1
|
Lee S, Moon S, Oh JY, Seo EH, Kim YH, Jun E, Shim IK, Kim SC. Enhanced insulin production and reprogramming efficiency of mesenchymal stem cells derived from porcine pancreas using suitable induction medium. Xenotransplantation 2019; 26:e12451. [PMID: 30252163 DOI: 10.1111/xen.12451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/23/2018] [Accepted: 06/26/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Genetic reprogramming is a powerful method for altering cell properties and inducing differentiation. However, even if the same gene is reprogrammed, the results vary among cells. Therefore, a better possible strategy involves treating cells with factors that further stimulate differentiation while using stem cells with the same tissue origin. This study aimed to increase induction efficiency and insulin production in reprogrammed cells using a combination of factors that promote cell differentiation. METHODS Porcine pancreatic cells were cultured to obtain mesenchymal stem cells expressing pancreatic cell-specific markers through sequential passages. The characteristics of these cells were identified, and the M3 gene (Pdx1, Ngn3, MafA) was reprogrammed to induce differentiation into insulin-producing cells. Additionally, the differentiation efficiency of insulin-producing cells was compared by treating reprogrammed cells with a differentiation-promoting factor. RESULTS Mesenchymal stem cells isolated from porcine pancreatic tissues expressed exocrine cell markers, including amylase and cytokeratin 18, and most cells continuously expressed the beta cell transcription factors Ngn3 and NeuroD. Reprogramming of the M3 gene resulted in differentiation into insulin-producing cells. Moreover, significantly increased insulin and glucagon expressions were observed in the suitable induction medium, and the characteristic beta cell transcription factors Pdx1, Ngn3, and MafA were expressed at levels as high as those in pancreatic islet cells. CONCLUSIONS Differentiation into insulin-producing cells represents an alternative therapy for insufficient pancreatic islet cells when treating diabetes. Therefore, cells with the characteristics of the target cell should be used to improve differentiation efficiency by creating an environment that promotes reprogramming and differentiation.
Collapse
Affiliation(s)
- Song Lee
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soobin Moon
- Department of Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ju Yun Oh
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Ha Seo
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yang Hee Kim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunsung Jun
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Kyoung Shim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Song Cheol Kim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Açiksari A, Duruksu G, Karaöz E. Improved insulin-secreting properties of pancreatic islet mesenchymal stem cells by constitutive expression of Pax4 and MafA. Turk J Biol 2017; 41:979-991. [PMID: 30814862 DOI: 10.3906/biy-1707-79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For long-term treatment of diabetes type 1, transplantation of insulin-producing beta cells may be a promising method, but the limited number of islets for transplantation requires the development of different approaches. In this study, we aimed to generate betalike insulin-producing cells. For this purpose, MafA, Pax4, and Ngn3 genes were transferred into pancreatic islet-derived mesenchymal stem cells, and the effect of their ectopic expressions on differentiation efficiency was examined. Stemness properties of pancreatic islet stem cells were characterized. The 3 genes were transfected by electroporation and expressed constitutively. The transfected cells were further stimulated to differentiate by using chemical induction. Pax4 expression had significant effects on differentiation into insulin-producing cells. Although it caused morphological alterations in cells, similar to epithelial cells, the insulin secretion levels remained lower than those of the cell line cotransfected with MafA and Pax4. Cotransfection of the 3 transcription factors did not further improve the beta-like cell generation. MafA and Pax4 ectopic expression resulted in improved differentiation efficiency into insulin-secreting cells. However, support of this differentiation process using additional chemical induction may sufice to overcome control by endogenous regulatory pathways.
Collapse
Affiliation(s)
- Ayşegül Açiksari
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University , İzmit, Kocaeli , Turkey.,Department of Stem Cell, Institute of Health Sciences, Kocaeli University , İzmit, Kocaeli , Turkey
| | - Gökhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University , İzmit, Kocaeli , Turkey.,Department of Stem Cell, Institute of Health Sciences, Kocaeli University , İzmit, Kocaeli , Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research and Manufacturing , İstanbul , Turkey
| |
Collapse
|
3
|
Teichenne J, Morró M, Casellas A, Jimenez V, Tellez N, Leger A, Bosch F, Ayuso E. Identification of miRNAs Involved in Reprogramming Acinar Cells into Insulin Producing Cells. PLoS One 2015; 10:e0145116. [PMID: 26690959 PMCID: PMC4686894 DOI: 10.1371/journal.pone.0145116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/27/2015] [Indexed: 12/23/2022] Open
Abstract
Reprogramming acinar cells into insulin producing cells using adenoviral (Ad)-mediated delivery of Pdx1, Ngn3 and MafA (PNM) is an innovative approach for the treatment of diabetes. Here, we aimed to investigate the molecular mechanisms involved in this process and in particular, the role of microRNAs. To this end, we performed a comparative study of acinar-to-β cell reprogramming efficiency in the rat acinar cell line AR42J and its subclone B13 after transduction with Ad-PNM. B13 cells were more efficiently reprogrammed than AR42J cells, which was demonstrated by a strong activation of β cell markers (Ins1, Ins2, IAPP, NeuroD1 and Pax4). miRNome panels were used to analyze differentially expressed miRNAs in acinar cells under four experimental conditions (i) non-transduced AR42J cells, (ii) non-transduced B13 cells, (iii) B13 cells transduced with Ad-GFP vectors and (iv) B13 cells transduced with Ad-PNM vectors. A total of 59 miRNAs were found to be differentially expressed between non-transduced AR42J and B13 cells. Specifically, the miR-200 family was completely repressed in B13 cells, suggesting that these cells exist in a less differentiated state than AR42J cells and as a consequence they present a greater plasticity. Adenoviral transduction per se induced dedifferentiation of acinar cells and 11 miRNAs were putatively involved in this process, whereas 8 miRNAs were found to be associated with PNM expression. Of note, Ad-PNM reprogrammed B13 cells presented the same levels of miR-137-3p, miR-135a-5p, miR-204-5p and miR-210-3p of those detected in islets, highlighting their role in the process. In conclusion, this study led to the identification of miRNAs that might be of compelling importance to improve acinar-to-β cell conversion for the future treatment of diabetes.
Collapse
Affiliation(s)
- Joan Teichenne
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Meritxell Morró
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine. Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine. Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine. Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Noelia Tellez
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Bellvitge Biomedical Research Institute, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Adrien Leger
- Laboratoire de Thérapie Génique, INSERM UMR1089, University of Nantes and Atlantic Gene Therapies, Nantes, France
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine. Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Eduard Ayuso
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine. Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Laboratoire de Thérapie Génique, INSERM UMR1089, University of Nantes and Atlantic Gene Therapies, Nantes, France
- * E-mail:
| |
Collapse
|
4
|
PAX4 Gene Transfer Induces α-to-β Cell Phenotypic Conversion and Confers Therapeutic Benefits for Diabetes Treatment. Mol Ther 2015; 24:251-260. [PMID: 26435408 DOI: 10.1038/mt.2015.181] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/25/2015] [Indexed: 12/19/2022] Open
Abstract
The transcription factor Pax4 plays a critical role in the determination of α- versus β-cell lineage during endocrine pancreas development. In this study, we explored whether Pax4 gene transfer into α-cells could convert them into functional β-cells and thus provide therapeutic benefits for insulin-deficient diabetes. We found that Pax4 delivered by adenoviral vector, Ad5.Pax4, induced insulin expression and reduced glucagon expression in αTC1.9 cells. More importantly, these cells exhibited glucose-stimulated insulin secretion, a key feature of functional β-cells. When injected into streptozotocin-induced diabetic mice, Pax4-treated αTC1.9 cells significantly reduced blood glucose, and the mice showed better glucose tolerance, supporting that Pax4 gene transfer into αTC1.9 cells resulted in the formation of functional β-cells. Furthermore, treatment of primary human islets with Ad5.Pax4 resulted in significantly improved β-cell function. Detection of glucagon(+)/Pax4(+)/Insulin(+) cells argued for Pax4-induced α-to-β cell transitioning. This was further supported by quantification of glucagon and insulin bi-hormonal cells, which was significantly higher in Pax4-treated islets than in controls. Finally, direct administration of Ad5.Pax4 into the pancreas of insulin-deficient mice ameliorated hyperglycemia. Taken together, our data demonstrate that manipulating Pax4 gene expression represents a viable therapeutic strategy for the treatment of insulin deficient diabetes.
Collapse
|
5
|
Probert PME, Meyer SK, Alsaeedi F, Axon AA, Fairhall EA, Wallace K, Charles M, Oakley F, Jowsey PA, Blain PG, Wright MC. An expandable donor-free supply of functional hepatocytes for toxicology. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00214h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
The B-13 cell is a readily expandable rat pancreatic acinar-like cell that differentiates on simple plastic culture substrata into replicatively-senescent hepatocyte-like (B-13/H) cells in response to glucocorticoid exposure. B-13/H cells express a variety of liver-enriched and liver-specific genes, many at levels similar to hepatocytes in vivo. Furthermore, the B-13/H phenotype is maintained for at least several weeks in vitro, in contrast to normal hepatocytes which rapidly de-differentiate under the same simple – or even under more complex – culture conditions. The origin of the B-13 cell line and the current state of knowledge regarding differentiation to B-13/H cells are presented, followed by a review of recent advances in the use of B-13/H cells in a variety of toxicity endpoints. B-13 cells therefore offer Toxicologists a cost-effective and easy to use system to study a range of toxicologically-related questions. Dissecting the mechanism(s) regulating the formation of B-13/H cell may also increase the likelihood of engineering a human equivalent, providing Toxicologists with an expandable donor-free supply of functional rat and human hepatocytes, invaluable additions to the tool kit of in vitro toxicity tests.
Collapse
Affiliation(s)
- Philip M. E. Probert
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Stephanie K. Meyer
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Fouzeyyah Alsaeedi
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Andrew A. Axon
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Emma A. Fairhall
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Karen Wallace
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Michelle Charles
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Fiona Oakley
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Paul A. Jowsey
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Peter G. Blain
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Matthew C. Wright
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| |
Collapse
|
6
|
Lima MJ, Muir KR, Docherty HM, Drummond R, McGowan NW, Forbes S, Heremans Y, Houbracken I, Ross JA, Forbes SJ, Ravassard P, Heimberg H, Casey J, Docherty K. Suppression of epithelial-to-mesenchymal transitioning enhances ex vivo reprogramming of human exocrine pancreatic tissue toward functional insulin-producing β-like cells. Diabetes 2013; 62:2821-33. [PMID: 23610058 PMCID: PMC3717833 DOI: 10.2337/db12-1256] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of the lack of tissue available for islet transplantation, new sources of β-cells have been sought for the treatment of type 1 diabetes. The aim of this study was to determine whether the human exocrine-enriched fraction from the islet isolation procedure could be reprogrammed to provide additional islet tissue for transplantation. The exocrine-enriched cells rapidly dedifferentiated in culture and grew as a mesenchymal monolayer. Genetic lineage tracing confirmed that these mesenchymal cells arose, in part, through a process of epithelial-to-mesenchymal transitioning (EMT). A protocol was developed whereby transduction of these mesenchymal cells with adenoviruses containing Pdx1, Ngn3, MafA, and Pax4 generated a population of cells that were enriched in glucagon-secreting α-like cells. Transdifferentiation or reprogramming toward insulin-secreting β-cells was enhanced, however, when using unpassaged cells in combination with inhibition of EMT by inclusion of Rho-associated kinase (ROCK) and transforming growth factor-β1 inhibitors. Resultant cells were able to secrete insulin in response to glucose and on transplantation were able to normalize blood glucose levels in streptozotocin diabetic NOD/SCID mice. In conclusion, reprogramming of human exocrine-enriched tissue can be best achieved using fresh material under conditions whereby EMT is inhibited, rather than allowing the culture to expand as a mesenchymal monolayer.
Collapse
Affiliation(s)
- Maria João Lima
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, U.K
| | - Kenneth R. Muir
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, U.K
| | - Hilary M. Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, U.K
| | - Robert Drummond
- Medical Research Council Centre for Regenerative Medicine, Tissue Injury and Repair Group, University of Edinburgh, Chancellor's Building, Edinburgh, U.K
| | - Neil W.A. McGowan
- Department of Surgery, University of Edinburgh, Edinburgh Royal Infirmary, Edinburgh, U.K
| | - Shareen Forbes
- Endocrinology Unit, University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, U.K
| | - Yves Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - James A. Ross
- Medical Research Council Centre for Regenerative Medicine, Tissue Injury and Repair Group, University of Edinburgh, Chancellor's Building, Edinburgh, U.K
| | - Stuart J. Forbes
- Medical Research Council Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine Building, University of Edinburgh, Edinburgh, U.K
| | - Philippe Ravassard
- Biotechnology and Biotherapy Laboratory, CNRS UMR 7225, INSERM 975, Paris, France
- University Pierre and Marie Curie, Hôpital Pitié Salpêtrière, Paris, France
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - John Casey
- Department of Surgery, University of Edinburgh, Edinburgh Royal Infirmary, Edinburgh, U.K
| | - Kevin Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, U.K
- Corresponding author: Kevin Docherty,
| |
Collapse
|
7
|
Abstract
The RNA-binding protein RNA-binding motif protein 4 (RBM4) modulates alternative splicing of muscle-specific mRNA isoforms during muscle cell differentiation. To better understand the physiological function of RBM4, we exploited a gene knockout strategy in the present study. Mice with targeted disruption of one of the two Rbm4 genes exhibited hyperglycemia coincident with reduced levels of serum insulin and reduced size of pancreatic islets. The embryonic pancreases of Rbm4-deficient mice showed reduced expression or aberrant splicing of many transcripts encoding factors required for pancreas cell differentiation and function. Using pancreatic acinar AR42J cells, we demonstrated that RBM4 promoted insulin gene expression by altering the isoform balance of the transcription factors Isl1 and Pax4 via alternative splicing control. RBM4 overexpression was sufficient to convert AR42J cells into insulin-producing cells. Moreover, RBM4 may mediate glucose-induced insulin expression and insulin receptor isoform switches. These results suggest that RBM4 may have role in promoting pancreas cell differentiation and endocrine function, essentially via alternative splicing regulation.
Collapse
|
8
|
Lima MJ, Docherty HM, Chen Y, Docherty K. Efficient differentiation of AR42J cells towards insulin-producing cells using pancreatic transcription factors in combination with growth factors. Mol Cell Endocrinol 2012; 358:69-80. [PMID: 22429991 DOI: 10.1016/j.mce.2012.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/24/2012] [Accepted: 02/26/2012] [Indexed: 01/12/2023]
Abstract
The AR42J-B13 rat pancreatic acinar cell line was used to identify pancreatic transcription factors and exogenous growth factors (GFs) that might facilitate the reprogramming of exocrine cells into islets. Adenoviruses were used to induce exogenous expression of the pancreatic transcription factors (TFs) Pdx1, MafA, Ngn3 and Pax4. Individually Pdx1, MafA and Pax4 had no effect on the expression of endocrine markers, whilst adeno-Ngn3 on its own increased the expression of Pax4, Ngn3 and NeuroD. In combination the four TFs had a significant effect on the expression of insulin 1 and 2 that was associated with a change in cell morphology from a rounded to a spindle-like shape. Amongst a range of growth factors, Betacellulin and Nicotinamide were shown to enhance the effects of the four TFs. The presence of adeno-Pax4 in the differentiation cocktail was important in limiting the expression of glucagon and in generating glucose sensitive insulin secretion. Further experiments asked whether the adenoviral TFs could be replaced by protein transduction domain (PTD)-containing TFs. The results showed that the PTD-TFs could mimic in part the effects of the adeno-TFs, but the resultant cells did not undergo the important morphological change associated with differentiation to endocrine lineages and levels of endogenous markers were very much lower. In summary, the results describe a cocktail of four TFs and two GFs that can be used to induce formation of glucose sensitive insulin secreting cells from ARJ42 cells, and demonstrate that it would be difficult to replace adenoviral transduction with PTD-TFS.
Collapse
Affiliation(s)
- Maria João Lima
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
9
|
Reprogramming of pancreatic exocrine cells towards a beta (β) cell character using Pdx1, Ngn3 and MafA. Biochem J 2012; 442:539-50. [PMID: 22150363 PMCID: PMC3286861 DOI: 10.1042/bj20111678] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pdx1 (pancreatic and duodenal homeobox 1), Ngn3 (neurogenin 3) and MafA (v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A) have been reported to bring about the transdifferentiation of pancreatic exocrine cells to beta (β) cells in vivo. We have investigated the mechanism of this process using a standard in vitro model of pancreatic exocrine cells, the rat AR42j-B13 cell line. We constructed a new adenoviral vector encoding all three genes, called Ad-PNM (adenoviral Pdx1, Ngn3, MafA construct). When introduced into AR42j-B13 cells, Ad-PNM caused a rapid change to a flattened morphology and a cessation of cell division. The expression of exocrine markers is suppressed. Both insulin genes are up-regulated as well as a number of transcription factors normally characteristic of beta cells. At the chromatin level, histone tail modifications of the Pdx1, Ins1 (insulin 1) and Ins2 (insulin 2) gene promoters are shifted in a direction associated with gene activity, and the level of DNA CpG methylation is reduced at the Ins1 promoter. The transformed cells secrete insulin and are capable of relieving diabetes in streptozotocin-treated NOD-SCID (non-obese diabetic severe combined immunodeficiency) mice. However the transformation is not complete. The cells lack expression of several genes important for beta cell function and they do not show glucose-sensitive insulin secretion. We conclude that, for this exocrine cell model, although the transformation is dramatic, the reprogramming is not complete and lacks critical aspects of the beta cell phenotype.
Collapse
|
10
|
Zhang T, Saunee NA, Breslin MB, Song K, Lan MS. Functional role of an islet transcription factor, INSM1/IA-1, on pancreatic acinar cell trans-differentiation. J Cell Physiol 2012; 227:2470-9. [PMID: 21830214 DOI: 10.1002/jcp.22982] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, the functional role of INSM1 is examined with an AR42J acinar cell model for trans-differentiation into insulin-positive cells. Islet transcription factors (ITFs: INSM1, Pdx-1, and NeuroD1) are over-expressed in AR42J cells using adenoviral vectors. Addition of Ad-INSM1 alone or the combination of three ITFs to the AR42J cells triggers cellular trans-differentiation. Ectopic expression of INSM1 directly induces insulin, Pax6, and Nkx6.1 expression, whereas Pdx-1 and NeuroD1 were slightly suppressed by INSM1. Addition of Pdx-1 and NeuroD1 with INSM1 further enhances endocrine trans-differentiation by increasing both the numbers and intensity of the insulin-positive cells with simultaneous activation of ITFs, Ngn3 and MafA. INSM1 expression alone partially inhibits dexamethasone-induced exocrine amylase expression. The combination of the three ITFs completely inhibits amylase expression and concomitantly induces greater acinar cell trans-differentiation into endocrine cells. Also, addition of the three ITFs promotes EGF and TGFβ receptors expression. Stimulation by the three ITFs along with the EGF/TGFβ growth factors strongly promotes insulin gene expression. The combination of the three ITFs and EGF/TGFβ growth factors with the primary cultured pancreatic acini also facilitates exocrine to endocrine cell differentiation. Taken together, both the AR42J cell line and the primary cultured mouse acinar cells support INSM1 induced acini trans-differentiation model.
Collapse
Affiliation(s)
- Tao Zhang
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
11
|
Hang Y, Stein R. MafA and MafB activity in pancreatic β cells. Trends Endocrinol Metab 2011; 22:364-73. [PMID: 21719305 PMCID: PMC3189696 DOI: 10.1016/j.tem.2011.05.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/03/2011] [Accepted: 05/18/2011] [Indexed: 12/11/2022]
Abstract
Analyses in mouse models have revealed crucial roles for MafA (musculoaponeurotic fibrosarcoma oncogene family A) and MafB in islet β cells, with MafB being required during development and MafA in adults. These two closely related transcription factors regulate many genes essential for glucose sensing and insulin secretion in a cooperative and sequential manner. Significantly, the switch from MafB to MafA expression also appears to be vital for functional maturation of β cells produced by human embryonic stem (hES) cell differentiation. This review summarizes the discovery, distribution, and function of MafA and MafB in rodent pancreatic β cells, and describes some key questions regarding their importance to β cells.
Collapse
Affiliation(s)
- Yan Hang
- Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center Nashville, TN 37232, USA
| | - Roland Stein
- Correspondence: 723 Light Hall, 2215 Garland Ave Nashville, TN 37232 Phone: 615-322-7026 Facsimile: 615-322-7236
| |
Collapse
|
12
|
Wallace K, Fairhall EA, Charlton KA, Wright MC. AR42J-B-13 cell: an expandable progenitor to generate an unlimited supply of functional hepatocytes. Toxicology 2010; 278:277-87. [PMID: 20685382 DOI: 10.1016/j.tox.2010.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 01/16/2023]
Abstract
Hepatocytes are the preparation of choice for Toxicological research in vitro. However, despite the fact that hepatocytes proliferate in vivo during liver regeneration, they are resistant to proliferation in vitro, do not tolerate sub-culture and tend to enter a de-differentiation program that results in a loss of hepatic function. These limitations have resulted in the search for expandable rodent and human cells capable of being directed to differentiate into functional hepatocytes. Research with stem cells suggests that it may be possible to provide the research community with hepatocytes in vitro although to date, significant challenges remain, notably generating a sufficiently pure population of hepatocytes with a quantitative functionality comparable with hepatocytes. This paper reviews work with the AR42J-B-13 (B-13) cell line. The B-13 cell was cloned from the rodent AR42J pancreatic cell line, express genes associated with pancreatic acinar cells and readily proliferates in simple culture media. When exposed to glucocorticoid, 75-85% of the cells trans-differentiate into hepatocyte-like (B-13/H) cells functioning at a level quantitatively similar to freshly isolated rat hepatocytes (with the remaining cells retaining the B-13 phenotype). Trans-differentiation of pancreatic acinar cells also appears to occur in vivo in rats treated with glucocorticoid; in mice with elevated circulating glucocorticoid and in humans treated for long periods with glucocorticoid. The B-13 response to glucocorticoid therefore appears to be related to a real pathophysiological response of a pancreatic cell to glucocorticoid. An understanding of how this process occurs and if it can be generated or engineered in human cells would result in a cell line with the ability to generate an unlimited supply of functional human hepatocytes in a cost effective manner.
Collapse
Affiliation(s)
- Karen Wallace
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | | | |
Collapse
|
13
|
Miyatsuka T, Matsuoka TA, Kaneto H. Transcription factors as therapeutic targets for diabetes. Expert Opin Ther Targets 2009; 12:1431-42. [PMID: 18851698 DOI: 10.1517/14728222.12.11.1431] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Islet cell implantation and pancreas transplantation have been used as treatments for diabetes but are limited by the shortage of donors and the requirement for lifelong immunosuppression. As an alternative, the generation of surrogate insulin-producing cells has been an area of interest for many researchers. Understanding how pancreatic beta-cells are generated during pancreas development will provide information that can be applied to generating surrogate beta-cells. OBJECTIVE To outline the current knowledge of pancreas development and differentiation, with a focus on the regulatory network of pancreas-enriched transcription factors and their targets. METHODS A review of relevant literature. CONCLUSIONS Pancreatic and duodenal homeobox 1 (Pdx1), Neurogenin 3 (Ngn3), and musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) have been shown to play essential roles in pancreas development and beta-cell differentiation, and gain-of-function approaches indicate the potency of these factors for inducing differentiation of non-beta-cells into insulin-producing cells, which could lead to a novel therapy to cure diabetes.
Collapse
Affiliation(s)
- Takeshi Miyatsuka
- Osaka University Graduate School of Medicine, Department of Internal Medicine and Therapeutics, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | | |
Collapse
|