1
|
Arroyave J, Hernández-Ávila SG, Matus-Martínez M, Matamoros WA. Range extension of the Mexican-endemic killifish Profundulus chimalapensis (Cyprinodontiformes: Profundulidae), with comments on its phylogenetic placement and possible intergeneric hybridization with Tlaloc Álvarez & Carranza 1951. Zootaxa 2024; 5536:454-464. [PMID: 39646364 DOI: 10.11646/zootaxa.5536.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 12/10/2024]
Abstract
Recent ichthyological surveys in southern Mexico resulted in the unexpected discovery of populations of P. chimalapensis outside its distribution range, broadening its extent of occurrence to a total of three river basins (Coatzacoalcos [original], Grijalva, Ostuta) and two versants (Atlantic [original] and Pacific). The taxonomic nature of these populations was further investigated using comparative genetic data in a phylogenetic framework. Our results include the first assessment of the phylogenetic position of P. chimalapensis with respect to other Profundulus species and imply a sister-group relationship with P. oaxacae. Remarkably, our results also imply a close phylogenetic affinity of some P. chimalapensis samples with the genus Tlaloc, which we interpret as possible evidence of intergeneric hybridization, a phenomenon previously unreported in the family. If our interpretation in this regard is correct, it raises several broader evolutionary and taxonomic questions, such as the role that introgressive hybridization might be playing as a driver of speciation in profundulid fishes. From a historical biogeographic perspective, the proposed expanded geographic range could be explained by inter-basin dispersal enabled by recent or historical events (e.g., paleodrainage connections, headwaters stream capture, floodings) in the same fashion as these have been invoked to explain distribution patterns in other Middle American freshwater fishes.
Collapse
Affiliation(s)
- Jairo Arroyave
- Instituto de Biología; Universidad Nacional Autónoma de México; Cto. Zona Deportiva S/N; C.U.; Coyoacán; 04510 Ciudad de México; México.
| | - Sonia Gabriela Hernández-Ávila
- Instituto de Biología; Universidad Nacional Autónoma de México; Cto. Zona Deportiva S/N; C.U.; Coyoacán; 04510 Ciudad de México; México; Maestría en Ciencias en Biodiversidad y Ecosistemas Tropicales; Instituto de Ciencias Biológicas; Universidad de Ciencias y Artes de Chiapas; Libramiento Norte Poniente 1150; Col. Lajas Maciel; Tuxtla Gutiérrez 29039 Chiapas; México.
| | - Manuel Matus-Martínez
- Laboratorio del Río Ostuta; Tierra Yaza A.C.; Justo Sierra #6; San Francisco Ixhuatán; 70175 Oaxaca; México.
| | - Wilfredo A Matamoros
- Instituto de Ciencias Biológicas; Universidad de Ciencias y Artes de Chiapas; Libramiento Norte Poniente 1150; Col. Lajas Maciel; Tuxtla Gutiérrez 29039 Chiapas; México.
| |
Collapse
|
2
|
Hai DM, Yen DT, Liem PT, Tam BM, Huong DTT, Hang BTB, Hieu DQ, Garigliany MM, Coppieters W, Kestemont P, Phuong NT, Farnir F. A High-Quality Genome Assembly of Striped Catfish ( Pangasianodon hypophthalmus) Based on Highly Accurate Long-Read HiFi Sequencing Data. Genes (Basel) 2022; 13:923. [PMID: 35627308 PMCID: PMC9141817 DOI: 10.3390/genes13050923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022] Open
Abstract
The HiFi sequencing technology yields highly accurate long-read data with accuracies greater than 99.9% that can be used to improve results for complex applications such as genome assembly. Our study presents a high-quality chromosome-scale genome assembly of striped catfish (Pangasianodon hypophthalmus), a commercially important species cultured mainly in Vietnam, integrating HiFi reads and Hi-C data. A 788.4 Mb genome containing 381 scaffolds with an N50 length of 21.8 Mb has been obtained from HiFi reads. These scaffolds have been further ordered and clustered into 30 chromosome groups, ranging from 1.4 to 57.6 Mb, based on Hi-C data. The present updated assembly has a contig N50 of 14.7 Mb, representing a 245-fold and 4.2-fold improvement over the previous Illumina and Illumina-Nanopore-Hi-C based version, respectively. In addition, the proportion of repeat elements and BUSCO genes identified in our genome is remarkably higher than in the two previously released striped catfish genomes. These results highlight the power of using HiFi reads to assemble the highly repetitive regions and to improve the quality of genome assembly. The updated, high-quality genome assembled in this work will provide a valuable genomic resource for future population genetics, conservation biology and selective breeding studies of striped catfish.
Collapse
Affiliation(s)
- Dao Minh Hai
- FARAH/Sustainable Animal Production, Faculty of Veterinary Medicine, University of Liege (B43), 4000 Liege, Belgium;
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Duong Thuy Yen
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Pham Thanh Liem
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Bui Minh Tam
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Bui Thi Bich Hang
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Dang Quang Hieu
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Mutien-Marie Garigliany
- FARAH/Veterinary Public Health, Faculty of Veterinary Medicine, University of Liege (B43), 4000 Liege, Belgium;
| | | | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth & Environnment, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium;
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Frédéric Farnir
- FARAH/Sustainable Animal Production, Faculty of Veterinary Medicine, University of Liege (B43), 4000 Liege, Belgium;
| |
Collapse
|
3
|
Gao Z, You X, Zhang X, Chen J, Xu T, Huang Y, Lin X, Xu J, Bian C, Shi Q. A chromosome-level genome assembly of the striped catfish (Pangasianodon hypophthalmus). Genomics 2021; 113:3349-3356. [PMID: 34343676 DOI: 10.1016/j.ygeno.2021.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Striped catfish (Pangasianodon hypophthalmus), belonging to the Pangasiidae family, has become an economically important fish with wide cultivation in Southeast Asia. Owing to the high-fat trait, it is always considered as an oily fish. In our present study, a high-quality genome assembly of the striped catfish was generated by integration of Illumina short reads, Nanopore long reads and Hi-C data. A 731.7-Mb genome assembly was finally obtained, with a contig N50 of 3.5 Mb, a scaffold N50 of 29.5 Mb, and anchoring of 98.46% of the assembly onto 30 pseudochromosomes. The genome contained 36.9% repeat sequences, and a total 18,895 protein-coding genes were predicted. Interestingly, we identified a tandem triplication of fatty acid binding protein 1 gene (fabp1; thereby named as fabp1-1, fabp1-2 and fabp1-3 respectively), which may be related to the high fat content in striped catfish. Meanwhile, the FABP1-2 and -3 isoforms differed from FABP1-1 by several missense mutations including R126T, which may affect the fatty acid binding properties. In summary, we report a high-quality chromosome-level genome assembly of the striped catfish, which provides a valuable genetic resource for biomedical studies on the high-fat trait, and lays a solid foundation for practical aquaculture and molecular breeding of this international teleost species.
Collapse
Affiliation(s)
- Zijian Gao
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xinxin You
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Jieming Chen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Tengfei Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xueqiang Lin
- BGI Marine-Hainan, BGI Marine, BGI, Wenchang 571327, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Chao Bian
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| |
Collapse
|