1
|
Stone CR, Harris DD, Broadwin M, Kanuparthy M, Sabe SA, Xu C, Feng J, Abid MR, Sellke FW. Crafting a Rigorous, Clinically Relevant Large Animal Model of Chronic Myocardial Ischemia: What Have We Learned in 20 Years? Methods Protoc 2024; 7:17. [PMID: 38392691 PMCID: PMC10891802 DOI: 10.3390/mps7010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/10/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
The past several decades have borne witness to several breakthroughs and paradigm shifts within the field of cardiovascular medicine, but one component that has remained constant throughout this time is the need for accurate animal models for the refinement and elaboration of the hypotheses and therapies crucial to our capacity to combat human disease. Numerous sophisticated and high-throughput molecular strategies have emerged, including rational drug design and the multi-omics approaches that allow extensive characterization of the host response to disease states and their prospective resolutions, but these technologies all require grounding within a faithful representation of their clinical context. Over this period, our lab has exhaustively tested, progressively refined, and extensively contributed to cardiovascular discovery on the basis of one such faithful representation. It is the purpose of this paper to review our porcine model of chronic myocardial ischemia using ameroid constriction and the subsequent myriad of physiological and molecular-biological insights it has allowed our lab to attain and describe. We hope that, by depicting our methods and the insight they have yielded clearly and completely-drawing for this purpose on comprehensive videographic illustration-other research teams will be empowered to carry our work forward, drawing on our experience to refine their own investigations into the pathogenesis and eradication of cardiovascular disease.
Collapse
Affiliation(s)
- Christopher R. Stone
- Department of Cardiothoracic Surgery, The Warren Alpert School of Medicine at Brown University, Providence, RI 02903, USA; (D.D.H.); (M.B.); (M.K.); (S.A.S.); (C.X.); (J.F.); (M.R.A.); (F.W.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zhuang B, Cui C, He J, Xu J, Wang X, Li L, Jia L, Wu W, Sun X, Li S, Zhou D, Yang W, Wang Y, Zhu L, Sirajuddin A, Zhao S, Lu M. Developing and evaluating a chronic ischemic cardiomyopathy in swine model by rest and stress CMR. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:249-260. [PMID: 37971706 DOI: 10.1007/s10554-023-02999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
A large animal model of chronic coronary artery disease (CAD) is crucial for the understanding the underlying pathophysiological processes of chronic CAD and consequences for cardiac structure and function. The goal of this study was to develop a chronic model of CAD in a swine model and to evaluate the changes of myocardial structure, myocardial motility, and myocardial viability during coronary stenosis. A total of 30 swine (including 24 experimental animals and 6 controls) were enrolled. The chronic ischemia model was constructed by using Ameroid constrictor in experimental group. The 24 experimental animals were further divided into 4 groups (6 animals in each group) and were sacrificed at 1, 2, 3 and 4 weeks after operation for pathological examination, respectively. Cardiac magnetic resonance (CMR) was performed preoperatively and weekly postoperatively until sacrificed both in experimental and control group. CMR cine images, rest/adenosine triphosphate (ATP) stress myocardial contrast perfusion and LGE were performed and analyzed. The rest wall thickening (WT) score was calculated from rest cine images. The MPRI (myocardial perfusion reserve index) and MPR (myocardial perfusion reserve) were calculated based on rest and stress perfusion images. Pathology staining including triphenyltetrazolium chloride, HE and picrosirus red staining were performed after swine were sacrificed and collagen volume fraction (CVF) was calculated. The time to formation of ischemic, hibernating, and infarcted myocardium was recorded. In experimental group, from 1w to 4w after surgery, the rest WT score decreased gradually from 35.2 ± 2.0%, 32.0 ± 2.9% to 30.5 ± 3.0% and finally 29.06 ± 1.78%, p < 0.001. Left ventricular ejection fraction was gradually impaired after modeling (58.9 ± 12.6%, 56.3 ± 10.1%, 55.3 ± 9.0%, 53.8 ± 9.9%, respectively). And the MPR and MPRI also decreased stepwise with extent of surgery time (MPRI dropped from 2.1 ± 0.4, 2.0 ± 0.2 to 1.8 ± 0.3 and finally 1.7 ± 0.1, p = 0.004; MPR dropped from 2.3 ± 0.4, 2.1 ± 0.2 to 1.9 ± 0.4 and finally 1.8 ± 0.1, p < 0.001). Stronger associations between MPR, MPRI and CVF were paralleled lower wall thickening scores in fibrosis-affected areas. The ischemic myocardium was first appeared in the first week after surgery (involving ten segments), hibernated myocardium was first appeared in the second week after surgery (involving seventeen segments). LGE was first appeared in eight swine in the third weeks after surgery (16 segments). At 4w after surgery, average 9.6 g scar tissue was found among 6 swine. At the same time, histological analysis established the presence of fibrosis and ongoing apoptosis in the infarcted area. In conclusion, our study provided valuable insights into the pathophysiological processes of chronic CAD and its consequences for cardiac structure and function in a large animal model through combining myocardial motion and stress perfusion.
Collapse
Affiliation(s)
- Baiyan Zhuang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, People's Republic of China
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chen Cui
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jian He
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Xu
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Wang
- Department of Animal Experimental Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- Department of Pathology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liujun Jia
- Department of Animal Experimental Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weichun Wu
- Department of Echocardiography, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxin Sun
- Key Laboratory of Cardiovascular Imaging (cultivation), Chinese Academy of Medical Sciences, Beijing, China
| | - Shuang Li
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Di Zhou
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wenjing Yang
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yining Wang
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Leyi Zhu
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Arlene Sirajuddin
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
- Key Laboratory of Cardiovascular Imaging (cultivation), Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Translational large animal model of hibernating myocardium: characterization by serial multimodal imaging. Basic Res Cardiol 2020; 115:33. [PMID: 32291522 DOI: 10.1007/s00395-020-0788-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 01/08/2023]
Abstract
Nonrevascularizable coronary artery disease is a frequent cause of hibernating myocardium leading to heart failure (HF). Currently, there is a paucity of therapeutic options for patients with this condition. There is a lack of animal models resembling clinical features of hibernating myocardium. Here we present a large animal model of hibernating myocardium characterized by serial multimodality imaging. Yucatan minipigs underwent a surgical casein ameroid implant around the proximal left anterior descending coronary artery (LAD), resulting in a progressive obstruction of the vessel. Pigs underwent serial multimodality imaging including invasive coronary angiography, cardiac magnetic resonance (CMR), and hybrid 18F-Fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT). A total of 43 pigs were operated on and were followed for 120 ± 37 days with monthly multimodality imaging. 24 pigs (56%) died during the follow-up. Severe LAD luminal stenosis was documented in all survivors. In the group of 19 long-term survivors, 17 (90%) developed left ventricular systolic dysfunction [median LVEF of 35% (IQR 32.5-40.5%)]. In 17/17, at-risk territory was viable on CMR and 14 showed an increased glucose uptake in the at-risk myocardium on 18FDG-PET/CT. The present pig model resembles most of the human hibernated myocardium characteristics and associated heart failure (systolic dysfunction, viable myocardium, and metabolic switch to glucose). This human-like model might be used to test novel interventions for nonrevascularizable coronary artery disease and ischemia heart failure as a previous stage to clinical trials.
Collapse
|
4
|
Lin R, Duan J, Mu F, Bian H, Zhao M, Zhou M, Li Y, Wen A, Yang Y, Xi M. Cardioprotective effects and underlying mechanism of Radix Salvia miltiorrhiza and Lignum Dalbergia odorifera in a pig chronic myocardial ischemia model. Int J Mol Med 2018; 42:2628-2640. [PMID: 30226574 PMCID: PMC6192790 DOI: 10.3892/ijmm.2018.3844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/09/2018] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese medicines, including Radix Salvia miltiorrhiza (SM) and Lignum Dalbergia odorifera (DO) extracts, have historically been used to treat myocardial ischemia and other cardiovascular diseases. The volatile oil of DO (DOO) is one of the main components of DO. The aim of the present study was to assess the cardioprotective effects and possible underlying mechanisms of SM-DOO in pigs with ameroid constriction-induced chronic myocardial ischemia. An ameroid constrictor was placed around the left anterior descending coronary artery of pigs to induce chronic myocardial ischemia. At weeks 2, 6 and 8, myocardial injury markers and blood gas levels were detected. At week 8, coronary angiography, echocardiography and hemodynamics analysis were performed to evaluate myocardial function. Following sacrifice, myocardial tissue was collected and subjected to morphological, histopathological and apoptosis assays. Western blotting was used to detect the protein expression of Bcl-2 associated X (Bax), Bcl-2, Akt, phosphorylated (p)-Akt, glycogen synthase kinase (GSK)-3β and p-GSK-3β. It was revealed that SM-DOO treatment following chronic myocardial ischemia significantly downregulated the expression of myocardial injury markers, ameliorated myocardial oxygen consumption, increased collateralization, reduced regional cardiac dysfunction and limited the extent of myocardial damage. Furthermore, the results of an apoptosis assay revealed that the apoptosis rate was decreased, the expression of Bax decreased and Bcl-2 increased, and the ratio of Bcl-2/Bax was increased. Further experiments indicated that treatment with SM-DOO increased the phosphorylation of Akt and GSK-3β. These findings suggest that SM-DOO treatment ameliorates myocardial injury in a chronic myocardial ischemia model, and that the underlying mechanisms responsible may be associated with the activation of the Akt/GSK-3β signal pathway. Thus, experimental evidence that SM-DOO may be an effective drug for the prevention and treatment of chronic myocardial ischemia in clinical applications has been provided.
Collapse
Affiliation(s)
- Rui Lin
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Haixu Bian
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Min Zhou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Yao Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
5
|
Keeran KJ, Jeffries KR, Zetts AD, Taylor J, Kozlov S, Hunt TJ. A Chronic Cardiac Ischemia Model in Swine Using an Ameroid Constrictor. J Vis Exp 2017. [PMID: 29053673 PMCID: PMC5752388 DOI: 10.3791/56190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease remains the number one cause of mortality in the United States. There are numerous approaches to treating these diseases, but regardless of the approach, an in vivo model is needed to test each treatment. The pig is one of the most used large animal models for cardiovascular disease. Its heart is very similar in anatomy and function to that of a human. The ameroid placement technique creates an ischemic area of the heart, which has many useful applications in studying myocardial infarction. This model has been used for surgical research, pharmaceutical studies, imaging techniques, and cell therapies. There are several ways of inducing an ischemic area in the heart. Each has its advantages and disadvantages, but the placement of an ameroid constrictor remains the most widely used technique. The main advantages to using the ameroid are its prevalence in existing research, its availability in various sizes to accommodate the anatomy and size of the vessel to be constricted, the surgery is a relatively simple procedure, and the post-operative monitoring is minimal, since there are no external devices to maintain. This paper provides a detailed overview of the proper technique for the placement of the ameroid constrictor.
Collapse
Affiliation(s)
- Karen J Keeran
- Animal Surgery and Resources Core, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Kenneth R Jeffries
- Animal Surgery and Resources Core, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Arthur D Zetts
- Animal Surgery and Resources Core, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Joni Taylor
- Animal Surgery and Resources Core, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Shawn Kozlov
- Animal Surgery and Resources Core, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Timothy J Hunt
- Animal Surgery and Resources Core, National Heart, Lung, and Blood Institute, National Institutes of Health;
| |
Collapse
|
6
|
Zhang H, Luo H, Sun J, Liu C, Tian Y, Chen H, Zhang C. Mild coronary artery stenosis has no impact on cardiac and vascular parameters in miniature swine exposed to positive acceleration stress. J Cardiovasc Med (Hagerstown) 2017; 17:713-8. [PMID: 25799013 DOI: 10.2459/jcm.0000000000000014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Exposure of pilots' heart to acceleration-associated stress (+Gz stress) is an adverse effect of high-performance aviation. The occurrence of coronary heart diseases is one of the most frequent medical causes leading to cessation of flying. AIM To assess the effects of +Gz stress on coronary artery stenosis (CAS) in a minimally invasive miniature swine model with a fast recovery. METHODS The proximal left anterior descending branch was ligated in 20 swine using silk suture. CAS degree (mild, moderate, severe) was analyzed by quantitative computerized angiography. Five swine underwent a sham operation. +Gz stress exposure was performed and venous blood was collected before/after exposure. Plasma C-reactive protein (CRP), endothelin (ET)-1, angiotensin (Ang) II and urotensin 2 (U2) levels were measured. RESULTS CAS models were successful in 18 animals. Two swine exhibited ventricular fibrillation during the procedure and died. Plasma CRP, ET-1, Ang II and U2 changed significantly after maximal tolerated +Gz stress exposure (all P < 0.05). After maximal tolerated +Gz stress exposure, plasma CRP, ET-1, Ang II and U2 levels increased in the moderate and severe stenosis groups, compared with the sham group (all P < 0.05), but there was no significant difference between the mild stenosis group and the sham group (all P > 0.05). CONCLUSION The fully endoscopic operation method successfully generated animal models of different degrees of CAS. Plasma CRP, ET-1, Ang II and U2 levels increased after +Gz stress exposure with increasing CAS severity. Animals with mild stenosis showed no ill effect under +Gz stress, suggesting that pilots with mild stenosis might be allowed to continue flying, but it must be confirmed in humans.
Collapse
Affiliation(s)
- Haitao Zhang
- aDepartment of Cardiology, Air Force Clinic Institution of Anhui Medical University bDepartment of Cardiology, General Hospital of Air Force, PLA cAnimal Experimental Center of Fuwai Hospital, National Heart Center of China, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
A New Biomarkers Feature Pattern Consisting of TNF- α , IL-10, and IL-8 for Blood Stasis Syndrome with Myocardial Ischemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:130702. [PMID: 24371451 PMCID: PMC3859256 DOI: 10.1155/2013/130702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/12/2013] [Accepted: 10/12/2013] [Indexed: 12/11/2022]
Abstract
Objective. To explore new diagnostic patterns for syndromes to overcome the insufficiency of obtainable macrocharacteristics and specific biomarkers. Methods. Chinese miniswines were subjected to Ameroid constrictor, placed around the proximal left anterior descending branch. On the 4th week, macrocharacteristics, coronary angiography, echocardiography, and hemorheology indices were detected for diagnosis. IL-1, IL-6, IL-8, IL-10, TNF-α, and hsCRP in serum were detected, and Decision Tree was built. Results. According to current official-issued standard, model animals matched the diagnosis of blood stasis syndrome with myocardial ischemia based on findings, including >90% occlusion, attenuated left ventricular segmental motion, dark red or purple tongues, and higher blood viscosity. Significant decrease of IL-10 and increase of TNF-α were found in model animals. However, in the Decision Tree, besides IL-10 and TNF-α, IL-8 helped to increase the accuracy of classification to 86%. Conclusions. The Decision Tree building with TNF-α, IL-10, and IL-8 is helpful for the diagnosis of blood stasis syndrome in myocardial ischemia animals. What is more is that our data set up a new path to the differentiation of syndrome by feature patterns consisting of multiple biomarkers not only for animals but also for patients. We believe that it will contribute to the standardization and international application of syndromes.
Collapse
|
9
|
Giordano C, Kuraitis D, Beanlands RSB, Suuronen EJ, Ruel M. Cell-based vasculogenic studies in preclinical models of chronic myocardial ischaemia and hibernation. Expert Opin Biol Ther 2012; 13:411-28. [PMID: 23256710 DOI: 10.1517/14712598.2013.748739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Coronary artery disease commonly leads to myocardial ischaemia and hibernation. Relevant preclinical models of these conditions are essential to evaluate new therapeutic options such as cell-based vasculogenic therapies. AREAS COVERED In this article, the authors first review basic concepts of myocardial ischaemia/hibernation and relevant techniques to assess myocardial viability. Then, preclinical models of chronic myocardial ischaemia and hibernation, induced by devices such as ameroid constrictors, Delrin stenosis, hydraulic occluders, and coils/stents are described. Lastly, the authors discuss cell-based vasculogenic therapy, and summarise studies conducted in large animal models of chronic myocardial ischaemia and hibernation. EXPERT OPINION Approximately one-third of patients with viable myocardium do not undergo revascularisation; however, this population is at high risk for cardiac events and would surely benefit from effective cell-based therapy. Because of the modest benefits in clinical studies, preclinical models accurately representing clinical myocardial ischemia/hibernation are necessary to better understand and appropriately direct regenerative therapy research.
Collapse
Affiliation(s)
- Céline Giordano
- University of Ottawa Heart Institute, Division of Cardiac Surgery, 40 Ruskin Street, Suite 3403, Ottawa, Ontario, K1Y 4W7, Canada
| | | | | | | | | |
Collapse
|
10
|
Kimura M, Toyoda M, Gojo S, Itakura Y, Kami D, Miyoshi S, Kyo S, Ono M, Umezawa A. Allogeneic amniotic membrane-derived mesenchymal stromal cell transplantation in a porcine model of chronic myocardial ischemia. J Stem Cells Regen Med 2012. [PMID: 24693195 PMCID: PMC3908291 DOI: 10.46582/jsrm.0803010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction. Amniotic membrane contains a multipotential stem cell population and is expected to possess the machinery to regulate immunological reactions. We investigated the safety and efficacy of allogeneic amniotic membrane-derived mesenchymal stromal cell (AMSC) transplantation in a porcine model of chronic myocardial ischemia as a preclinical trial. Methods. Porcine AMSCs were isolated from amniotic membranes obtained by cesarean section just before delivery and were cultured to increase their numbers before transplantation. Chronic myocardial ischemia was induced by implantation of an ameroid constrictor around the left circumflex coronary artery. Four weeks after ischemia induction, nine swine were assigned to undergo either allogeneic AMSC transplantation or normal saline injection. Functional analysis was performed by echocardiography, and histological examinations were carried out by immunohistochemistry 4 weeks after AMSC transplantation. Results. Echocardiography demonstrated that left ventricular ejection fraction was significantly improved and left ventricular dilatation was well attenuated 4 weeks after AMSC transplantation. Histological assessment showed a significant reduction in percentage of fibrosis in the AMSC transplantation group. Injected allogeneic green fluorescent protein (GFP)-expressing AMSCs were identified in the immunocompetent host heart without the use of any immunosuppressants 4 weeks after transplantation. Immunohistochemistry revealed that GFP colocalized with cardiac troponin T and cardiac troponin I. Conclusions. We have demonstrated that allogeneic AMSC transplantation produced histological and functional improvement in the impaired myocardium in a porcine model of chronic myocardial ischemia. The transplanted allogeneic AMSCs survived without the use of any immunosuppressants and gained cardiac phenotype through either their transdifferentiation or cell fusion.
Collapse
Affiliation(s)
- M Kimura
- Department of Cardiovascular Surgery, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan ; Equally contributed to the study
| | - M Toyoda
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology , Tokyo, Japan ; Equally contributed to the study
| | - S Gojo
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Y Itakura
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology , Tokyo, Japan
| | - D Kami
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - S Miyoshi
- Department of Cardiology, Keio University School of Medicine , Tokyo, Japan
| | - S Kyo
- Department of Therapeutic Strategy for Heart Failure, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - M Ono
- Department of Cardiovascular Surgery, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - A Umezawa
- Department of Reproductive Biology, National Research Institute for Child Health and Development , Tokyo, Japan
| |
Collapse
|
11
|
Jaussaud J, Biais M, Calderon J, Chevaleyre J, Duchez P, Ivanovic Z, Couffinhal T, Barandon L. Hypoxia-preconditioned mesenchymal stromal cells improve cardiac function in a swine model of chronic myocardial ischaemia. Eur J Cardiothorac Surg 2012; 43:1050-7. [PMID: 23100292 DOI: 10.1093/ejcts/ezs549] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Cell loss during cardiac injection and hostility of the host-tissue microenvironment have the potential to diminish the overall effect of stem cell therapy. The purposes of this study were to evaluate the effect of a hypoxic preconditioning of mesenchymal stromal cells (MSC), to determine its safety and effectiveness, and to improve the efficacy of cell therapy using MSC in the setting of chronic myocardial ischaemia in swine. METHODS Myocardial ischaemia was induced by an ameroid constrictor. Human MSC were cultured under normoxic (20% O2) or hypoxic conditions (1.5% O2) before transplantation. One month after ischaemia, pigs were randomly assigned to saline injection (sham), and 1 × 10(6)/kg normoxic or hypoxic MSC transplantation into the ischaemic inferior-lateral zone. RESULTS Twenty-seven pigs were operated on and the mortality rate was 33.3%. The remaining 18 animals were randomly assigned to sham (n = 4), normoxic (n = 8) or hypoxic MSC (n = 6) treatment. Global systolic (left ventricle ejection fraction, P = 0.04) and diastolic (E/Ea, P = 0.008) functions were increased in the hypoxic group compared with other groups. The peak of 2-dimensional longitudinal strain was less altered in the hypoxic group compared with other groups (P < 0.001). Haemodynamic data showed that dP/dT max was improved in the hypoxic group compared with the other group (P < 0.01). Capillary density was increased in the hypoxic group (P = 0.001). MSC density was significantly higher in the ischaemic zone in the hypoxic group (P < 0.01). CONCLUSION MSC engraftment with hypoxic preconditioning significantly improves capillary density and cell survival, resulting in improvement in global, regional and diastolic left ventricular functions. This highlights the therapeutic potential of transplanting hypoxic-preconditioned MSC in the setting of chronic ischaemic heart failure.
Collapse
|
12
|
Temporal changes of strain parameters in the progress of chronic ischemia: with comparison to transmural infarction. Int J Cardiovasc Imaging 2012; 28:1671-81. [PMID: 22231467 DOI: 10.1007/s10554-012-0010-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/02/2012] [Indexed: 12/12/2022]
Abstract
The aim of this study was to reveal the temporal and spatial changes of strain parameters during the progression of chronic coronary ischemia. Fourteen pigs received occluder implantation to create gradual ischemia (CI), while six pigs underwent a sham surgery (Control). Six pigs after myocardial infarction were also studied (MI). Strain analysis was performed using a speckle-tracking algorithm. Eleven of the 14 animals with occluder implantation had total occlusion of the left anterior descending artery with collaterals at 1 month (early occlusion group), whereas three pigs had occlusion at 3 months (late occlusion group). Both radial strain (RS) and circumferential strain (CS) of ischemic area deteriorated at 1 month in the early occlusion group and remained at the same level throughout the remaining 2 months of the experiment. In the late occlusion group, RS gradually declined, while CS took the same course as Control until the 2 month time point. Thereafter, both metrics reached the same level as the early occlusion group at the time of occlusion. Interestingly, RS in the remote area decreased moderately, whereas CS remained normal in CI pigs. The comparison between CI and MI revealed preserved CS at the ischemic area in CI pigs. Both RS and CS deteriorate by the time total coronary occlusion was established and remain at the same level thereafter. Altered RS in the remote area may be an indicator of remodeling in the non-ischemic area, whereas CS may be useful for distinguishing between transmural and non-transmural scar.
Collapse
|
13
|
Ishikawa K, Ladage D, Takewa Y, Yaniz E, Chen J, Tilemann L, Sakata S, Badimon JJ, Hajjar RJ, Kawase Y. Development of a preclinical model of ischemic cardiomyopathy in swine. Am J Physiol Heart Circ Physiol 2011; 301:H530-7. [PMID: 21551276 DOI: 10.1152/ajpheart.01103.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of promising therapies for ischemic cardiomyopathy are emerging, and the role of translational research in testing the efficacy and safety of these agents in relevant clinical models has become important. The goal of this study was to develop a chronic model of ischemic cardiomyopathy in a large animal model. In this study, 40 consecutive pigs were initially enrolled. To induce progressive stenosis, a plastic occluder with a fixed diameter of 1.0 mm fitted with an 18-gauge copper wire was placed around the proximal left anterior descending (LAD) coronary artery. Coronary angiography, hemodynamic measurements, and echocardiography were performed at 2 wk and 1, 2, and 3 mo. Overall mortality was 26% at 3 mo, and up to 80% of the pigs showed total occlusion of LAD at 1 mo. A significant depression of peak LV pressure rate of rise (+dP/dt(max)) was observed in the animals showing total artery occlusion throughout the study. Left ventricular ejection fraction was also impaired, and the left ventricular volumes tended to be larger in the pigs with occlusion. Approximately 10% of scar tissue was found in the LAD occluded pigs, whereas the coronary flow pattern in the rest of the area took the pattern of hibernating myocardium. At the same time, histological and protein analysis established the presence of fibrosis and ongoing apoptosis in the ischemic area. In this model, the timing and incidence of total occlusion and low mortality offer significant advantages over other ischemic cardiomyopathy models in conducting preclinical studies.
Collapse
Affiliation(s)
- Kiyotake Ishikawa
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|