
| | - Xiaojun Cao
- Department of Endocrinology and Metabolism, Zhangjiagang First People's Hospital, Zhangjiagang, Jiangsu 215600, China
| | - Ge Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China
| | - Yuan Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China
| | - Bimin Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China
- *Bimin Shi:
| |
Collapse
|