1
|
Alahwany AM, Arisha AH, Abdelkhalek A, Khamis T, Miyasho T, Kirat D. Impact of Ultraviolet C Radiation on Male Fertility in Rats: Suppression of Autophagy, Stimulation of Gonadotropin-Inhibiting Hormone, and Alteration of miRNAs. Int J Mol Sci 2025; 26:316. [PMID: 39796171 PMCID: PMC11720531 DOI: 10.3390/ijms26010316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
While ultraviolet C (UVC) radiation has beneficial applications, it can also pose risks to living organisms. Nevertheless, a detailed assessment of UVC radiation's effects on mammalian male reproductive physiology, including the underlying mechanisms and potential protective strategies, has not yet been accomplished. This study aimed to examine the critical roles of oxidative stress, autophagy, reproductive hormonal axis, and microRNAs in UVC-induced reproductive challenges in male rats. Semen, biochemical, molecular, and in silico analyses revealed significant dysregulation of testicular steroidogenesis, impaired spermatogenesis, deteriorated sperm quality, and altered reproductive hormonal profiles, which ultimately lead to a decline in fertility in male rats exposed to UVC radiation. Our data indicated that the suppression of autophagy, stimulation of gonadotropin-inhibiting hormone (GnIH), and alteration of microRNAs serve as key mediators of UVC-induced stress effects in mammalian reproduction, potentially contributing to male infertility. Targeting these pathways, particularly through pretreatment with hesperidin (HES), offers a promising strategy to counteract UVC-induced male infertility. In conclusion, the present findings emphasize the importance of understanding the molecular mechanisms behind UVC-induced male infertility and offer valuable insights into the protective mechanisms and prospective role of HES in safeguarding male reproductive health.
Collapse
Affiliation(s)
- Ahmed Mohamed Alahwany
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt; (A.M.A.); (A.H.A.)
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt; (A.M.A.); (A.H.A.)
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Taku Miyasho
- Laboratory of Animal Biological Responses, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Doaa Kirat
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
2
|
Park C, Soto-Heras S, Reinacher L, Chai K, Zhou S, Lin PC, Oh JE, Bunnell M, Hess RA, de França LR, Ko C. Inhibition of testicular development by suppressing neonatal LH rise in male domestic pigs. Anim Reprod Sci 2024; 270:107606. [PMID: 39437644 DOI: 10.1016/j.anireprosci.2024.107606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The neonatal increase in circulating luteinizing hormone (LH) is crucial for testicular development. In male pigs, blood LH levels start to increase approximately 1 week after birth and return to basal level by 5-6 weeks of age. This study tested the hypothesis that neonatal treatment with a combination of estrogens and androgens suppresses LH secretion and thereby inhibits testicular development. On Day 1 after birth, piglets received a slow-release implant containing estradiol (E2, 8-40 mg) and trenbolone acetate (TBA, 40-200 mg) or remained intact. At 4 weeks of age, mean serum LH concentrations were ∼ 7 ng/mL in untreated males, whereas pigs with implants had serum LH concentrations < 1 ng/mL. Despite this reduction, LH was still detected in the pituitary glands of treated pigs. Interestingly, neonatal castration also lowered circulating LH, highlighting the importance of testis physiology in the early establishment of the reproductive axis. The higher dose (20 mg E2 + 100 mg TBA) inhibited testis function more effectively, as evidenced by lower circulating testosterone concentrations compared to intact pigs. Furthermore, E2 + TBA treatment had a lasting impact on testicular growth, resulting in smaller testes at 26 weeks of age and the presence of immature Leydig cells. Overall, neonatal E2 + TBA treatment suppressed the postnatal LH rise and testicular growth until market age, offering a potential non-surgical alternative to castration in male pigs.
Collapse
Affiliation(s)
- ChanJin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Epivara, Inc., Champaign, IL, 61820, USA
| | | | | | - Katie Chai
- Epivara, Inc., Champaign, IL, 61820, USA
| | | | - Po-Ching Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Ji-Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Luiz Renato de França
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Epivara, Inc., Champaign, IL, 61820, USA.
| |
Collapse
|
3
|
Yamada K, Mano T, Hazim S, Takizawa M, Inoue N, Uenoyama Y, Tsukamura H. Neonatal Aromatase Inhibition Blocked Defeminization of AVPV Kiss1 Neurons and LH Surge-Generating System in Male Rats. Endocrinology 2024; 165:bqae028. [PMID: 38470466 DOI: 10.1210/endocr/bqae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
The neuroendocrine system that controls the preovulatory surge of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH), which triggers ovulation in female mammals, is sexually differentiated in rodents. A transient increase in circulating testosterone levels in male rats within a few hours of birth is primarily responsible for the defeminization of anteroventral periventricular nucleus (AVPV) kisspeptin neurons, which are critical regulators of the GnRH/LH surge. The present study aimed to determine whether neonatal estradiol-17β (E2) converted from testosterone by aromatase primarily causes the defeminization of AVPV kisspeptin neurons and the surge of GnRH/LH in male rodents. The results of the present study showed that the neonatal administration of letrozole (LET), a nonsteroidal aromatase inhibitor, within 2 hours of birth rescued AVPV Kiss1 expression and the LH surge in adult male rats, while the neonatal administration of testosterone propionate (TP) irreversibly attenuated AVPV Kiss1 expression and the LH surge in adult female rats. Furthermore, the neonatal LET-treated Kiss1-Cre-activated tdTomato reporter males exhibited a comparable number of AVPV Kiss1-Cre-activated tdTomato-expressing cells to that of vehicle-treated female rats, while neonatal TP-treated females showed fewer AVPV Kiss1-Cre-activated tdTomato-expressing cells than vehicle-treated females. Moreover, neonatal TP administration significantly decreased the number of arcuate Kiss1-expressing and Kiss1-Cre-activated tdTomato-positive cells and suppressed LH pulses in adult gonadectomized female rats; however, neonatal LET administration failed to affect them. These results suggest that E2 converted from neonatal testosterone is primarily responsible for the defeminization of AVPV kisspeptin neurons and the subsequent GnRH/LH surge generation in male rats.
Collapse
Affiliation(s)
- Koki Yamada
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Tetsuya Mano
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Safiullah Hazim
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Marina Takizawa
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
4
|
Yamada K, Nagae M, Mano T, Tsuchida H, Hazim S, Goto T, Sanbo M, Hirabayashi M, Inoue N, Uenoyama Y, Tsukamura H. Sex difference in developmental changes in visualized Kiss1 neurons in newly generated Kiss1-Cre rats. J Reprod Dev 2023; 69:227-238. [PMID: 37518187 PMCID: PMC10602768 DOI: 10.1262/jrd.2023-019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Hypothalamic kisspeptin neurons are master regulators of mammalian reproduction via direct stimulation of gonadotropin-releasing hormone and consequent gonadotropin release. Here, we generated novel Kiss1 (kisspeptin gene)-Cre rats and investigated the developmental changes and sex differences in visualized Kiss1 neurons of Kiss1-Cre-activated tdTomato reporter rats. First, we validated Kiss1-Cre rats by generating Kiss1-expressing cell-specific Kiss1 knockout (Kiss1-KpKO) rats, which were obtained by crossing the current Kiss1-Cre rats with Kiss1-floxed rats. The resulting male Kiss1-KpKO rats lacked Kiss1 expression in the brain and exhibited hypogonadotropic hypogonadism, similar to the hypogonadal phenotype of global Kiss1 KO rats. Histological analysis of Kiss1 neurons in Kiss1-Cre-activated tdTomato reporter rats revealed that tdTomato signals in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) were not affected by estrogen, and that tdTomato signals in the ARC, AVPV, and medial amygdala (MeA) were sexually dimorphic. Notably, neonatal AVPV tdTomato signals were detected only in males, but a larger number of tdTomato-expressing cells were detected in the AVPV and ARC, and a smaller number of cells in the MeA was detected in females than in males at postpuberty. These findings suggest that Kiss1-visualized rats can be used to examine the effect of estrogen feedback mechanisms on Kiss1 expression in the AVPV and ARC. Moreover, the Kiss1-Cre and Kiss1-visualized rats could be valuable tools for further detailed analyses of sexual differentiation in the brain and the physiological role of kisspeptin neurons across the brain in rats.
Collapse
Affiliation(s)
- Koki Yamada
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Mayuko Nagae
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Tetsuya Mano
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Hitomi Tsuchida
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Safiullah Hazim
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Teppei Goto
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| |
Collapse
|
5
|
Intronic Enhancer Is Essential for Nr5a1 Expression in the Pituitary Gonadotrope and for Postnatal Development of Male Reproductive Organs in a Mouse Model. Int J Mol Sci 2022; 24:ijms24010192. [PMID: 36613635 PMCID: PMC9820228 DOI: 10.3390/ijms24010192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Nuclear receptor subfamily 5 group A member 1 (NR5A1) is expressed in the pituitary gonadotrope and regulates their differentiation. Although several regulatory regions were implicated in Nr5a1 gene expression in the pituitary gland, none of these regions have been verified using mouse models. Furthermore, the molecular functions of NR5A1 in the pituitary gonadotrope have not been fully elucidated. In the present study, we generated mice lacking the pituitary enhancer located in the 6th intron of the Nr5a1 gene. These mice showed pituitary gland-specific disappearance of NR5A1, confirming the functional importance of the enhancer. Enhancer-deleted male mice demonstrated no defects at fetal stages. Meanwhile, androgen production decreased markedly in adult, and postnatal development of reproductive organs, such as the seminal vesicle, prostate, and penis was severely impaired. We further performed transcriptomic analyses of the whole pituitary gland of the enhancer-deleted mice and controls, as well as gonadotropes isolated from Ad4BP-BAC-EGFP mice. These analyses identified several genes showing gonadotrope-specific, NR5A1-dependent expressions, such as Spp1, Tgfbr3l, Grem1, and Nr0b2. These factors are thought to function downstream of NR5A1 and play important roles in reproductive organ development through regulation of pituitary gonadotrope functions.
Collapse
|