1
|
Hattori Y, Tahara S, Ozawa H, Morita A, Ishii H. Transcriptomic Profiling of Lactotroph Pituitary Neuroendocrine Tumors via RNA Sequencing and Ingenuity Pathway Analysis. Neuroendocrinology 2024; 114:670-680. [PMID: 38643763 DOI: 10.1159/000539017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Lactotroph pituitary neuroendocrine tumors (PitNETs) are common pituitary tumors, but their underlying molecular mechanisms remain unclear. This study aimed to investigate the transcriptomic landscape of lactotroph PitNETs and identify potential molecular mechanisms and therapeutic targets through RNA sequencing and ingenuity pathway analysis (IPA). METHODS Lactotroph PitNET tissues from five surgical cases without dopamine agonist treatment underwent RNA sequencing. Normal pituitary tissues from 3 patients served as controls. Differentially expressed genes (DEGs) were identified, and the functional pathways and gene networks were explored by IPA. RESULTS Transcriptome analysis revealed that lactotroph PitNETs had gene expression patterns that were distinct from normal pituitary tissues. We identified 1,172 upregulated DEGs, including nine long intergenic noncoding RNAs (lincRNAs) belonging to the top 30 DEGs. IPA of the upregulated DEGs showed that the estrogen receptor signaling, oxidative phosphorylation signaling, and EIF signaling were activated. In gene network analysis, key upstream regulators, such as EGR1, PRKACA, PITX2, CREB1, and JUND, may play critical roles in lactotroph PitNETs. CONCLUSION This study provides a comprehensive transcriptomic profile of lactotroph PitNETs and highlights the potential involvement of lincRNAs and specific signaling pathways in tumor pathogenesis. The identified upstream regulators may be potential therapeutic targets for future investigations.
Collapse
Affiliation(s)
- Yujiro Hattori
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Neurological Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shigeyuki Tahara
- Department of Neurological Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akio Morita
- Department of Neurological Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
2
|
Yamamoto M, Takahashi Y. Genetic and Epigenetic Pathogenesis of Acromegaly. Cancers (Basel) 2022; 14:cancers14163861. [PMID: 36010855 PMCID: PMC9405703 DOI: 10.3390/cancers14163861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Various genetic and epigenetic factors are involved in the pathogenesis of somatotroph tumors. Although GNAS mutations are the most prevalent cause of somatotroph tumors, the cause of half of all pathogenesis occurrences remains unclarified. However, recent findings including the pangenomic analysis, such as genome, transcriptome, and methylome approaches, and histological characteristics of pituitary tumors, the involvement of AIP and GPR101, the mechanisms of genomic instability, and possible involvement of miRNAs have gradually unveiled the whole landscape of underlying mechanisms of somatotroph tumors. In this review, we will focus on the recent advances in the pathogenesis of somatotroph tumors. Abstract Acromegaly is caused by excessive secretion of GH and IGF-I mostly from somatotroph tumors. Various genetic and epigenetic factors are involved in the pathogenesis of somatotroph tumors. While somatic mutations of GNAS are the most prevalent cause of somatotroph tumors, germline mutations in various genes (AIP, PRKAR1A, GPR101, GNAS, MEN1, CDKN1B, SDHx, MAX) are also known as the cause of somatotroph tumors. Moreover, recent findings based on multiple perspectives of the pangenomic approach including genome, transcriptome, and methylome analyses, histological characterization, genomic instability, and possible involvement of miRNAs have gradually unveiled the whole landscape of the underlying mechanisms of somatotroph tumors. In this review, we will focus on the recent advances in genetic and epigenetic pathogenesis of somatotroph tumors.
Collapse
Affiliation(s)
- Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Correspondence: ; Tel.: +81-78-382-5861
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Department of Diabetes and Endocrinology, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
3
|
Disease Modeling of Pituitary Adenoma Using Human Pluripotent Stem Cells. Cancers (Basel) 2022; 14:cancers14153660. [PMID: 35954322 PMCID: PMC9367606 DOI: 10.3390/cancers14153660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Pituitary adenoma pathophysiology has been studied mainly using murine cell lines, animal models, and pituitary tumor samples. However, the lack of human pituitary cell line is a significant limiting factor in studying the molecular mechanisms of human pituitary tumors. Recently, pituitary induction methods from human-induced pluripotent stem cells (hiPSCs) have been established. These methods can induce human pituitary hormone-producing cells that retain physiological properties. hiPSCs in which tumor-causing gene mutations are introduced using genome-editing techniques, such as CRISPR/Cas9 systems, provide great opportunities to establish in vitro human pituitary adenoma disease models. The models will be a novel platform to discover novel drugs and investigate tumorigenesis and pathophysiology. The purpose of this review is to provide an overview of the applications of iPSCs for pituitary and neoplastic disorder research and genome-editing technologies to create strategies for developing pituitary adenoma models using iPSCs. Abstract Pituitary adenomas are characterized by abnormal growth in the pituitary gland. Surgical excision is the first-line treatment for functional (hormone-producing) pituitary adenomas, except for prolactin-producing adenomas; however, complete excision is technically challenging, and many patients require long-term medication after the treatment. In addition, the pathophysiology of pituitary adenomas, such as tumorigenesis, has not been fully understood. Pituitary adenoma pathophysiology has mainly been studied using animal models and animal tumor-derived cell lines. Nevertheless, experimental studies on human pituitary adenomas are difficult because of the significant differences among species and the lack of reliable cell lines. Recently, several methods have been established to differentiate pituitary cells from human pluripotent stem cells (hPSCs). The induced pituitary hormone-producing cells retain the physiological properties already lost in tumor-derived cell lines. Moreover, CRISPR/Cas9 systems have expedited the introduction of causative gene mutations in various malignant tumors into hPSCs. Therefore, hPSC-derived pituitary cells have great potential as a novel platform for studying the pathophysiology of human-specific pituitary adenomas and developing novel drugs. This review presents an overview of the recent progresses in hPSC applications for pituitary research, functional pituitary adenoma pathogenesis, and genome-editing techniques for introducing causative mutations. We also discuss future applications of hPSCs for studying pituitary adenomas.
Collapse
|
4
|
Jung H, Kim K, Kim D, Moon JH, Kim EH, Kim SH, Ku CR, Lee EJ. Associations of GNAS Mutations with Surgical Outcomes in Patients with Growth Hormone-Secreting Pituitary Adenoma. Endocrinol Metab (Seoul) 2021; 36:342-350. [PMID: 33752302 PMCID: PMC8090461 DOI: 10.3803/enm.2020.875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The guanine nucleotide-binding protein, alpha stimulating (GNAS) gene has been associated with growth hormone (GH)-secreting pituitary adenoma. We investigated the prevalence of GNAS mutations in Korean patients with acromegaly and assessed whether mutation status correlated with biochemical or clinical characteristics. METHODS We studied 126 patients with acromegaly who underwent surgery between 2005 and 2014 at Severance Hospital. We performed GNAS gene analysis and evaluated age, sex, hormone levels, postoperative biochemical remission, and immunohistochemical staining results of the tumor. RESULTS GNAS mutations were present in 75 patients (59.5%). Patients with and without GNAS mutations showed similar age distribution and Knosp classification. The proportion of female patients was 76.5% and 48.0% in the GNAS-negative and GNAS-mutation groups, respectively (P=0.006). In immunohistochemical staining, the GNAS-mutation group showed higher GH expression in pituitary tumor tissues than the mutation-negative group (98.7% vs. 92.2%, P=0.015). Patients with GNAS mutations had higher preoperative insulin-like growth factor-1 levels (791.3 ng/mL vs. 697.0 ng/mL, P=0.045) and lower immediate postoperative basal (0.9 ng/mL vs. 1.0 ng/mL, P=0.191) and nadir GH levels (0.3 ng/mL vs. 0.6 ng/mL, P=0.012) in oral glucose tolerance tests. Finally, the GNAS-mutation group showed significantly higher surgical remission rates than the mutation-negative group, both at 1 week and 6 months after surgical resection (70.7% vs. 54.9%, P=0.011; 85.3% vs. 82.4%, P=0.007, respectively). CONCLUSION GNAS mutations in GH-secreting pituitary tumors are associated with higher preoperative insulin-like growth factor-1 levels and surgical remission rates and lower immediate postoperative nadir GH levels. Thus, GNAS mutation status can predict surgical responsiveness in patients with acromegaly.
Collapse
Affiliation(s)
- Hyein Jung
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul,
Korea
| | - Kyungwon Kim
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
| | - Daham Kim
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul,
Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul,
Korea
| | - Se Hoon Kim
- Pathology, Yonsei University College of Medicine, Seoul,
Korea
| | - Cheol Ryong Ku
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
| | - Eun Jig Lee
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
| |
Collapse
|
5
|
Genetics of Acromegaly and Gigantism. J Clin Med 2021; 10:jcm10071377. [PMID: 33805450 PMCID: PMC8036715 DOI: 10.3390/jcm10071377] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Growth hormone (GH)-secreting pituitary tumours represent the most genetically determined pituitary tumour type. This is true both for germline and somatic mutations. Germline mutations occur in several known genes (AIP, PRKAR1A, GPR101, GNAS, MEN1, CDKN1B, SDHx, MAX) as well as familial cases with currently unknown genes, while somatic mutations in GNAS are present in up to 40% of tumours. If the disease starts before the fusion of the epiphysis, then accelerated growth and increased final height, or gigantism, can develop, where a genetic background can be identified in half of the cases. Hereditary GH-secreting pituitary adenoma (PA) can manifest as isolated tumours, familial isolated pituitary adenoma (FIPA) including cases with AIP mutations or GPR101 duplications (X-linked acrogigantism, XLAG) or can be a part of systemic diseases like multiple endocrine neoplasia type 1 or type 4, McCune-Albright syndrome, Carney complex or phaeochromocytoma/paraganglioma-pituitary adenoma association. Family history and a search for associated syndromic manifestations can help to draw attention to genetic causes; many of these are now tested as part of gene panels. Identifying genetic mutations allows appropriate screening of associated comorbidities as well as finding affected family members before the clinical manifestation of the disease. This review focuses on germline and somatic mutations predisposing to acromegaly and gigantism.
Collapse
|
6
|
Abstract
BACKGROUND Pituitary tumours are usually benign and relatively common intracranial tumours, with under- and overexpression of pituitary hormones and local mass effects causing considerable morbidity and increased mortality. While most pituitary tumours are sporadic, around 5% of the cases arise in a familial setting, either isolated [familial isolated pituitary adenoma, related to AIP or X-linked acrogigantism], or in a syndromic disorder, such as multiple endocrine neoplasia type 1 or 4, Carney complex, McCune-Albright syndrome, phaeochromocytoma/paraganglioma with pituitary adenoma, DICER1 syndrome, Lynch syndrome, and USP8-related syndrome. Genetically determined pituitary tumours usually present at younger age and show aggressive behaviour, and are often resistant to different treatment modalities. SUBJECT In this practical summary, we take a practical approach: which genetic syndromes should be considered in case of different presentation, such as tumour type, family history, age of onset and additional clinical features of the patient. CONCLUSION The identification of the causative mutation allows genetic and clinical screening of relatives at risk, resulting in earlier diagnosis, a better therapeutic response and ultimately to better long-term outcomes.
Collapse
Affiliation(s)
- Judit Dénes
- Divison of Endocrinology, 2nd Department of Medicine, Health Center, Hungarian Defence Forces, Budapest, Hungary
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK.
| |
Collapse
|
7
|
Matsumoto R, Suga H, Aoi T, Bando H, Fukuoka H, Iguchi G, Narumi S, Hasegawa T, Muguruma K, Ogawa W, Takahashi Y. Congenital pituitary hypoplasia model demonstrates hypothalamic OTX2 regulation of pituitary progenitor cells. J Clin Invest 2020; 130:641-654. [PMID: 31845906 DOI: 10.1172/jci127378] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Pituitary develops from oral ectoderm in contact with adjacent ventral hypothalamus. Impairment in this process results in congenital pituitary hypoplasia (CPH); however, there have been no human disease models for CPH thus far, prohibiting the elucidation of the underlying mechanisms. In this study, we established a disease model of CPH using patient-derived induced pluripotent stem cells (iPSCs) and 3D organoid technique, in which oral ectoderm and hypothalamus develop simultaneously. Interestingly, patient iPSCs with a heterozygous mutation in the orthodenticle homeobox 2 (OTX2) gene showed increased apoptosis in the pituitary progenitor cells, and the differentiation into pituitary hormone-producing cells was severely impaired. As an underlying mechanism, OTX2 in hypothalamus, not in oral ectoderm, was essential for progenitor cell maintenance by regulating LHX3 expression in oral ectoderm via FGF10 expression in the hypothalamus. Convincingly, the phenotype was reversed by the correction of the mutation, and the haploinsufficiency of OTX2 in control iPSCs revealed a similar phenotype, demonstrating that this mutation was responsible. Thus, we established an iPSC-based congenital pituitary disease model, which recapitulated interaction between hypothalamus and oral ectoderm and demonstrated the essential role of hypothalamic OTX2.
Collapse
Affiliation(s)
- Ryusaku Matsumoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and.,Department of iPS cell Applications, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology, and Innovation, Kobe, Hyogo, Japan
| | - Hidetaka Suga
- Department of Diabetes and Endocrinology, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Takashi Aoi
- Department of iPS cell Applications, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology, and Innovation, Kobe, Hyogo, Japan
| | - Hironori Bando
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Hidenori Fukuoka
- Department of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Genzo Iguchi
- Department of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Hyogo, Japan.,Medical Center for Student Health, Kobe University, Kobe, Hyogo, Japan.,Department of Biosignal Pathophysiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Muguruma
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan.,Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| |
Collapse
|
8
|
Hattori Y, Ishii H, Tahara S, Morita A, Ozawa H. Accurate assessment of estrogen receptor profiles in non-functioning pituitary adenomas using RT-digital PCR and immunohistochemistry. Life Sci 2020; 260:118416. [PMID: 32926922 DOI: 10.1016/j.lfs.2020.118416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Non-functioning pituitary adenomas (NFPAs) are common pituitary tumors, and surgery is generally the only treatment option. Few attempts have been made to explore target molecules for the development of NFPA pharmacological treatments. METHOD We quantitatively assessed the expression profiles of estrogen receptor (ER) transcripts and proteins in NFPA samples, using reverse transcription-digital polymerase chain reaction (RT-dPCR) and immunohistochemistry, and further investigated the correlations between the expression levels of ER and those of downstream responsive genes. All patients had undergone surgery at the same high-volume hospital. A total of 20 patients with NFPAs were included. All patients were new-onset, and none were diagnosed with intratumoral hemorrhages or cysts. RESULTS NFPA samples exhibited a bimodal ESR1 expression pattern and were categorized into significantly different high- and low-ESR1 expression level groups (P < 0.05). In contrast, expression levels of ESR1 variants and ESR2 could barely be detected. Similar results were obtained through the immunohistochemical staining of NFPAs, using well-validated antibodies against ERs. The expression levels of ESR1 positively correlated with those of GREB1, an estrogen-responsive gene [correlation coefficient (r) = 0.623, P = 0.003]. CONCLUSIONS ESR1 expression levels in NFPAs exhibited a bimodal pattern and were positively correlated with GREB1 expression levels. The accurate assessment of ER expression levels may further advance future NFPA-related research.
Collapse
Affiliation(s)
- Yujiro Hattori
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan; Department of Neurological Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shigeyuki Tahara
- Department of Neurological Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akio Morita
- Department of Neurological Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
9
|
Shen AJJ, King J, Scott H, Colman P, Yates CJ. Insights into pituitary tumorigenesis: from Sanger sequencing to next-generation sequencing and beyond. Expert Rev Endocrinol Metab 2019; 14:399-418. [PMID: 31793361 DOI: 10.1080/17446651.2019.1689120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
Introduction: This review explores insights provided by next-generation sequencing (NGS) of pituitary tumors and the clinical implications.Areas covered: Although syndromic forms account for just 5% of pituitary tumours, past Sanger sequencing studies pragmatically focused on them. These studies identified mutations in MEN1, CDKN1B, PRKAR1A, GNAS and SDHx causing Multiple Endocrine Neoplasia-1 (MEN1), MEN4, Carney Complex-1, McCune Albright Syndrome and 3P association syndromes, respectively. Furthermore, linkage analysis of single-nucleotide polymorphisms identified AIP mutations in 20% with familial isolated pituitary adenomas (FIPA). NGS has enabled further investigation of sporadic tumours. Thus, mutations of USP8 and CABLES1 were identified in corticotrophinomas, BRAF in papillary craniopharyngiomas and CTNNB1 in adamantinomatous craniopharyngiomas. NGS also revealed that pituitary tumours occur in the DICER1 syndrome, due to DICER1 mutations, and CDH23 mutations occur in FIPA. These discoveries revealed novel therapeutic targets and studies are underway of BRAF inhibitors for papillary craniopharyngiomas, and EGFR and USP8 inhibitors for corticotrophinomas.Expert opinion: It has become apparent that single-nucleotide variants and small insertion/deletion DNA mutations cannot explain all pituitary tumorigenesis. Integrated and improved analyses including whole-genome sequencing, copy number, and structural variation analyses, RNA sequencing and epigenomic analyses, with improved genomic technologies, are likely to further define the genomic landscape.
Collapse
Affiliation(s)
| | - James King
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Australia
| | - Hamish Scott
- Department of Genetics and Molecular Pathology, Center for Cancer Biology, SA Pathology, Adelaide, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Peter Colman
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Diabetes and Endocrinology, The Royal Melbourne Hospital, Parkville, Australia
| | - Christopher J Yates
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Diabetes and Endocrinology, The Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
10
|
Watanabe D, Yagasaki H, Kojika S, Ogiwara M, Kinouchi H, Nakane T, Inukai T. GH/PRL-secreting pituitary macroadenoma associated with GNAS p.Gln227Leu mutation: pediatric case report and review. Endocr J 2019; 66:403-408. [PMID: 30814395 DOI: 10.1507/endocrj.ej18-0370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
GH-secreting pituitary adenomas (GHomas) are rare in the pediatric population. Guanine nucleotide-binding protein, alpha stimulating (GNAS) somatic mutations are often found in patients with GHoma. Here, we report an 8-year-old girl with GH-secreting pituitary adenoma successfully treated by operative tumor resection and postoperative treatment with octreotide long-acting release (LAR). Tumor DNA sequence analysis revealed a somatic heterozygous c.680A>T (p.Gln227Leu) mutation in GNAS. We reviewed 1,084 cases of GHomas, 409 (37.7%) of which harbored GNAS mutations. In pediatrics cases, aged 15 years or younger, 11 harbored a GNAS mutation, and GNAS p.Arg201Cys was identified in five cases. No other cases of codon 227 mutation were detected. These cases suggest that, in pediatric patients, the clinical features of GHoma may differ from those observed in adults. This is possibly related to octreotide or dopamine agonist resistance. Of six patients with surgical resistance, only one was reactive when treated with octreotide. Our case shows that octreotide LAR is an effective choice for treating GNAS-induced GHoma. This is the first report detailing the effectiveness of octreotide LAR in a GNAS codon 227 mutation-induced GHoma in a pediatric case. Examination of the relationship between genetic variation and clinical features in pediatric patients will enable us to assess the long-term effects of surgical and medical treatment of GHomas.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hideaki Yagasaki
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Satoru Kojika
- Department of Pediatrics, Fujiyoshida Municipal Hospital, Yamanashi, Japan
| | - Masakazu Ogiwara
- Department of Neurosurgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takaya Nakane
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
11
|
Hou ZS, Tao YX. Mutations in GPR101 as a potential cause of X-linked acrogigantism and acromegaly. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 161:47-67. [DOI: 10.1016/bs.pmbts.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
van den Broek MFM, van Nesselrooij BPM, Verrijn Stuart AA, van Leeuwaarde RS, Valk GD. Clinical Relevance of Genetic Analysis in Patients With Pituitary Adenomas: A Systematic Review. Front Endocrinol (Lausanne) 2019; 10:837. [PMID: 31920960 PMCID: PMC6914701 DOI: 10.3389/fendo.2019.00837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
Pituitary adenomas (PA) are amongst the most prevalent intracranial tumors, causing complications by hormonal overproduction or deficiency and tumor mass effects, with 95% of cases occurring sporadically. Associated germline mutations (AIP, MEN1, CDKN1B, PRKAR1A, SDHx) and Xq26.3 microduplications are increasingly identified, but the clinical consequences in sporadic PA remain unclear. This systematic review evaluates predictors of a genetic cause of sporadic PA and the consequences for treatment outcome. We undertook a sensitive MEDLINE/Pubmed, EMBASE, and Web of Science search with critical appraisal of identified studies. Thirty-seven studies on predictors of mutations and 10 studies on the influence on treatment outcome were included. AIP and MEN1 mutations were associated with young age of PA diagnosis. AIP mutations were also associated with gigantism and macroadenomas at time of diagnosis. Xq26.3 microduplications were associated with PA below the age of five. AIP and MEN1 mutation analysis is therefore recommended in young patients (≤30 years). AIP mutation analysis is specifically recommended for patients with PA induced gigantism and macroadenoma. Screening for Xq26.3 microduplications is advisable in children below the age of five with increased growth velocity due to PA. There is no evidence supporting mutation analysis of other genes in sporadic PA. MEN1 mutation related prolactinoma respond well to dopamine agonists while AIP mutation associated somatotroph and lactotroph adenoma are frequently resistant to medical treatment. In patients harboring an Xq26.3 microduplication treatment is challenging, although outcome is not different from other patients with PA induced gigantism. Effective use of genetic analysis may lead to early disease identification, while knowledge of the impact of germline mutations on susceptibility to various treatment modalities helps to determine therapeutic strategies, possibly lowering disease morbidity.
Collapse
Affiliation(s)
| | | | - Annemarie A. Verrijn Stuart
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Gerlof D. Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Gerlof D. Valk
| |
Collapse
|
13
|
Yamamoto R, Robert Shima K, Igawa H, Kaikoi Y, Sasagawa Y, Hayashi Y, Inoshita N, Fukuoka H, Takahashi Y, Takamura T. Impact of preoperative pasireotide therapy on invasive octreotide-resistant acromegaly. Endocr J 2018; 65:1061-1067. [PMID: 30078825 DOI: 10.1507/endocrj.ej17-0487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A 43-year-old woman with an 8-year history of diabetes, hypertension, and dyslipidemia presented with amenorrhea and convulsion. Her MRI scan revealed a 3.5-cm T2-hyperintense pituitary macroadenoma with suprasellar extension to the frontal lobe and bilateral cavernous sinus invasion. Her serum levels of GH and insulin-like growth factor-I (IGF-I) were elevated to 9.08 ng/mL (normal range: <2.1 ng/mL) and 1,000 ng/mL (normal range: 90-233 ng/mL, SD score +10.6), respectively. Bromocriptine insufficiently suppressed her GH levels, while octreotide paradoxically increased her GH levels. Together with her characteristic features, she was diagnosed with acromegaly caused by an invasive GH-producing pituitary macroadenoma. As performing a one-stage operation would have been extremely difficult, she was first treated with pasireotide long-acting release (40 mg monthly) for 5 months followed by a successful transsphenoidal surgery. One month after the first injection, biochemical control was achieved (IGF-I, 220 ng/mL; GH, 1.26 ng/mL), and tumor shrinkage of approximately 50% was observed. The resected tumor was histologically diagnosed as a sparsely granulated somatotroph adenoma, with higher expression of somatostatin receptor subtype 5 (SSTR5) than that of SSTR2A. The germline aryl hydrocarbon receptor interacting protein (AIP) mutation was negative, and several tumor cells were weakly immunoreactive for AIP. Despite the presence of a residual tumor postoperatively, biochemical control was achieved 6 months after the final injection of pasireotide. In conclusion, this case suggests that pasireotide may be an option for preoperative first-line therapy in invasive and octreotide-resistant sparsely granulated somatotroph adenomas.
Collapse
Affiliation(s)
- Reina Yamamoto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Kosuke Robert Shima
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Hirobumi Igawa
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Yuka Kaikoi
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Yasuo Sasagawa
- Department of Neurosurgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Yasuhiko Hayashi
- Department of Neurosurgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Naoko Inoshita
- Department of Pathology, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe 650-0017, Japan
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
14
|
Trivellin G, Hernández-Ramírez LC, Swan J, Stratakis CA. An orphan G-protein-coupled receptor causes human gigantism and/or acromegaly: Molecular biology and clinical correlations. Best Pract Res Clin Endocrinol Metab 2018; 32:125-140. [PMID: 29678281 DOI: 10.1016/j.beem.2018.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
X-linked acrogigantism (X-LAG) is a recently described form of familial or sporadic pituitary gigantism characterized by very early onset GH and IGF-1 excess, accelerated growth velocity, gigantism and/or acromegaloid features. Germline or somatic microduplications of the Xq26.3 chromosomal region, invariably involving the GPR101 gene, constitute the genetic defect leading to X-LAG. GPR101 encodes a class A G protein-coupled receptor that activates the 3',5'-cyclic adenosine monophosphate signaling pathway. Highly expressed in the central nervous system, the main physiological function and ligand of GPR101 remain unknown, but it seems to play a role in the normal development of the GHRH-GH axis. Early recognition of X-LAG cases is imperative because these patients require clinical management that differs from that of other patients with acromegaly or gigantism. Medical treatment with pegvisomant seems to be the best approach, since X-LAG tumors are resistant to the treatment with somatostatin analogues and dopamine agonists; surgical cure requires near-total hypophysectomy. Currently, the efforts of our research focus on the identification of GPR101 ligands; in addition, the long-term follow-up of X-LAG patients is of extreme interest as this is expected to lead to better understanding of GPR101 effects on human pathophysiology.
Collapse
Affiliation(s)
- Giampaolo Trivellin
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA
| | - Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA
| | - Jeremy Swan
- Computer Support Services Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA.
| |
Collapse
|
15
|
Ibáñez-Costa A, Korbonits M. AIP and the somatostatin system in pituitary tumours. J Endocrinol 2017; 235:R101-R116. [PMID: 28835453 DOI: 10.1530/joe-17-0254] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
Classic somatostatin analogues aimed at somatostatin receptor type 2, such as octreotide and lanreotide, represent the mainstay of medical treatment for acromegaly. These agents have the potential to decrease hormone secretion and reduce tumour size. Patients with a germline mutation in the aryl hydrocarbon receptor-interacting protein gene, AIP, develop young-onset acromegaly, poorly responsive to pharmacological therapy. In this review, we summarise the most recent studies on AIP-related pituitary adenomas, paying special attention to the causes of somatostatin resistance; the somatostatin receptor profile including type 2, type 5 and truncated variants; the role of G proteins in this pathology; the use of first and second generation somatostatin analogues; and the role of ZAC1, a zinc-finger protein with expression linked to AIP in somatotrophinoma models and acting as a key mediator of octreotide response.
Collapse
Affiliation(s)
- Alejandro Ibáñez-Costa
- Centre for EndocrinologyWilliam Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for EndocrinologyWilliam Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
16
|
Iacovazzo D, Hernández-Ramírez LC, Korbonits M. Sporadic pituitary adenomas: the role of germline mutations and recommendations for genetic screening. Expert Rev Endocrinol Metab 2017; 12:143-153. [PMID: 30063429 DOI: 10.1080/17446651.2017.1306439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although most pituitary adenomas occur sporadically, these common tumors can present in a familial setting in approximately 5% of cases. Germline mutations in several genes with autosomal dominant (AIP, MEN1, CDKN1B, PRKAR1A, SDHx) or X-linked dominant (GPR101) inheritance are causative of familial pituitary adenomas. Due to variable disease penetrance and occurrence of de novo mutations, some patients harboring germline mutations have no family history of pituitary adenomas (simplex cases). Areas covered: We summarize the recent findings on the role of germline mutations associated with familial pituitary adenomas in patients with sporadic clinical presentation. Expert commentary: Up to 12% of patients with young onset pituitary adenomas (age at diagnosis/onset ≤30 years) and up to 25% of simplex patients with gigantism carry mutations in the AIP gene, while most cases of X-linked acrogigantism (XLAG) due to GPR101 duplication are simplex female patients with very early disease onset (<5 years). With regard to the syndromes of multiple endocrine neoplasia (MEN), MEN1 mutations can be identified in a significant proportion of patients with childhood onset prolactinomas. Somatotroph and lactotroph adenomas are the most common pituitary adenomas associated with germline predisposing mutations. Genetic screening should be considered in patients with young onset pituitary adenomas.
Collapse
Affiliation(s)
- D Iacovazzo
- a Centre for Endocrinology, Barts and The London School of Medicine , Queen Mary University of London , London , UK
| | - L C Hernández-Ramírez
- b Section on Endocrinology and Genetics , Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH , Bethesda , MD , USA
| | - M Korbonits
- a Centre for Endocrinology, Barts and The London School of Medicine , Queen Mary University of London , London , UK
| |
Collapse
|
17
|
Iacovazzo D, Korbonits M. Gigantism: X-linked acrogigantism and GPR101 mutations. Growth Horm IGF Res 2016; 30-31:64-69. [PMID: 27743704 DOI: 10.1016/j.ghir.2016.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 09/24/2016] [Accepted: 09/28/2016] [Indexed: 12/30/2022]
Abstract
X-linked acrogigantism (XLAG) is a recently identified condition of early-onset GH excess resulting from the germline or somatic duplication of the GPR101 gene on chromosome Xq26.3. Thirty patients have been formally reported so far. The disease affects mostly females, occurs usually sporadically, and is characterised by early onset and marked overgrowth. Most patients present with concomitant hyperprolactinaemia. Histopathology shows pituitary hyperplasia or pituitary adenoma with or without associated hyperplasia. XLAG-related pituitary adenomas present peculiar histopathological features that should contribute to raise the suspicion of this rare condition. Treatment is frequently challenging and multi-modal. While females present with germline mutations, the sporadic male patients reported so far were somatic mosaics with variable levels of mosaicism, although no differences in the clinical phenotype were observed between patients with germline or somatic duplication. The GPR101 gene encodes an orphan G protein-coupled receptor normally expressed in the central nervous system, and at particularly high levels in the hypothalamus. While the physiological function and the endogenous ligand of GPR101 are unknown, the high expression of GPR101 in the arcuate nucleus and the occurrence of increased circulating GHRH levels in some patients with XLAG, suggest that increased hypothalamic GHRH secretion could play a role in the pathogenesis of this condition. In this review, we summarise the published evidence on XLAG and GPR101 and discuss the results of recent studies that have investigated the potential role of GPR101 variants in the pathogenesis of pituitary adenomas.
Collapse
Affiliation(s)
- Donato Iacovazzo
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|