1
|
Hong TH, Lee HS, Kim NE, Lee KJ, Kim YK, An JN, Kim JH, Kim HW, Park S. Recent Increases in Influenza-Related Hospitalizations, Critical Care Resource Use, and In-Hospital Mortality: A 10-Year Population-Based Study in South Korea. J Clin Med 2022; 11:jcm11164911. [PMID: 36013150 PMCID: PMC9410240 DOI: 10.3390/jcm11164911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Long-term trends in influenza-related hospitalizations, critical care resource use, and hospital outcomes since the 2009 H1N1 influenza pandemic season have been rarely studied for adult populations. Materials and Methods: Adult patients from the Korean Health Insurance Review and Assessment Service who were hospitalized with influenza over a 10-year period (2009−2019) were analyzed. The incidence rates of hospitalization, critical care resource use, and in-hospital death were calculated using mid-year population census data. Results: In total, 300,152 hospitalized patients with influenza were identified (men, 35.7%; admission to tertiary hospitals, 9.4%). Although the age-adjusted hospitalization rate initially decreased since the 2009 H1N1 pandemic (52.61/100,000 population in 2009/2010), it began to increase again in 2013/2014 and reached a peak of 169.86/100,000 population in 2017/2018 (p < 0.001). The in-hospital mortality rate showed a similar increasing trend as the hospitalization, with a peak of 1.44/100,000 population in 2017/2018 (vs. 0.35/100,000 population in 2009/2010; p < 0.001). The high incidence rates of both hospitalization and in-hospital mortality were mainly attributable to patients aged ≥60 years. The rate of intensive care unit admission and the use of mechanical ventilation, continuous renal replacement therapy and vasopressors have also increased from the 2013/2014 season. The incidence of heart failure was the most frequent complication investigated, with a three-fold increase in the last two seasons since 2009/2010. In multivariate analysis adjusted for covariates, among hospitalized patients, type of hospitals and 2009 H1N1 pandemic season were associated with in-hospital mortality. Conclusions: We confirmed that the rates of hospitalization, critical care resource use, and in-hospital mortality by influenza have increased again in recent years. Therefore, strategies are needed to reduce infections and optimize resource use with a greater focus on older people.
Collapse
Affiliation(s)
- Tae Hwa Hong
- Department of Surgery, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
| | - Hyung Seok Lee
- Department of Nephrology, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
| | - Nam-Eun Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea
| | - Kyu Jin Lee
- Department of Pulmonary, Allergy and Critical Care Medicine, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
| | - Yong Kyun Kim
- Department of Infectious Disease, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
| | - Jung Nam An
- Department of Nephrology, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
| | - Joo-Hee Kim
- Department of Pulmonary, Allergy and Critical Care Medicine, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
| | - Hyung Won Kim
- Department of Surgery, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
| | - Sunghoon Park
- Department of Pulmonary, Allergy and Critical Care Medicine, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
- Correspondence:
| |
Collapse
|
2
|
ICU Resource Limitations During Peak Seasonal Influenza: Results of a 2018 National Feasibility Study. Crit Care Explor 2022; 4:e0606. [PMID: 35018345 PMCID: PMC8735785 DOI: 10.1097/cce.0000000000000606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES Demonstrate the feasibility of weekly data collection and analysis of public health emergency (PHE) data. Assess fluctuations in, and challenges of, resource matching and potential effect on patient care for influenza in ICUs. DESIGN Multicenter prospective noninterventional study testing effectiveness of leveraging the Discovery Critical Care Research Network Program for Resilience and Emergency Preparedness (Discovery-PREP) in performing PHE research. A 20-question internet survey was developed to prospectively assess ICU influenza-related resource stress. An informatics tool was designed to track responses; data were analyzed within 24 hours of weekly survey completion by the team biostatistician for timely reporting. PARTICIPANTS Critical care and Emergency Medicine Discovery-PREP network investigators self-selected to participate in the voluntary query. SETTING ICUs of 13 hospitals throughout the United States, 12 academic, and one community. INTERVENTIONS ICU physicians were electronically surveyed weekly over 17 weeks during the influenza season (January 2018-April 2018). Responses were collected for 48 hours after each email query. MEASUREMENTS AND MAIN RESULTS The average weekly response among the sites was 79% (range, 65-100%). Significant stress, defined as alterations in ICU staffing and/or resource allocation, occurred in up to 41% of sites during the national peak of influenza activity. These alterations included changes in staffing, not accepting external patient transfers, and canceling elective surgery. During this same period, up to 17% of the sites indicated that these changes might not have been sufficient to prevent potentially avoidable patient harm. CONCLUSIONS This novel approach to querying ICU operational stress indicated that almost half of participating sites experienced critical care resource limitations during peak influenza season and required process and/or staffing changes to better balance resources with patient care demands. This weekly national reporting infrastructure could be adapted and expanded to better inform providers, hospital emergency management teams, and government leaders during PHEs.
Collapse
|
3
|
Tenforde MW, Talbot HK, Trabue CH, Gaglani M, McNeal TM, Monto AS, Martin ET, Zimmerman RK, Silveira FP, Middleton DB, Olson SM, Garten Kondor RJ, Barnes JR, Ferdinands JM, Patel MM. Influenza Vaccine Effectiveness Against Hospitalization in the United States, 2019-2020. J Infect Dis 2021; 224:813-820. [PMID: 33378531 PMCID: PMC8408767 DOI: 10.1093/infdis/jiaa800] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Influenza causes significant morbidity and mortality and stresses hospital resources during periods of increased circulation. We evaluated the effectiveness of the 2019-2020 influenza vaccine against influenza-associated hospitalization in the United States. METHODS We included adults hospitalized with acute respiratory illness at 14 hospitals and tested for influenza viruses by reserve-transcription polymerase chain reaction. Vaccine effectiveness (VE) was estimated by comparing the odds of current-season influenza vaccination in test-positive influenza cases vs test-negative controls, adjusting for confounders. VE was stratified by age and major circulating influenza types along with A(H1N1)pdm09 genetic subgroups. RESULTS A total of 3116 participants were included, including 18% (n = 553) influenza-positive cases. Median age was 63 years. Sixty-seven percent (n = 2079) received vaccination. Overall adjusted VE against influenza viruses was 41% (95% confidence interval [CI], 27%-52%). VE against A(H1N1)pdm09 viruses was 40% (95% CI, 24%-53%) and 33% against B viruses (95% CI, 0-56%). Of the 2 major A(H1N1)pdm09 subgroups (representing 90% of sequenced H1N1 viruses), VE against one group (5A + 187A,189E) was 59% (95% CI, 34%-75%) whereas no VE was observed against the other group (5A + 156K) (-1% [95% CI, -61% to 37%]). CONCLUSIONS In a primarily older population, influenza vaccination was associated with a 41% reduction in risk of hospitalized influenza illness.
Collapse
Affiliation(s)
- Mark W Tenforde
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - H Keipp Talbot
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher H Trabue
- University of Tennessee Health Science Center, Saint Thomas Health, Nashville, Tennessee, USA
| | - Manjusha Gaglani
- Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Tresa M McNeal
- Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Arnold S Monto
- University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Emily T Martin
- University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Richard K Zimmerman
- University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Fernanda P Silveira
- University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Donald B Middleton
- University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Samantha M Olson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Rebecca J Garten Kondor
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John R Barnes
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jill M Ferdinands
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Manish M Patel
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Mallow PJ, Jones M. When Second Best Might Be the Best: Using Hospitalization Data to Monitor the Novel Coronavirus Pandemic. Front Public Health 2020; 8:348. [PMID: 32754567 PMCID: PMC7365841 DOI: 10.3389/fpubh.2020.00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Peter J. Mallow
- Department of Health Services Administration, Xavier University, Cincinnati, OH, United States
- *Correspondence: Peter J. Mallow
| | - Michael Jones
- Department of Economics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
5
|
Incorporating Markers of Disease Severity into Near Real-Time Influenza Surveillance. Ann Am Thorac Soc 2019; 14:1766-1767. [PMID: 29192823 DOI: 10.1513/annalsats.201709-719ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Using research to prepare for outbreaks of severe acute respiratory infection. BMJ Glob Health 2019; 4:e001061. [PMID: 30899557 PMCID: PMC6407534 DOI: 10.1136/bmjgh-2018-001061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 10/06/2018] [Indexed: 01/29/2023] Open
Abstract
Severe acute respiratory infections (SARI) remain one of the leading causes of mortality around the world in all age groups. There is large global variation in epidemiology, clinical management and outcomes, including mortality. We performed a short period observational data collection in critical care units distributed globally during regional peak SARI seasons from 1 January 2016 until 31 August 2017, using standardised data collection tools. Data were collected for 1 week on all admitted patients who met the inclusion criteria for SARI, with follow-up to hospital discharge. Proportions of patients across regions were compared for microbiology, management strategies and outcomes. Regions were divided geographically and economically according to World Bank definitions. Data were collected for 682 patients from 95 hospitals and 23 countries. The overall mortality was 9.5%. Of the patients, 21.7% were children, with case fatality proportions of 1% for those less than 5 years. The highest mortality was in those above 60 years, at 18.6%. Case fatality varied by region: East Asia and Pacific 10.2% (21 of 206), Sub-Saharan Africa 4.3% (8 of 188), South Asia 0% (0 of 35), North America 13.6% (25 of 184), and Europe and Central Asia 14.3% (9 of 63). Mortality in low-income and low-middle-income countries combined was 4% as compared with 14% in high-income countries. Organ dysfunction scores calculated on presentation in 560 patients where full data were available revealed Sequential Organ Failure Assessment (SOFA) scores on presentation were significantly associated with mortality and hospital length of stay. Patients in East Asia and Pacific (48%) and North America (24%) had the highest SOFA scores of >12. Multivariable analysis demonstrated that initial SOFA score and age were independent predictors of hospital survival. There was variability across regions and income groupings for the critical care management and outcomes of SARI. Intensive care unit-specific factors, geography and management features were less reliable than baseline severity for predicting ultimate outcome. These findings may help in planning future outbreak severity assessments, but more globally representative data are required.
Collapse
|
7
|
Rey-Jurado E, Tapia F, Muñoz-Durango N, Lay MK, Carreño LJ, Riedel CA, Bueno SM, Genzel Y, Kalergis AM. Assessing the Importance of Domestic Vaccine Manufacturing Centers: An Overview of Immunization Programs, Vaccine Manufacture, and Distribution. Front Immunol 2018; 9:26. [PMID: 29403503 PMCID: PMC5778105 DOI: 10.3389/fimmu.2018.00026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/04/2018] [Indexed: 12/03/2022] Open
Abstract
Vaccines have significantly reduced the detrimental effects of numerous human infectious diseases worldwide, helped to reduce drastically child mortality rates and even achieved eradication of major pathogens, such as smallpox. These achievements have been possible due to a dedicated effort for vaccine research and development, as well as an effective transfer of these vaccines to public health care systems globally. Either public or private institutions have committed to developing and manufacturing vaccines for local or international population supply. However, current vaccine manufacturers worldwide might not be able to guarantee sufficient vaccine supplies for all nations when epidemics or pandemics events could take place. Currently, different countries produce their own vaccine supplies under Good Manufacturing Practices, which include the USA, Canada, China, India, some nations in Europe and South America, such as Germany, the Netherlands, Italy, France, Argentina, and Brazil, respectively. Here, we discuss some of the vaccine programs and manufacturing capacities, comparing the current models of vaccine management between industrialized and developing countries. Because local vaccine production undoubtedly provides significant benefits for the respective population, the manufacture capacity of these prophylactic products should be included in every country as a matter of national safety.
Collapse
Affiliation(s)
- Emma Rey-Jurado
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Tapia
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Natalia Muñoz-Durango
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|