1
|
Matsuura J, Akichika S, Wei FY, Suzuki T, Yamamoto T, Watanabe Y, Valášek LS, Mukasa A, Tomizawa K, Chujo T. Human DUS1L catalyzes dihydrouridine modification at tRNA positions 16/17, and DUS1L overexpression perturbs translation. Commun Biol 2024; 7:1238. [PMID: 39354220 PMCID: PMC11445529 DOI: 10.1038/s42003-024-06942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Human cytoplasmic tRNAs contain dihydrouridine modifications at positions 16 and 17 (D16/D17). The enzyme responsible for D16/D17 formation and its cellular roles remain elusive. Here, we identify DUS1L as the human tRNA D16/D17 writer. DUS1L knockout in the glioblastoma cell lines LNZ308 and U87 causes loss of D16/D17. D formation is reconstituted in vitro using recombinant DUS1L in the presence of NADPH or NADH. DUS1L knockout/overexpression in LNZ308 cells shows that DUS1L supports cell growth. Moreover, higher DUS1L expression in glioma patients is associated with poorer prognosis. Upon vector-mediated DUS1L overexpression in LNZ308 cells, 5' and 3' processing of precursor tRNATyr(GUA) is inhibited, resulting in a reduced mature tRNATyr(GUA) level, reduced translation of the tyrosine codons UAC and UAU, and reduced translational readthrough of the near-cognate stop codons UAA and UAG. Moreover, DUS1L overexpression increases the amounts of several D16/D17-containing tRNAs and total cellular translation. Our study identifies a human dihydrouridine writer, providing the foundation to study its roles in health and disease.
Collapse
Affiliation(s)
- Jin Matsuura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Akichika
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Takahiro Yamamoto
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuka Watanabe
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Akitake Mukasa
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Science, Kumamoto University, Kumamoto, Japan.
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Tresky R, Miyamoto Y, Nagayoshi Y, Yabuki Y, Araki K, Takahashi Y, Komohara Y, Ge H, Nishiguchi K, Fukuda T, Kaneko H, Maeda N, Matsuura J, Iwasaki S, Sakakida K, Shioda N, Wei FY, Tomizawa K, Chujo T. TRMT10A dysfunction perturbs codon translation of initiator methionine and glutamine and impairs brain functions in mice. Nucleic Acids Res 2024; 52:9230-9246. [PMID: 38950903 PMCID: PMC11347157 DOI: 10.1093/nar/gkae520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
In higher eukaryotes, tRNA methyltransferase 10A (TRMT10A) is responsible for N1-methylguanosine modification at position nine of various cytoplasmic tRNAs. Pathogenic mutations in TRMT10A cause intellectual disability, microcephaly, diabetes, and short stature in humans, and generate cytotoxic tRNA fragments in cultured cells; however, it is not clear how TRMT10A supports codon translation or brain functions. Here, we generated Trmt10a null mice and showed that tRNAGln(CUG) and initiator methionine tRNA levels were universally decreased in various tissues; the same was true in a human cell line lacking TRMT10A. Ribosome profiling of mouse brain revealed that dysfunction of TRMT10A causes ribosome slowdown at the Gln(CAG) codon and increases translation of Atf4 due to higher frequency of leaky scanning of its upstream open reading frames. Broadly speaking, translation of a subset of mRNAs, especially those for neuronal structures, is perturbed in the mutant brain. Despite not showing discernable defects in the pancreas, liver, or kidney, Trmt10a null mice showed lower body weight and smaller hippocampal postsynaptic densities, which is associated with defective synaptic plasticity and memory. Taken together, our study provides mechanistic insight into the roles of TRMT10A in the brain, and exemplifies the importance of universal tRNA modification during translation of specific codons.
Collapse
Affiliation(s)
- Roland Tresky
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yu Nagayoshi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yukie Takahashi
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Huicong Ge
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kayo Nishiguchi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hitomi Kaneko
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Nobuko Maeda
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Jin Matsuura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Kourin Sakakida
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
3
|
Giri AK, Aavikko M, Wartiovaara L, Lemmetyinen T, Karjalainen J, Mehtonen J, Palin K, Välimäki N, Tamlander M, Saikkonen R, Karhu A, Morgunova E, Sun B, Runz H, Palta P, Luo S, Joensuu H, Mäkelä TP, Kostiainen I, Schalin-Jäntti C, FinnGen, Palotie A, Aaltonen LA, Ollila S, Daly MJ. Genome-Wide Association Study Identifies 4 Novel Risk Loci for Small Intestinal Neuroendocrine Tumors Including a Missense Mutation in LGR5. Gastroenterology 2023; 165:861-873. [PMID: 37453564 DOI: 10.1053/j.gastro.2023.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/07/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND & AIMS Small intestinal neuroendocrine tumor (SI-NET) is a rare disease, but its incidence has increased over the past 4 decades. Understanding the genetic risk factors underlying SI-NETs can help in disease prevention and may provide clinically beneficial markers for diagnosis. Here the results of the largest genome-wide association study of SI-NETs performed to date with 405 cases and 614,666 controls are reported. METHODS Samples from 307 patients with SI-NETs and 287,137 controls in the FinnGen study were used for the identification of SI-NET risk-associated genetic variants. The results were also meta-analyzed with summary statistics from the UK Biobank (n = 98 patients with SI-NET and n = 327,529 controls). RESULTS We identified 6 genome-wide significant (P < 5 × 10-8) loci associated with SI-NET risk, of which 4 (near SEMA6A, LGR5, CDKAL1, and FERMT2) are novel and 2 (near LTA4H-ELK and in KIF16B) have been reported previously. Interestingly, the top hit (rs200138614; P = 1.80 × 10-19) was a missense variant (p.Cys712Phe) in the LGR5 gene, a bona-fide marker of adult intestinal stem cells and a potentiator of canonical WNT signaling. The association was validated in an independent Finnish collection of 70 patients with SI-NETs, as well as in the UK Biobank exome sequence data (n = 92 cases and n = 392,814 controls). Overexpression of LGR5 p.Cys712Phe in intestinal organoids abolished the ability of R-Spondin1 to support organoid growth, indicating that the mutation perturbed R-Spondin-LGR5 signaling. CONCLUSIONS Our study is the largest genome-wide association study to date on SI-NETs and reported 4 new associated genome-wide association study loci, including a novel missense mutation (rs200138614, p.Cys712Phe) in LGR5, a canonical marker of adult intestinal stem cells.
Collapse
Affiliation(s)
- Anil K Giri
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Foundation for the Finnish Cancer Institute, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mervi Aavikko
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Linnea Wartiovaara
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Toni Lemmetyinen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Juha Mehtonen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Max Tamlander
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Riikka Saikkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Auli Karhu
- Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ekaterina Morgunova
- Karolinska Institute, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Benjamin Sun
- Translational Biology, Research and Development, Biogen Inc, Cambridge, Massachusetts
| | - Heiko Runz
- Translational Biology, Research and Development, Biogen Inc, Cambridge, Massachusetts
| | - Priit Palta
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Shuang Luo
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Heikki Joensuu
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Tomi P Mäkelä
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Iiro Kostiainen
- Endocrinology, Abdominal Center, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Camilla Schalin-Jäntti
- Endocrinology, Abdominal Center, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - FinnGen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saara Ollila
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
4
|
Murakami Y, Wei FY, Kawamura Y, Horiguchi H, Kadomatsu T, Miyata K, Miura K, Oike Y, Ando Y, Ueda M, Tomizawa K, Chujo T. NSUN3-mediated mitochondrial tRNA 5-formylcytidine modification is essential for embryonic development and respiratory complexes in mice. Commun Biol 2023; 6:307. [PMID: 36949224 PMCID: PMC10033821 DOI: 10.1038/s42003-023-04680-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
In mammalian mitochondria, translation of the AUA codon is supported by 5-formylcytidine (f5C) modification in the mitochondrial methionine tRNA anticodon. The 5-formylation is initiated by NSUN3 methylase. Human NSUN3 mutations are associated with mitochondrial diseases. Here we show that Nsun3 is essential for embryonic development in mice with whole-body Nsun3 knockout embryos dying between E10.5 and E12.5. To determine the functions of NSUN3 in adult tissue, we generated heart-specific Nsun3 knockout (Nsun3HKO) mice. Nsun3HKO heart mitochondria were enlarged and contained fragmented cristae. Nsun3HKO resulted in enhanced heart contraction and age-associated mild heart enlargement. In the Nsun3HKO hearts, mitochondrial mRNAs that encode respiratory complex subunits were not down regulated, but the enzymatic activities of the respiratory complexes decreased, especially in older mice. Our study emphasizes that mitochondrial tRNA anticodon modification is essential for mammalian embryonic development and shows that tissue-specific loss of a single mitochondrial tRNA modification can induce tissue aberration that worsens in later adulthood.
Collapse
Affiliation(s)
- Yoshitaka Murakami
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kyoko Miura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yukio Ando
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, 859-3298, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
5
|
Yakita M, Chujo T, Wei FY, Hirayama M, Kato K, Takahashi N, Naganuma K, Nagata M, Kawahara K, Nakayama H, Tomizawa K. Extracellular N6 -isopentenyladenosine (i 6A) addition induces cotranscriptional i 6A incorporation into ribosomal RNAs. RNA (NEW YORK, N.Y.) 2022; 28:1013-1027. [PMID: 35414588 PMCID: PMC9202588 DOI: 10.1261/rna.079176.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
N6 -isopentenyladenosine (i6A), a modified adenosine monomer, is known to induce cell death upon its addition to the culture medium. However, the molecular fate of extracellularly added i6A has yet to be identified. Here we show that i6A addition to cell culture medium results in i6A incorporation into cellular RNA in several cell lines, including the 5-fluorouracil (5-FU)-resistant human oral squamous cell carcinoma cell line FR2-SAS and its parental 5-FU-sensitive cell line SAS. i6A was predominantly incorporated into 18S and 28S rRNAs, and i6A incorporation into total RNA was mostly suppressed by treating these cell lines with an RNA polymerase I (Pol I) inhibitor. i6A was incorporated into RNA even upon inactivation of TRIT1, the only cellular i6A-modifying enzyme. These results indicate that upon cellular uptake of i6A, it is anabolized to be used for Pol I transcription. Interestingly, at lower i6A concentrations, the cytotoxic effect of i6A was substantially more pronounced in FR2-SAS cells than in SAS cells. Moreover, in FR2-SAS cells, i6A treatment decreased the rate of cellular protein synthesis and increased intracellular protein aggregation, and these effects were more pronounced than in SAS cells. Our work provides insights into the molecular fate of extracellularly applied i6A in the context of intracellular nucleic acid anabolism and suggests investigation of i6A as a candidate for a chemotherapy agent against 5-FU-resistant cancer cells.
Collapse
Affiliation(s)
- Maya Yakita
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Mayumi Hirayama
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Koji Kato
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Nozomu Takahashi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenta Naganuma
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
6
|
Gu B, Sun R, Fang X, Zhang J, Zhao Z, Huang D, Zhao Y, Zhao Y. Genome-Wide Association Study of Body Conformation Traits by Whole Genome Sequencing in Dazu Black Goats. Animals (Basel) 2022; 12:ani12050548. [PMID: 35268118 PMCID: PMC8908837 DOI: 10.3390/ani12050548] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Body conformation traits are economically important in the goat meat industry. Good growth performance in goats, including an accelerated growth rate, can improve carcass weight and meat yield. The identification of genetic variants associated with these traits provides a basis for the genetic improvement of growth performance. In this study, we measured six body conformation traits, including body height, body length, cannon circumference, chest depth, chest width, and heart girth. By a genome-wide association study of a Chinese meat goat breed, 53 significant single nucleotide polymorphisms and 42 candidate genes associated with these traits were detected. These findings improve our understanding of the genetic basis of body conformation traits in goats. Abstract Identifying associations between genetic markers and economic traits has practical benefits for the meat goat industry. To better understand the genomic regions and biological pathways contributing to body conformation traits of meat goats, a genome-wide association study was performed using Dazu black goats (DBGs), a Chinese indigenous goat breed. In particular, 150 DBGs were genotyped by whole-genome sequencing, and six body conformation traits, including body height (BH), body length (BL), cannon circumference (CC), chest depth (CD), chest width (CW), and heart girth (HG), were examined. In total, 53 potential SNPs were associated with these body conformation traits. A bioinformatics analysis was performed to evaluate the genes located close to the significant SNPs. Finally, 42 candidate genes (e.g., PSTPIP2, C7orf57, CCL19, FGF9, SGCG, FIGN, and SIPA1L) were identified as components of the genetic architecture underlying body conformation traits. Our results provide useful biological information for the improvement of growth performance and have practical applications for genomic selection in goats.
Collapse
Affiliation(s)
- Bowen Gu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Ruifan Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Xingqiang Fang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Jipan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Deli Huang
- Tengda Animal Husbandry Co., Ltd., Chongqing 402360, China;
| | - Yuanping Zhao
- Dazu County Agriculture and Rural Committee, Chongqing 402360, China;
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
7
|
Fukuda H, Chujo T, Wei FY, Shi SL, Hirayama M, Kaitsuka T, Yamamoto T, Oshiumi H, Tomizawa K. Cooperative methylation of human tRNA3Lys at positions A58 and U54 drives the early and late steps of HIV-1 replication. Nucleic Acids Res 2021; 49:11855-11867. [PMID: 34642752 PMCID: PMC8599865 DOI: 10.1093/nar/gkab879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Retroviral infection requires reverse transcription, and the reverse transcriptase (RT) uses cellular tRNA as its primer. In humans, the TRMT6-TRMT61A methyltransferase complex incorporates N1-methyladenosine modification at tRNA position 58 (m1A58); however, the role of m1A58 as an RT-stop site during retroviral infection has remained questionable. Here, we constructed TRMT6 mutant cells to determine the roles of m1A in HIV-1 infection. We confirmed that tRNA3Lys m1A58 was required for in vitro plus-strand strong-stop by RT. Accordingly, infectivity of VSV-G pseudotyped HIV-1 decreased when the virus contained m1A58-deficient tRNA3Lys instead of m1A58-modified tRNA3Lys. In TRMT6 mutant cells, the global protein synthesis rate was equivalent to that of wild-type cells. However, unexpectedly, plasmid-derived HIV-1 expression showed that TRMT6 mutant cells decreased accumulation of HIV-1 capsid, integrase, Tat, Gag, and GagPol proteins without reduction of HIV-1 RNAs in cells, and fewer viruses were produced. Moreover, the importance of 5,2′-O-dimethyluridine at U54 of tRNA3Lys as a second RT-stop site was supported by conservation of retroviral genome-tRNALys sequence-complementarity, and TRMT6 was required for efficient 5-methylation of U54. These findings illuminate the fundamental importance of tRNA m1A58 modification in both the early and late steps of HIV-1 replication, as well as in the cellular tRNA modification network.
Collapse
Affiliation(s)
- Hiroyuki Fukuda
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan.,Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Sheng-Lan Shi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Mayumi Hirayama
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan.,School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka 831-8501, Japan
| | - Takahiro Yamamoto
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| |
Collapse
|
8
|
Chujo T, Tomizawa K. Human transfer RNA modopathies: diseases caused by aberrations in transfer RNA modifications. FEBS J 2021; 288:7096-7122. [PMID: 33513290 PMCID: PMC9255597 DOI: 10.1111/febs.15736] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/13/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
tRNA molecules are post-transcriptionally modified by tRNA modification enzymes. Although composed of different chemistries, more than 40 types of human tRNA modifications play pivotal roles in protein synthesis by regulating tRNA structure and stability as well as decoding genetic information on mRNA. Many tRNA modifications are conserved among all three kingdoms of life, and aberrations in various human tRNA modification enzymes cause life-threatening diseases. Here, we describe the class of diseases and disorders caused by aberrations in tRNA modifications as 'tRNA modopathies'. Aberrations in over 50 tRNA modification enzymes are associated with tRNA modopathies, which most frequently manifest as dysfunctions of the brain and/or kidney, mitochondrial diseases, and cancer. However, the molecular mechanisms that link aberrant tRNA modifications to human diseases are largely unknown. In this review, we provide a comprehensive compilation of human tRNA modification functions, tRNA modification enzyme genes, and tRNA modopathies, and we summarize the elucidated pathogenic mechanisms underlying several tRNA modopathies. We will also discuss important questions that need to be addressed in order to understand the molecular pathogenesis of tRNA modopathies.
Collapse
Affiliation(s)
- Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| |
Collapse
|
9
|
Adami R, Bottai D. S-adenosylmethionine tRNA modification: unexpected/unsuspected implications of former/new players. Int J Biol Sci 2020; 16:3018-3027. [PMID: 33061813 PMCID: PMC7545696 DOI: 10.7150/ijbs.49302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
S-adenosylmethionine supplies methyl groups to many acceptors, including lipids, proteins, RNA, DNA, and a wide range of small molecules. It acts as the precursor in the biosynthesis of metal ion chelating compounds, such as nicotianamine and phytosiderophores, of the polyamines spermidine and spermine and of some plant hormones. Finally, it is the source of catalytic 5′-deoxyadenosyl radicals. Radical S-adenosylmethionine (SAM) enzymes (RS) represent one of the most abundant groups (more than 100,000) of enzymes, exerting a plethora of biological functions, some of which are still unknown. In this work, we will focus on two RS: CDK5RAP1 and CDKAL1, both of which are involved in tRNA modifications that result in important tRNA folding and stability and in maintaining high translational fidelity. Based on this crucial role, their impairment can be important in the development of different human diseases.
Collapse
Affiliation(s)
- Raffaella Adami
- Department of Health Science University of Milan via A. di Rudinì 8 20142 Milan
| | - Daniele Bottai
- Department of Health Science University of Milan via A. di Rudinì 8 20142 Milan
| |
Collapse
|
10
|
Santos MCFD, Anderson CP, Neschen S, Zumbrennen-Bullough KB, Romney SJ, Kahle-Stephan M, Rathkolb B, Gailus-Durner V, Fuchs H, Wolf E, Rozman J, de Angelis MH, Cai WM, Rajan M, Hu J, Dedon PC, Leibold EA. Irp2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification. Nat Commun 2020; 11:296. [PMID: 31941883 PMCID: PMC6962211 DOI: 10.1038/s41467-019-14004-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of cellular iron homeostasis is crucial as both iron excess and deficiency cause hematological and neurodegenerative diseases. Here we show that mice lacking iron-regulatory protein 2 (Irp2), a regulator of cellular iron homeostasis, develop diabetes. Irp2 post-transcriptionally regulates the iron-uptake protein transferrin receptor 1 (TfR1) and the iron-storage protein ferritin, and dysregulation of these proteins due to Irp2 loss causes functional iron deficiency in β cells. This impairs Fe-S cluster biosynthesis, reducing the function of Cdkal1, an Fe-S cluster enzyme that catalyzes methylthiolation of t6A37 in tRNALysUUU to ms2t6A37. As a consequence, lysine codons in proinsulin are misread and proinsulin processing is impaired, reducing insulin content and secretion. Iron normalizes ms2t6A37 and proinsulin lysine incorporation, restoring insulin content and secretion in Irp2-/- β cells. These studies reveal a previously unidentified link between insulin processing and cellular iron deficiency that may have relevance to type 2 diabetes in humans.
Collapse
Affiliation(s)
- Maria C Ferreira Dos Santos
- Department of Medicine, Division of Hematology, University of Utah, Salt Lake City, UT, 84112, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Cole P Anderson
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.,Landstuhl Regional Medical Center, 66849, Landstuhl, Germany
| | - Susanne Neschen
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Kimberly B Zumbrennen-Bullough
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Steven J Romney
- Department of Medicine, Division of Hematology, University of Utah, Salt Lake City, UT, 84112, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA.,Thermo Fisher Scientific, Waltham, MA, 02451, USA
| | - Melanie Kahle-Stephan
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Medizinische Hochschule Brandenburg Theodor Fontane Institut für Sozialmedizin und Epidemiologie, 14770, Brandenburg an der Havel, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Strasse 25, 81377, Munich, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Strasse 25, 81377, Munich, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova, 595, 252 50 Vestec, Czech Republic
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
| | - Weiling Maggie Cai
- Department of Microbiology, National University of Singapore, Singapore, Singapore, 119077.,Antimicrobial Resistance Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, Singapore, 138602.,Agilent Technologies, 1 Yishun Ave 7, Singapore, Singapore, 768923
| | - Malini Rajan
- Department of Medicine, Division of Hematology, University of Utah, Salt Lake City, UT, 84112, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jennifer Hu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Celgene Corporation, 1616 Eastlake Ave East, Seattle, WA, 98102, USA
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, Singapore, 138602.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Elizabeth A Leibold
- Department of Medicine, Division of Hematology, University of Utah, Salt Lake City, UT, 84112, USA. .,Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|