1
|
Hua R, Liang FF, Gong FQ, Huang H, Xu YC, He M, Fang YH, Wei YS, Zhou WW, Mehmood A, Mo Y, Lin Z. Differentiation of bone marrow mesenchymal stem cells into Leydig-like cells with testicular extract liquid in vitro. In Vitro Cell Dev Biol Anim 2024; 60:590-595. [PMID: 38698133 DOI: 10.1007/s11626-024-00902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/15/2024] [Indexed: 05/05/2024]
Abstract
Differentiation of Leydig cells plays a key role in male reproductive function. Bone marrow mesenchymal stem cells (BMSCs) have emerged as a potential cell source for generating Leydig-like cells due to their multipotent differentiation capacity and accessibility. This study aimed to investigate the morphological and genetic expression changes of BMSCs during differentiation into Leydig-like cells. Testicular extract liquid, which simulates the microenvironment in vivo, induced the third passage BMSCs differentiated into Leydig-like cells. Changes in cell morphology were observed by microscopy, the formation of lipid droplets of androgen precursor was identified by Oil Red Staining, and the expression of testicular specific genes 3β-HSD and SF-1 in testicular stromal cells was detected by RT-qPCR. BMSCs isolated from the bone marrow of Sprague-Dawley (SD) rats were cultured for 3 generations and identified as qualified BMSCs in terms of morphology and cell surface markers. After 14 days of induction with testicular tissue lysate, lipid droplets appeared in the cytoplasm of P3 BMSCs by Oil Red O staining. RT-qPCR detection was performed on BMSCs on the 3rd, 7th, 14th, and 21st day after induction. Relative expression levels of 3β-HSD mRNA significantly increased after 14 days of induction, while the relative expression of SF-1 mRNA increased after 14 days of induction but was not significant. BMSCs can differentiate into testicular interstitial cells with reserve androgen precursor lipid droplets after induction by testicular tissue lysate. The differentiation ability of BMSCs provides the potential to reconstruct the testicular microenvironment and is expected to fundamentally improve testicular function and provide new treatment options for abnormal spermatogenesis diseases.
Collapse
Affiliation(s)
- Rong Hua
- The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530029, Guangxi, People's Republic of China
| | - Fang-Fang Liang
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, People's Republic of China
| | - Fang-Qiang Gong
- The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530029, Guangxi, People's Republic of China
| | - Hua Huang
- The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530029, Guangxi, People's Republic of China
| | - Yi-Chen Xu
- The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530029, Guangxi, People's Republic of China
| | - Min He
- The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530029, Guangxi, People's Republic of China
| | - Yan-Hua Fang
- The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530029, Guangxi, People's Republic of China
| | - Ya-Shu Wei
- The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530029, Guangxi, People's Republic of China
| | - Wei-Wei Zhou
- The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530029, Guangxi, People's Republic of China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yi Mo
- The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530029, Guangxi, People's Republic of China.
| | - Zhong Lin
- The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530029, Guangxi, People's Republic of China.
| |
Collapse
|
2
|
Uchishiba M, Yamamoto S, Takeda A, Arakaki R, Arata M, Noguchi H, Aoki H, Tamura K, Maeda T, Minato S, Nii M, Inui H, Kamada S, Kinouchi R, Yamamoto Y, Yoshida K, Yagi S, Kato T, Kaji T, Nishimura M, Ino K, Iwasa T. Progesterone treatment reduces food intake and body weight in ovariectomized female rats. Steroids 2024; 203:109367. [PMID: 38266463 DOI: 10.1016/j.steroids.2024.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
While the effects of progesterone on body weight and appetite in pre-menopausal conditions have been well elucidated, its effects in post-menopausal conditions have not been clarified. On the contrary, the effects of estrogen on body weight and appetite in post-menopausal conditions have been well established. In this study, the effects of progesterone treatment on body weight, appetite, and fat mass in ovariectomized rats were evaluated. In addition, the central and/or peripheral levels of oxytocin (OT), leptin, and their receptors, which are potent anorectic factors, were examined. Female rats were ovariectomized and divided into control, progesterone-treated, and estrogen-treated groups. Body weight, food intake, and subcutaneous fat mass were lower in both the progesterone and estrogen groups than in the control group. The estrogen group exhibited higher serum OT levels than the control group, whereas the OT levels of the progesterone and control groups did not differ. The serum leptin levels of both the progesterone and estrogen groups were lower than those of the control group. Gene expression analysis of OT, leptin, and their receptors in the hypothalamus and adipose tissue found few significant differences among the groups. Hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) mRNA levels involved in appetite regulation were slightly altered in the progesterone and estrogen groups. These findings suggest that progesterone treatment may have favorable effects on body weight, appetite, and fat mass regulation in post-menopausal conditions and that the mechanisms underlying these effects of progesterone differ from those underlying the effects of estrogen.
Collapse
Affiliation(s)
- Maimi Uchishiba
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan; Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shota Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan; Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Asuka Takeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Ryosuke Arakaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Moeka Arata
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Hidenori Aoki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Kou Tamura
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Takaaki Maeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Mari Nii
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Hiroaki Inui
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Shuhei Kamada
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Riyo Kinouchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Shigetaka Yagi
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Takeshi Kato
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Takashi Kaji
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Masato Nishimura
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan.
| |
Collapse
|
3
|
Sleep dysregulation in binge eating disorder and "food addiction": the orexin (hypocretin) system as a potential neurobiological link. Neuropsychopharmacology 2021; 46:2051-2061. [PMID: 34145404 PMCID: PMC8505614 DOI: 10.1038/s41386-021-01052-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
It has been proposed that binge eating reflects a pathological compulsion driven by the "addictive" properties of foods. Proponents of this argument highlight the large degree of phenomenological and diagnostic overlap between binge eating disorder (BED) and substance use disorders (SUDs), including loss of control over how much is consumed and repeated unsuccessful attempts to abstain from consumption, as well as commonalities in brain structures involved in food and drug craving. To date, very little attention has been given to an additional behavioral symptom that BED shares with SUDs-sleep dysregulation-and the extent to which this may contribute to the pathophysiology of BED. Here, we review studies examining sleep outcomes in patients with BED, which collectively point to a heightened incidence of sleep abnormalities in BED. We identify the orexin (hypocretin) system as a potential neurobiological link between compulsive eating and sleep dysregulation in BED, and provide a comprehensive update on the evidence linking this system to these processes. Finally, drawing on evidence from the SUD literature indicating that the orexin system exhibits significant plasticity in response to drugs of abuse, we hypothesize that chronic palatable food consumption likewise increases orexin system activity, resulting in dysregulated sleep/wake patterns. Poor sleep, in turn, is predicted to exacerbate binge eating, contributing to a cycle of uncontrolled food consumption. By extension, we suggest that pharmacotherapies normalizing orexin signaling, which are currently being trialed for the treatment of SUDs, might also have utility in the clinical management of BED.
Collapse
|
4
|
Wang M, Chen Y, Pan Q, Du M, Li Z, Dong H. Co-culture of sperm with sertoli cells can improve IVF outcomes by increasing sperm motility in mice. Theriogenology 2021; 172:20-26. [PMID: 34082222 DOI: 10.1016/j.theriogenology.2021.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022]
Abstract
The micro-environment of spermatogenesis is important for the improvement of in vitro fertilization (IVF). Therefore, developing a co-culture system may be valuable to improve the rate of IVF. In this study, we aimed to investigate the secretions of testicular sertoli cells (SCs) to find whether it can improve the micro-environment of IVF, by which promote the efficiency of fertilization in mice. The results showed that the motility of sperms in CCSCF group (sperms co-culture with SCs) was significantly promoted and the rate of fertilization were significantly increased compared with the CTR group (control group: sperms not co-culture with SCs). Moreover, we found that the estrogen concentrations, the expression of estrogen receptor (ER) and the phosphorylation of AMPK in sperms were higher in the CCSCF group than in CTR group. In all, our results indicated that SCs co-cultured with sperms can improve the motility of sperms, E2 secreted by SCs can increase Ca2+ level in the intracellular and the level of phosphorylation of AMPK through Ca-MKKβ in sperms.
Collapse
Affiliation(s)
- Mingming Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yang Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qingjie Pan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Miao Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhen Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huansheng Dong
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
5
|
Yu K, He Y, Hyseni I, Pei Z, Yang Y, Xu P, Cai X, Liu H, Qu N, Liu H, He Y, Yu M, Liang C, Yang T, Wang J, Gourdy P, Arnal JF, Lenfant F, Xu Y, Wang C. 17β-estradiol promotes acute refeeding in hungry mice via membrane-initiated ERα signaling. Mol Metab 2020; 42:101053. [PMID: 32712433 PMCID: PMC7484552 DOI: 10.1016/j.molmet.2020.101053] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Estrogen protects animals from obesity through estrogen receptor α (ERα), partially by inhibiting overeating in animals fed ad libitum. However, the effects of estrogen on feeding behavior in hungry animals remain unclear. In this study, we examined the roles of 17β-estradiol (E2) and ERα in the regulation of feeding in hungry female animals and explored the underlying mechanisms. Methods Wild-type female mice with surgical depletion of endogenous estrogens were used to examine the effects of E2 supplementation on acute refeeding behavior after starvation. ERα-C451A mutant mice deficient in membrane-bound ERα activity and ERα-AF20 mutant mice lacking ERα transcriptional activity were used to further examine mechanisms underlying acute feeding triggered by either fasting or central glucopenia (induced by intracerebroventricular injections of 2-deoxy-D-glucose). We also used electrophysiology to explore the impact of these ERα mutations on the neural activities of ERα neurons in the hypothalamus. Results In the wild-type female mice, ovariectomy reduced fasting-induced refeeding, which was restored by E2 supplementation. The ERα-C451A mutation, but not the ERα-AF20 mutation, attenuated acute feeding induced by either fasting or central glucopenia. The ERα-C451A mutation consistently impaired the neural responses of hypothalamic ERα neurons to hypoglycemia. Conclusion In addition to previous evidence that estrogen reduces deviations in energy balance by inhibiting eating at a satiated state, our findings demonstrate the unexpected role of E2 that promotes eating in hungry mice, also contributing to the stability of energy homeostasis. This latter effect specifically requires membrane-bound ERα activity. Endogenous E2 is required to maintain acute refeeding in hungry female mice after starvation. Membrane-bound ERα activity in female mice is required for efficient refeeding after starvation. Membrane-bound ERα activity is required for hypothalamic ERα neurons to respond to hypoglycemia.
Collapse
Affiliation(s)
- Kaifan Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yanlin He
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA; Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Ilirjana Hyseni
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zhou Pei
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Pingwen Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Xing Cai
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hesong Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Na Qu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yang He
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Meng Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chen Liang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Tingting Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Julia Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Pierre Gourdy
- I2MC, Inserm U1048, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Jean-Francois Arnal
- I2MC, Inserm U1048, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Francoise Lenfant
- I2MC, Inserm U1048, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Chunmei Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Nogueira G, Solon C, Carraro RS, Engel DF, Ramalho AF, Sidarta-Oliveira D, Gaspar RS, Bombassaro B, Vasques AC, Geloneze B, Vinolo MA, Donato Junior J, Velloso LA. Interleukin-17 acts in the hypothalamus reducing food intake. Brain Behav Immun 2020; 87:272-285. [PMID: 31863824 DOI: 10.1016/j.bbi.2019.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
Interleukin-17 (IL-17) is expressed in the intestine in response to changes in the gut microbiome landscape and plays an important role in intestinal and systemic inflammatory diseases. There is evidence that dietary factors can also modify the expression of intestinal IL-17. Here, we hypothesized that, similar to several other gut-produced factors, IL-17 may act in the hypothalamus to modulate food intake. We confirm that food intake increases IL-17 expression in the mouse ileum and human blood. There is no expression of IL-17 in the hypothalamus; however, IL-17 receptor A is expressed in both pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons. Upon systemic injection, IL-17 promoted a rapid increase in hypothalamic POMC expression, which was followed by a late increase in the expression of AgRP. Both systemic and intracerebroventricular injections of IL-17 reduced calorie intake without affecting whole-body energy expenditure. Systemic but not intracerebroventricular injection of IL-17 increase brown adipose tissue temperature. Thus, IL-17 is a gut-produced factor that is controlled by diet and modulates food intake by acting in the hypothalamus. Our findings provide the first evidence of a cytokine that is acutely regulated by food intake and plays a role in the regulation of eating.
Collapse
Affiliation(s)
- Guilherme Nogueira
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Carina Solon
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Rodrigo S Carraro
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Daiane F Engel
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Albina F Ramalho
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Rodrigo S Gaspar
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Bruna Bombassaro
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Ana C Vasques
- Laboratory of Investigation in Metabolism and Diabetes, University of Campinas, Campinas, Brazil
| | - Bruno Geloneze
- Laboratory of Investigation in Metabolism and Diabetes, University of Campinas, Campinas, Brazil
| | - Marco A Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Jose Donato Junior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil.
| |
Collapse
|
7
|
Carrillo B, Collado P, Díaz F, Chowen JA, Grassi D, Pinos H. Blocking of Estradiol Receptors ERα, ERβ and GPER During Development, Differentially Alters Energy Metabolism in Male and Female Rats. Neuroscience 2019; 426:59-68. [PMID: 31805254 DOI: 10.1016/j.neuroscience.2019.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/25/2022]
Abstract
Estradiol not only participates in the regulation of energy metabolism in adulthood, but also during the first stages of life as it modulates the alterations induced by under- and over-nutrition. The objectives of the present study were to determine: 1) If estradiol is involved in the normal programming of energy metabolism in rats; 2) If there is a specific window of time for this programming and 3) If males and females are differentially vulnerable to the action of this hormone. Estrogen receptors (ER) α, ERβ and GPER were blocked by their specific antagonists MPP, PHTPP and G15, respectively, from postnatal day (P) 1 (the day of birth) to P5 or from P5 to P13. Physiological parameters such as body weight, fat depots and caloric intake were then analysed at P90. Hypothalamic AgRP, POMC, MC4R, ERα, ERβ and GPER mRNA levels and plasma levels of estradiol, were also studied. We found that blocking ER receptors from P5 to P13 significantly decreases long-term body weight in males and hypothalamic POMC mRNA levels in females. The blocking of ERs from P1 to P5 only affected plasma estradiol levels in females. The present results indicate programming actions of estradiol from P5 to P13 on body weight in male and POMC expression in female rats and emphasize the importance of including both sexes in metabolic studies. It is necessary to unravel the mechanisms that underlie the actions of estradiol on food intake, both during development and in adulthood, and to determine how this programming differentially takes place in males and females.
Collapse
Affiliation(s)
- Beatriz Carrillo
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain, Instituto Mixto de Investigación Escuela Nacional de Sanidad (IMIENS).
| | - Paloma Collado
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain, Instituto Mixto de Investigación Escuela Nacional de Sanidad (IMIENS).
| | - Francisca Díaz
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Avda. Menéndez Pelayo, N° 65 28009 Madrid, Spain, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, IMDEA Food Institute, CEI UAM + CSIC.
| | - Julie A Chowen
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Avda. Menéndez Pelayo, N° 65 28009 Madrid, Spain, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, IMDEA Food Institute, CEI UAM + CSIC.
| | - Daniela Grassi
- Department of Preclinical odontology, Faculty of Biomedical Science and Health Universidad Europea de Madrid, Calle Tajo s/n, 28670 Villaviciosa de Odón, Madrid, Spain.
| | - Helena Pinos
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain, Instituto Mixto de Investigación Escuela Nacional de Sanidad (IMIENS).
| |
Collapse
|