1
|
Bai PA, Solovjev AM, Kubareva EA, Kurzeev SA, Sakharov IY. Chemiluminescent heterogeneous and homogeneous-heterogeneous assays for determination of nicking endonuclease activity. Anal Biochem 2025; 697:115719. [PMID: 39580137 DOI: 10.1016/j.ab.2024.115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Homogeneous-heterogeneous and heterogeneous formats of a simple and sensitive assay for the determination of nicking endonuclease (NE) Nt.Bst9I activity was developed. The duplex of two 26-membered biotinylated DNA oligonucleotides was used as a substrate of Nt.Bst9I. To improve the assay sensitivity the chemiluminescent detection system based on the use of conjugate of streptavidin and polyperoxidase and enhanced chemiluminescence reaction was used. Both proposed assay formats were constructed using microtiter plates as a solid support, allowing for easy automation of NE analysis using ELISA equipment. Varying the acidity, concentration of KCl and NaCl, and temperature of the reaction medium, favorable conditions were found. Although both formats of the proposed assay can be applied to estimate Nt.Bst9I activity, the heterogenous assay was more sensitive than the homogeneous-heterogeneous one.
Collapse
Affiliation(s)
- Petr A Bai
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg. 3, Moscow, 119991, Russia
| | - Anton M Solovjev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg. 3, Moscow, 119991, Russia
| | - Elena A Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory, bldg. 40, Moscow, 119992, Russia
| | - Sergey A Kurzeev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg. 3, Moscow, 119991, Russia
| | - Ivan Yu Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg. 3, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Dramé-Maigné A, Espada R, McCallum G, Sieskind R, Gines G, Rondelez Y. In Vitro Enzyme Self-Selection Using Molecular Programs. ACS Synth Biol 2024; 13:474-484. [PMID: 38206581 DOI: 10.1021/acssynbio.3c00385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Directed evolution provides a powerful route for in vitro enzyme engineering. State-of-the-art techniques functionally screen up to millions of enzyme variants using high throughput microfluidic sorters, whose operation remains technically challenging. Alternatively, in vitro self-selection methods, analogous to in vivo complementation strategies, open the way to even higher throughputs, but have been demonstrated only for a few specific activities. Here, we leverage synthetic molecular networks to generalize in vitro compartmentalized self-selection processes. We introduce a programmable circuit architecture that can link an arbitrary target enzymatic activity to the replication of its encoding gene. Microencapsulation of a bacterial expression library with this autonomous selection circuit results in the single-step and screening-free enrichment of genetic sequences coding for programmed enzymatic phenotypes. We demonstrate the potential of this approach for the nicking enzyme Nt.BstNBI (NBI). We applied autonomous selection conditions to enrich for thermostability or catalytic efficiency, manipulating up to 107 microcompartments and 5 × 105 variants at once. Full gene reads of the libraries using nanopore sequencing revealed detailed mutational activity landscapes, suggesting a key role of electrostatic interactions with DNA in the enzyme's turnover. The most beneficial mutations, identified after a single round of self-selection, provided variants with, respectively, 20 times and 3 °C increased activity and thermostability. Based on a modular molecular programming architecture, this approach does not require complex instrumentation and can be repurposed for other enzymes, including those that are not related to DNA chemistry.
Collapse
Affiliation(s)
- Adèle Dramé-Maigné
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Rocío Espada
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Giselle McCallum
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Rémi Sieskind
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Guillaume Gines
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Yannick Rondelez
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| |
Collapse
|
3
|
Wang X, Yu B, Sakurabayashi S, Paz-Villatoro JM, Iwahara J. Robust Enzymatic Production of DNA G-Quadruplex, Aptamer, DNAzyme, and Other Oligonucleotides: Applications for NMR. J Am Chem Soc 2024; 146:1748-1752. [PMID: 38191993 PMCID: PMC10926321 DOI: 10.1021/jacs.3c11219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Single-stranded DNA (ssDNA) oligonucleotides are widely used in biological research, therapeutics, biotechnology, and nanomachines. Large-scale enzymatic production of ssDNA oligonucleotides forming noncanonical structures has been difficult. Here, we present a simple and robust method named "palindrome-nicking-dependent amplification" (PaNDA) for enzymatic production of a large amount of ssDNA oligonucleotides. It utilizes a strand-displacing DNA polymerase and a nicking enzyme together with input DNA and deoxynucleotide triphosphates at 55 °C. Scaling up of PaNDA is straightforward due to its isothermal nature. The ssDNA products can easily be isolated through anion-exchange chromatography under nondenaturing conditions. We demonstrate applications of PaNDA to 13C/15N-labeling of various DNA strands, including a 22-nt telomere repeat G-quadruplex, a 26-nt therapeutic aptamer, and a 33-nt DNAzyme. The 13C/15N-labeling by PaNDA greatly facilitates the characterization of noncanonical DNA by nuclear magnetic resonance (NMR) spectroscopy. For example, the behavior of therapeutic DNA aptamers in human serum can be investigated.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Shuhei Sakurabayashi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Jonathan M Paz-Villatoro
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| |
Collapse
|
4
|
Cao S, Tang X, Chen T, Chen G. Types and Applications of Nicking Enzyme-Combined Isothermal Amplification. Int J Mol Sci 2022; 23:ijms23094620. [PMID: 35563012 PMCID: PMC9100243 DOI: 10.3390/ijms23094620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Due to the sudden outbreak of COVID-19 at the end of 2019, rapid detection has become an urgent need for community clinics and hospitals. The rapid development of isothermal amplification detection technology for nucleic acids in the field of molecular diagnostic point-of-care testing (POCT) has gained a great deal of attention in recent years. Thanks to intensive research on nicking enzymes, nicking enzyme-combined isothermal amplification has become a promising platform for rapid detection. This is a novel technique that uses nicking enzymes to improve ordinary isothermal amplification. It has garnered significant interest as it overcomes the complexity of traditional molecular diagnostics and is not subject to temperature limitations, relying on cleavage enzymes to efficiently amplify targets in a very short time to provide a high level of amplification efficiency. In recent years, several types of nicking enzyme-combined isothermal amplification have been developed and they have shown great potential in molecular diagnosis, immunodiagnosis, biochemical identification, and other fields. However, this kind of amplification has some disadvantages. In this review, the principles, advantages and disadvantages, and applications of several nicking enzyme-combined isothermal amplification techniques are reviewed and the prospects for the development of these techniques are also considered.
Collapse
Affiliation(s)
- Siyu Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Tianshu Chen
- Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Correspondence: (T.C.); (G.C.)
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China;
- Correspondence: (T.C.); (G.C.)
| |
Collapse
|
5
|
De Falco M, De Felice M, Rota F, Zappi D, Antonacci A, Scognamiglio V. Next-generation diagnostics: augmented sensitivity in amplification-powered biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Controlling surface nanoarchitectures of DNA modified electrodes for improved label-free electrochemical detection of p53 gene. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Screening substrate-binding positions by rolling circle amplification suggesting a binding model of Nt.BstNBI. Biochem J 2019; 476:1483-1496. [PMID: 31064800 DOI: 10.1042/bcj20190167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 02/05/2023]
Abstract
Nicking endonucleases (NEs) become increasingly attractive for their promising applications in isothermal amplification. Unfortunately, in comparison with their applications, their catalytic mechanism studies have relatively lagged behind due to a paucity of crystal structure information. Nt.BstNBI is one of those widely used NEs. However, many aspects of its catalytic mechanism still remained to be explored. Herein, we employed only rolling circle amplification (RCA) assay as a major analytic tool and succeeded in identifying the potential binding positions and regions of the DNA substrate based on locked nucleic acid modification, DNA duplex length of substrate, and substrate mismatch designs. Based on these data, we, for the first time, revealed that Nt.BstNBI was likely to recognize six adjacent positions of the recognition sequence (G1rt, A2rt, G3rt, A2rb, C3rb, and T4rb) in the major groove and hold three positions of the cleavage sequence (N3ct, N4ct, and N7cb) in the minor groove of DNA duplex for nicking. Moreover, this work also demonstrated the unexpected efficiency of RCA to study the macromolecular interaction for certain kind of nucleases in an easy and high-throughput way.
Collapse
|
8
|
Qian C, Wang R, Wu H, Ji F, Wu J. Nicking enzyme-assisted amplification (NEAA) technology and its applications: A review. Anal Chim Acta 2019; 1050:1-15. [DOI: 10.1016/j.aca.2018.10.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023]
|
9
|
Kachalova GS, Popov AN, Yunusova AK, Artyukh RI, Perevyazova TA, Zheleznaya LA, Atanasov BP. Global conformational changes induced by the removal of the carboxyl group of D456 in the cleavage scaffold of nickase BspD6I: Structural and electrostatic analysis. CRYSTALLOGR REP+ 2017. [DOI: 10.1134/s1063774517060141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Comprehensive evaluation of molecular enhancers of the isothermal exponential amplification reaction. Sci Rep 2016; 6:37837. [PMID: 27910874 PMCID: PMC5133538 DOI: 10.1038/srep37837] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022] Open
Abstract
The exponential amplification reaction (EXPAR) is an emerging isothermal nucleic acid amplification method with high potential for molecular diagnostics due to its isothermal nature and high amplification efficiency. However, the use of EXPAR is limited by the high levels of non-specific amplification. Hence, methods that can improve the specificity of EXPAR are desired to facilitate its widespread adoption in practice. Herein, we proposed a strategy to improve EXPAR performance by using molecular enhancers. Eight small molecules were investigated, including ethylene glycol, propylene glycol, betaine, dimethyl sulfoxide (DMSO), trehalose, tetramethylammonium chloride (TMAC), bovine serum albumin (BSA) and single-stranded binding (SSB) proteins. A combination of kinetic and end-point analysis was adopted to investigate how these molecules affected EXPAR performance. Trehalose, TMAC, BSA and SSB proteins were found to have positive effects on EXPAR with trehalose being able to increase the efficiency of EXPAR. In contrast, TMAC, BSA and SSB proteins were shown to increase the specificity of EXPAR. We applied our findings to demonstrate the combination of trehalose and TMAC could simultaneously improve both the efficiency and specificity of an EXPAR-based miRNA detection method. The information provided in this study may serve as a reference to benefit the wider isothermal amplification community.
Collapse
|
11
|
Peculiarities of the interaction of the restriction endonuclease BspD6I with DNA containing its recognition site. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1072-1082. [PMID: 27216152 DOI: 10.1016/j.bbapap.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/08/2016] [Accepted: 05/19/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nicking endonucleases are enzymes that recognize specific sites in double-stranded DNA and cleave only one strand at a predetermined position. These enzymes are involved in DNA replication and repair; they can also function as subunits of bacterial heterodimeric restriction endonucleases. One example of such a proteins is the restriction endonuclease BspD6I (R.BspD6I) from Bacillus species strain D6, which consists of the large subunit - nicking endonuclease BspD6I (Nt.BspD6I), and the small subunit (ss.BspD6I). Nt.BspD6I can function independently. Similar enzymes are now widely used in numerous biotechnological applications. The aim of this study was to investigate the fundamental properties of two subunits of R.BspD6I and their interdependence in the course of R.BspD6I activity. METHODS The binding and hydrolysis of DNA duplexes by R.BspD6I are primary analyzed by gel electrophoresis. To elucidate the difference between Nt.BspD6I interaction with the substrate and product of hydrolysis, the thickness shear mode acoustic method is used. RESULTS AND CONCLUSIONS The thermodynamic and kinetic parameters of the Nt.BspD6I interaction with DNA are determined. For the first time we demonstrated that Nt.BspD6I bends the DNA during complex formation. Nt.BspD6I is able to form complexes with the product nicked in the top strand and ss.BspD6I cleaves the bottom strand of the DNA consecutively. Furthermore, the influence of dA methylation in the R.BspD6I recognition site on ss.BspD6I activity is analyzed. GENERAL SIGNIFICANCE The obtained results provide evidence that Nt.BspD6I coordinates the activity of R.BspD6I by strictly coupling of the bottom strand cleavage by ss.BspD6I to the top strand cleavage.
Collapse
|
12
|
Miao X, Li Z, Ling L. Fluorescence recognition of double-stranded DNA based on the quenching of gold nanoparticles to a fluorophore labeled DNA probe. Analyst 2016; 141:5829-5834. [DOI: 10.1039/c6an01145d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work described an ultrasensitive fluorescent sensor for sequence-specific recognition of dsDNA based on the quenching of gold nanoparticles (AuNPs) to a fluorophore labeled DNA probe.
Collapse
Affiliation(s)
- Xiangmin Miao
- School of Life Science
- Jiangsu Normal University
- Xuzhou 221116
- PR China
| | - Zongbing Li
- School of Life Science
- Jiangsu Normal University
- Xuzhou 221116
- PR China
| | - Liansheng Ling
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- PR China
| |
Collapse
|
13
|
Label-free and sensitive detection of T4 polynucleotide kinase activity via coupling DNA strand displacement reaction with enzymatic-aided amplification. Biosens Bioelectron 2015; 73:138-145. [DOI: 10.1016/j.bios.2015.05.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/05/2015] [Accepted: 05/26/2015] [Indexed: 01/04/2023]
|
14
|
Yan M, Bai W, Zhu C, Huang Y, Yan J, Chen A. Design of nuclease-based target recycling signal amplification in aptasensors. Biosens Bioelectron 2015; 77:613-23. [PMID: 26485175 DOI: 10.1016/j.bios.2015.10.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Compared with conventional antibody-based immunoassay methods, aptasensors based on nucleic acid aptamer have made at least two significant breakthroughs. One is that aptamers are more easily used for developing various simple and rapid homogeneous detection methods by "sample in signal out" without multi-step washing. The other is that aptamers are more easily employed for developing highly sensitive detection methods by using various nucleic acid-based signal amplification approaches. As many substances playing regulatory roles in physiology or pathology exist at an extremely low concentration and many chemical contaminants occur in trace amounts in food or environment, aptasensors for signal amplification contribute greatly to detection of such targets. Among the signal amplification approaches in highly sensitive aptasensors, the nuclease-based target recycling signal amplification has recently become a research focus because it shows easy design, simple operation, and rapid reaction and can be easily developed for homogenous assay. In this review, we summarized recent advances in the development of various nuclease-based target recycling signal amplification with the aim to provide a general guide for the design of aptamer-based ultrasensitive biosensing assays.
Collapse
Affiliation(s)
- Mengmeng Yan
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Wenhui Bai
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Chao Zhu
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Yafei Huang
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China; College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Jiao Yan
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China; College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Ailiang Chen
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
15
|
Quadruplex priming amplification combined with nicking enzyme for diagnostics. Anal Biochem 2014; 466:44-8. [DOI: 10.1016/j.ab.2014.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 11/19/2022]
|
16
|
Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, Sintim HO. Isothermal amplified detection of DNA and RNA. MOLECULAR BIOSYSTEMS 2014; 10:970-1003. [PMID: 24643211 DOI: 10.1039/c3mb70304e] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review highlights various methods that can be used for a sensitive detection of nucleic acids without using thermal cycling procedures, as is done in PCR or LCR. Topics included are nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA), loop-mediated amplification (LAMP), Invader assay, rolling circle amplification (RCA), signal mediated amplification of RNA technology (SMART), helicase-dependent amplification (HDA), recombinase polymerase amplification (RPA), nicking endonuclease signal amplification (NESA) and nicking endonuclease assisted nanoparticle activation (NENNA), exonuclease-aided target recycling, Junction or Y-probes, split DNAZyme and deoxyribozyme amplification strategies, template-directed chemical reactions that lead to amplified signals, non-covalent DNA catalytic reactions, hybridization chain reactions (HCR) and detection via the self-assembly of DNA probes to give supramolecular structures. The majority of these isothermal amplification methods can detect DNA or RNA in complex biological matrices and have great potential for use at point-of-care.
Collapse
Affiliation(s)
- Lei Yan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Tao M, Zhang J, Jin Y, Li B. Highly sensitive fluorescence assay of T4 polynucleotide kinase activity and inhibition via enzyme-assisted signal amplification. Anal Biochem 2014; 464:63-9. [PMID: 25058928 DOI: 10.1016/j.ab.2014.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/20/2022]
Abstract
DNA phosphorylation catalyzed by polynucleotide kinase (PNK) is an indispensable process in the repair, replication, and recombination of nucleic acids. Here, an enzyme-assisted amplification strategy was developed for the ultrasensitive monitoring activity and inhibition of T4 PNK. A hairpin oligonucleotide (hpDNA) was designed as a probe whose stem can be degraded from the 5' to 3' direction by lambda exonuclease (λ exo) when its 5' end is phosphorylated by PNK. So, the 3' stem and loop part of hpDNA was released as an initiator strand to open a molecular beacon (MB) that was designed as a fluorescence reporter, leading to a fluorescence restoration. Then, the initiator strand was released again by the nicking endonuclease (Nt.BbvCI) to hybridize with another MB, resulting in a cyclic reaction and accumulation of fluorescence signal. Based on enzyme-assisted amplification, PNK activity can be sensitively and rapidly detected with a detection limit of 1.0×10(-4)U/ml, which is superior to those of most existing approaches. Furthermore, the application of the proposed strategy for screening PNK inhibitors also demonstrated satisfactory results. Therefore, it provided a promising platform for monitoring activity and inhibition of PNK as well as for studying the activity of other nucleases.
Collapse
Affiliation(s)
- Mangjuan Tao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
18
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
19
|
Sensitive detection of T4 polynucleotide kinase activity based on coupled exonuclease reaction and nicking enzyme-assisted fluorescence signal amplification. Anal Bioanal Chem 2014; 406:2943-8. [DOI: 10.1007/s00216-014-7719-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/15/2014] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
|
20
|
Target-mediated consecutive endonuclease reactions for specific and sensitive homogeneous fluorescence assay of O6-methylguanine-DNA methyltransferase. Anal Chim Acta 2013; 804:252-7. [PMID: 24267090 DOI: 10.1016/j.aca.2013.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 11/23/2022]
Abstract
O(6)-Methylguanine-DNA methyltransferase (MGMT) is one of the most important DNA-repair enzymes. Herein, a simple, sensitive and selective homogeneous fluorescence assay strategy is developed for the detection of MGMT on the basis of target-mediated two consecutive endonuclease reactions. The activity assay of MGMT is firstly accomplished using a hairpin-structured DNA substrate to offer a specific recognition site on the substrate DNA for restriction endonuclease PvuII, and thus to initiate the first endonuclease reaction. The product which activates the second endonuclease reaction allows an efficient amplification approach to create an abundance of fluorescence signal reporters. The first endonuclease reaction offers the method high specificity and the second one furnishes the assay improved sensitivity. The results reveal that the MGMT assay strategy shows dynamic responses in the concentration range from 1 to 120 ng mL(-1) with a detection limit of 0.5 ng mL(-1). By simply altering the alkylated bases, this strategy can also be extended for the detection of other alkyltransferases. Therefore, the developed strategy might provide an intrinsically convenient, sensitive and specific platform for alkyltransferase activate assay and related biochemical studies due to its label-free, homogeneous, and fluorescence-based detection format.
Collapse
|
21
|
Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signalamplification. Biosens Bioelectron 2013. [DOI: 10.1016/j.bios.2012.10.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Mahut M, Gargano A, Schuchnigg H, Lindner W, Lämmerhofer M. Chemoaffinity material for plasmid DNA analysis by high-performance liquid chromatography with condition-dependent switching between isoform and topoisomer selectivity. Anal Chem 2013; 85:2913-20. [PMID: 23391311 DOI: 10.1021/ac3034823] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plasmid DNA may exist in three isoforms, the linear, open-circular (oc, "nicked"), and covalently closed circular (ccc, "supercoiled") form. We have recently reported on the chromatographic separation of supercoiled plasmid topoisomers on cinchona-alkaloid modified silica-based stationary phases. Herein, we present a selectivity switching mechanism to achieve separation of isoforms and/or supercoiled topoisomers using the very same chromatographic column and system. While salt gradient elution facilitates topoisomer separation, the supercoiled species are eluting as a single peak upon elution by a mixed pH and organic modifier gradient, still well separated from the other isoforms. We have found that a mobile phase pH value near the pI of the zwitterionic adsorbent surface leads to full recovery of all plasmid DNA isoforms, which is a major issue when using anion exchange-based resins. Furthermore, the observed elution pattern, oc < linear < ccc, is constant upon changes of mobile phase composition, gradient slope, and plasmid size. The remarkable isoform selectivity found on quinine-based selectors is explained by van't Hoff plots, revealing a different binding mechanism between the supercoiled plasmid on one hand and the oc and linear isoforms on the other hand.
Collapse
Affiliation(s)
- Marek Mahut
- Institute of Analytical Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
23
|
Zhang H, Li F, Dever B, Li XF, Le XC. DNA-mediated homogeneous binding assays for nucleic acids and proteins. Chem Rev 2012; 113:2812-41. [PMID: 23231477 DOI: 10.1021/cr300340p] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongquan Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | | | | | | | | |
Collapse
|
24
|
Baday M, Cravens A, Hastie A, Kim H, Kudeki DE, Kwok PY, Xiao M, Selvin PR. Multicolor super-resolution DNA imaging for genetic analysis. NANO LETTERS 2012; 12:3861-6. [PMID: 22698062 PMCID: PMC3880789 DOI: 10.1021/nl302069q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Many types of cancer and neurodegenerative diseases are caused by abnormalities and variations in the genome. We have designed a high-resolution imaging technique with high throughput and low cost for determining structural variations of genes related to genetic diseases. We initially mapped all seven nicking sites of Nb.BbvCI endonuclease enzyme on lambda DNA. Then we resolved densely labeled patterns of 107 nicking sites on human BAC DNA that is digested by Nb.BsmI and Nb.BbvCI endonuclease enzymes. This high density resulted in several dyes being closer together than the diffraction limit. Overall, detailed DNA nicking sites mapping with 100 bp resolution was achieved, which has the potential to reveal information about genetic variance and to facilitate medical diagnosis of several genetic diseases.
Collapse
Affiliation(s)
- Murat Baday
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aaron Cravens
- Physics Dept, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alex Hastie
- Center for Physics of the Living Cell, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - HyeongJun Kim
- Physics Dept, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Deren E. Kudeki
- Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pui-Yan Kwok
- Institute of Human Genetics, University of California, San Francisco, San Francisco, California, United States
| | - Ming Xiao
- Center for Physics of the Living Cell, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Corresponding Author: (P.R.S.) Telephone: (217) 244-3371. Fax: (217) 244-7559. . (M.X) Telephone: (267)499-2021. Fax: (215) 966-6001.
| | - Paul R. Selvin
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Physics Dept, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- BioNano Genomics Inc., San Diego, California 92121, United States
- Corresponding Author: (P.R.S.) Telephone: (217) 244-3371. Fax: (217) 244-7559. . (M.X) Telephone: (267)499-2021. Fax: (215) 966-6001.
| |
Collapse
|
25
|
Guo MT, Rotem A, Heyman JA, Weitz DA. Droplet microfluidics for high-throughput biological assays. LAB ON A CHIP 2012; 12:2146-55. [PMID: 22318506 DOI: 10.1039/c2lc21147e] [Citation(s) in RCA: 662] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Droplet microfluidics offers significant advantages for performing high-throughput screens and sensitive assays. Droplets allow sample volumes to be significantly reduced, leading to concomitant reductions in cost. Manipulation and measurement at kilohertz speeds enable up to 10(8) samples to be screened in one day. Compartmentalization in droplets increases assay sensitivity by increasing the effective concentration of rare species and decreasing the time required to reach detection thresholds. Droplet microfluidics combines these powerful features to enable currently inaccessible high-throughput screening applications, including single-cell and single-molecule assays.
Collapse
Affiliation(s)
- Mira T Guo
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
| | | | | | | |
Collapse
|
26
|
A universal amplified strategy for aptasensors: enhancing sensitivity through allostery-triggered enzymatic recycling amplification. Biosens Bioelectron 2012; 38:121-5. [PMID: 22709934 DOI: 10.1016/j.bios.2012.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/06/2012] [Accepted: 05/08/2012] [Indexed: 11/20/2022]
Abstract
A universal amplified sensing strategy based on endonuclease was developed for designing fluorescence aptasensors. By employing hairpin-structured design for both recognition and reporter probes to decrease background signal, and a nicking endonuclease to perform target-triggered enzymatic recycling amplification, the proposed biosensor showed high sensitivity to target protein. To demonstrate the feasibility of the design, immunoglobulin E (IgE) was studied as a model target. Upon the addition of target protein, the specific formation of IgE/aptamer complex induced the releasing of the 37-mer fragment which partially hybridized with the molecular beacon (MB) probe. In the presence of endonuclease Nt.BbvCI, the MB was cleaved into two parts. Then, the released 37-mer fragment hybridized with another MB, and triggered the second cycle of cleavage, leading to an accumulation of fluorescence signals. Under the optimal conditions, a detection limit of 5 pM was obtained. The proposed sensing system was used for detection of IgE in complex biological samples with satisfactory results.
Collapse
|
27
|
Xue L, Zhou X, Xing D. Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification. Anal Chem 2012; 84:3507-13. [PMID: 22455536 DOI: 10.1021/ac2026783] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific and sensitive detection of proteins in biotechnological applications and medical diagnostics is one of the most important goals for the scientific community. In this study, a new protein assay is developed on the basis of hairpin probe and nicking enzyme assisted signal amplification strategy. The metastable state hairpin probe with short loop and long stem is designed to contain a protein aptamer for target recognition. A short Black Hole Quencher (BHQ)-quenching fluorescence DNA probe (BQF probe) carrying the recognition sequence and cleavage site for the nicking enzyme is employed for fluorescence detection. Introduction of target protein into the assay leads to the formation change of hairpin probe from hairpin shape to open form, thus faciliating the hybridization between the hairpin probe and BQF probe. The fluorescence signal is amplified through continuous enzyme cleavage. Thrombin is used as model analyte in the current proof-of-concept experiments. This method can detect thrombin specifically with a detection limit as low as 100 pM. Additionally, the proposed protein detection strategy can achieve separation-free measurement, thus eliminating the washing steps. Moreover, it is potentially universal because hairpin probe can be easily designed for other proteins by changing the corresponding aptamer sequence.
Collapse
Affiliation(s)
- Liyun Xue
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | | | | |
Collapse
|
28
|
Kostiuk G, Sasnauskas G, Tamulaitiene G, Siksnys V. Degenerate sequence recognition by the monomeric restriction enzyme: single mutation converts BcnI into a strand-specific nicking endonuclease. Nucleic Acids Res 2011; 39:3744-53. [PMID: 21227928 PMCID: PMC3089477 DOI: 10.1093/nar/gkq1351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Unlike orthodox Type II restriction endonucleases that are homodimers and interact with the palindromic 4–8-bp DNA sequences, BcnI is a monomer which has a single active site but cuts both DNA strands within the 5′-CC↓CGG-3′/3′-GGG↓CC-5′ target site (‘↓’ designates the cleavage position). Therefore, after cutting the first strand, the BcnI monomer must re-bind to the target site in the opposite orientation; but in this case, it runs into a different central base because of the broken symmetry of the recognition site. Crystal-structure analysis shows that to accept both the C:G and G:C base pairs at the center of its target site, BcnI employs two symmetrically positioned histidines H77 and H219 that presumably change their protonation state depending on the binding mode. We show here that a single mutation of BcnI H77 or H219 residues restricts the cleavage activity of the enzyme to either the 5′-CCCGG-3′ or the 5′-CCGGG-3′ strand, thereby converting BcnI into a strand-specific nicking endonuclease. This is a novel approach for engineering of monomeric restriction enzymes into strand-specific nucleases.
Collapse
Affiliation(s)
- Georgij Kostiuk
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT 02241, Vilnius, Lithuania
| | | | | | | |
Collapse
|
29
|
Lin Z, Yang W, Zhang G, Liu Q, Qiu B, Cai Z, Chen G. An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification. Chem Commun (Camb) 2011; 47:9069-71. [DOI: 10.1039/c1cc13146j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Vasu K, Saravanan M, Rajendra BVRN, Nagaraja V. Generation of a Manganese Specific Restriction Endonuclease with Nicking Activity. Biochemistry 2010; 49:8425-33. [DOI: 10.1021/bi101035k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kommireddy Vasu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Matheshwaran Saravanan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| |
Collapse
|
31
|
Chan SH, Stoddard BL, Xu SY. Natural and engineered nicking endonucleases--from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res 2010; 39:1-18. [PMID: 20805246 PMCID: PMC3017599 DOI: 10.1093/nar/gkq742] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Restriction endonucleases (REases) are highly specific DNA scissors that have facilitated the development of modern molecular biology. Intensive studies of double strand (ds) cleavage activity of Type IIP REases, which recognize 4–8 bp palindromic sequences, have revealed a variety of mechanisms of molecular recognition and catalysis. Less well-studied are REases which cleave only one of the strands of dsDNA, creating a nick instead of a ds break. Naturally occurring nicking endonucleases (NEases) range from frequent cutters such as Nt.CviPII (^CCD; ^ denotes the cleavage site) to rare-cutting homing endonucleases (HEases) such as I-HmuI. In addition to these bona fida NEases, individual subunits of some heterodimeric Type IIS REases have recently been shown to be natural NEases. The discovery and characterization of more REases that recognize asymmetric sequences, particularly Types IIS and IIA REases, has revealed recognition and cleavage mechanisms drastically different from the canonical Type IIP mechanisms, and has allowed researchers to engineer highly strand-specific NEases. Monomeric LAGLIDADG HEases use two separate catalytic sites for cleavage. Exploitation of this characteristic has also resulted in useful nicking HEases. This review aims at providing an overview of the cleavage mechanisms of Types IIS and IIA REases and LAGLIDADG HEases, the engineering of their nicking variants, and the applications of NEases and nicking HEases.
Collapse
|
32
|
Das SK, Austin MD, Akana MC, Deshpande P, Cao H, Xiao M. Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes. Nucleic Acids Res 2010; 38:e177. [PMID: 20699272 PMCID: PMC2952877 DOI: 10.1093/nar/gkq673] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An array of nano-channels was fabricated from silicon based semiconductor materials to stretch long, native dsDNA. Here we present a labeling scheme in which it is possible to identify the location of specific sequences along the stretched DNA molecules. The scheme proceeds by first using the strand displacement activity of the Vent (exo-) polymerase to generate single strand flaps on nicked dsDNA. These single strand flaps are hybridized with sequence specific fluorophore-labeled probes. Subsequent imaging of the DNA molecules inside a nano-channel array device allows for quantitative identification of the location of probes. The highly efficient DNA hybridization on the ss-DNA flaps is an excellent method to identify the sequence motifs of dsDNA as it gives us unique ability to control the length of the probe sequence and thus the frequency of hybridization sites on the DNA. We have also shown that this technique can be extended to a multi color labeling scheme by using different dye labeled probes or by combining with a DNA- polymerase-mediated incorporation of fluorophore-labeled nucleotides on nicking sites. Thus this labeling chemistry in conjunction with the nano-channel platform can be a powerful tool to solve complex structural variations in DNA which is of importance for both research and clinical diagnostics of genetic diseases.
Collapse
Affiliation(s)
- Somes K Das
- Bionanomatrix Inc, 3701 Market Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The MvaI restriction endonuclease cuts 5′-CC↓AGG-3′/5′-CC↑TGG-3′ sites as indicated by the arrows. N4-methylation of the inner cytosines (Cm4CAGG/Cm4CTGG) protects the site against MvaI cleavage. Here, we show that MvaI nicks the G-strand of the related sequence (CCGGG/CCCGG, BcnI site) if the inner cytosines are C5-methylated: Cm5C↓GGG/CCm5CGG. At M.SssI-methylated SmaI sites, where two oppositely oriented methylated BcnI sites partially overlap, double-nicking leads to double-strand cleavage (CCm5C↓GGG/CCm5C↑GGG) generating fragments with blunt ends. The double-strand cleavage rate and the stringency of substrate site recognition is lower at the methylation-dependent site than at the canonical target site. MvaI is the first restriction endonuclease shown to possess, besides the ‘normal’ activity on its unmethylated recognition site, also a methylation-directed activity on a different sequence.
Collapse
Affiliation(s)
- Ildikó Stier
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Temesvári krt. 62, Hungary
| | | |
Collapse
|
34
|
Chernukhin VA, Kuznetsov VV, Gonchar DA, Kashirina YG, Netesova NA, Degtyarev SK. Substrate specificity and biochemical properties of M3.BstF5I DNA methyltransferase from the BstF5I restriction-modification system. BIOCHEMISTRY (MOSCOW) 2010; 75:63-71. [PMID: 20331425 DOI: 10.1134/s0006297910010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Optimal conditions for DNA methylation by the M3.BstF5I enzyme from Bacillus stearothermophilus and kinetic parameters of lambda phage DNA modification and that of a number of oligonucleotide substrates are established. Comparison of M1.BstF5I and M3.BstF5I kinetic parameters revealed that with similar temperature optima and affinity for DNA, M3.BstF5I has nearly fourfold lower turnover number (0.24 min(-1)) and modifies the hemimethylated recognition site with lower efficiency under optimal conditions than the unmethylated one. In contrast to another three methylases of the BstF5I restriction-modification system, the M3.BstF5I enzyme is able to optionally modify the noncanonical 5'-GGATC-3' DNA sequence with a rate more than one order of magnitude lower than the methylation rate of the canonical 5'-GGATG-3' recognition site.
Collapse
|
35
|
Zheleznaya LA, Kachalova GS, Artyukh RI, Yunusova AK, Perevyazova TA, Matvienko NI. Nicking endonucleases. BIOCHEMISTRY (MOSCOW) 2010; 74:1457-66. [DOI: 10.1134/s0006297909130033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Chen J, Zhang J, Li J, Fu F, Yang HH, Chen G. An ultrahighly sensitive and selective electrochemical DNA sensor via nicking endonuclease assisted current change amplification. Chem Commun (Camb) 2010; 46:5939-41. [DOI: 10.1039/c0cc00748j] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Nykypanchuk D, Hoagland DA, Strey HH. Diffusion of Circular DNA in Two-Dimensional Cavity Arrays. Chemphyschem 2009; 10:2847-51. [DOI: 10.1002/cphc.200900655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Zhang P, Too PHM, Samuelson JC, Chan SH, Vincze T, Doucette S, Bäckström S, Potamousis KD, Schramm TM, Forrest D, Schwartz DC, Xu SY. Engineering BspQI nicking enzymes and application of N.BspQI in DNA labeling and production of single-strand DNA. Protein Expr Purif 2009; 69:226-34. [PMID: 19747545 DOI: 10.1016/j.pep.2009.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 08/26/2009] [Accepted: 09/04/2009] [Indexed: 11/30/2022]
Abstract
BspQI is a thermostable Type IIS restriction endonuclease (REase) with the recognition sequence 5'GCTCTTC N1/N4 3'. Here we report the cloning and expression of the bspQIR gene for the BspQI restriction enzyme in Escherichia coli. Alanine scanning of the BspQI charged residues identified a number of DNA nicking variants. After sampling combinations of different amino acid substitutions, an Nt.BspQI triple mutant (E172A/E248A/E255K) was constructed with predominantly top-strand DNA nicking activity. Furthermore, a triple mutant of BspQI (Nb.BspQI, N235A/K331A/R428A) was engineered to create a bottom-strand nicking enzyme. In addition, we demonstrated the application of Nt.BspQI in optical mapping of single DNA molecules. Nt or Nb.BspQI-nicked dsDNA can be further digested by E. coli exonuclease III to create ssDNA for downstream applications. BspQI contains two potential catalytic sites: a top-strand catalytic site (Ct) with a D-H-N-K motif found in the HNH endonuclease family and a bottom-strand catalytic site (Cb) with three scattered Glu residues. BlastP analysis of proteins in GenBank indicated a putative restriction enzyme with significant amino acid sequence identity to BspQI from the sequenced bacterial genome Croceibacter atlanticus HTCC2559. This restriction gene was amplified by PCR and cloned into a T7 expression vector. Restriction mapping and run-off DNA sequencing of digested products from the partially purified enzyme indicated that it is an EarI isoschizomer with 6-bp recognition, which we named CatHI (CTCTTC N1/N4).
Collapse
Affiliation(s)
- Penghua Zhang
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chernukhin VA, Seggewiss J, Kashirina YG, Gonchar DA, Degtyarev SK. Purification and properties of recombinant DNA methyltransferase M2.BstSE of the BstSEI nickase-modification system. Mol Biol 2009. [DOI: 10.1134/s0026893309010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Sanders KL, Catto LE, Bellamy SRW, Halford SE. Targeting individual subunits of the FokI restriction endonuclease to specific DNA strands. Nucleic Acids Res 2009; 37:2105-15. [PMID: 19223323 PMCID: PMC2673415 DOI: 10.1093/nar/gkp046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Many restriction endonucleases are dimers that act symmetrically at palindromic DNA sequences, with each active site cutting one strand. In contrast, FokI acts asymmetrically at a non-palindromic sequence, cutting ‘top’ and ‘bottom’ strands 9 and 13 nucleotides downstream of the site. FokI is a monomeric protein with one active site and a single monomer covers the entire recognition sequence. To cut both strands, the monomer at the site recruits a second monomer from solution, but it is not yet known which DNA strand is cut by the monomer bound to the site and which by the recruited monomer. In this work, mutants of FokI were used to show that the monomer bound to the site made the distal cut in the bottom strand, whilst the recruited monomer made in parallel the proximal cut in the top strand. Procedures were also established to direct FokI activity, either preferentially to the bottom strand or exclusively to the top strand. The latter extends the range of enzymes for nicking specified strands at specific sequences, and may facilitate further applications of FokI in gene targeting.
Collapse
Affiliation(s)
- Kelly L Sanders
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
41
|
Niu Y, Tenney K, Li H, Gimble FS. Engineering variants of the I-SceI homing endonuclease with strand-specific and site-specific DNA-nicking activity. J Mol Biol 2008; 382:188-202. [PMID: 18644379 PMCID: PMC2700736 DOI: 10.1016/j.jmb.2008.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
Abstract
The number of strand-specific nicking endonucleases that are currently available for laboratory procedures and applications in vivo is limited, and none is sufficiently specific to nick single target sites within complex genomes. The extreme target specificity of homing endonucleases makes them attractive candidates for engineering high-specificity nicking endonucleases. I-SceI is a monomeric homing enzyme that recognizes an 18 bp asymmetric target sequence, and cleaves both DNA strands to leave 3'-overhangs of 4 bp. In single turnover experiments using plasmid substrates, I-SceI generates transient open circle intermediates during the conversion of supercoiled to linear DNA, indicating that the enzyme cleaves the two DNA strands sequentially. A novel hairpin substrate was used to demonstrate that although wild-type I-SceI cleaves either the top or bottom DNA strand first to generate two nicked DNA intermediates, the enzyme has a preference for cleaving the bottom strand. The kinetics data are consistent with a parallel sequential reaction mechanism. Substitution of two pseudo-symmetric residues, Lys122 and Lys223, markedly reduces top and bottom-strand cleavage, respectively, to generate enzymes with significant strand- and sequence-specific nicking activity. The two active sites are partially interdependent, since alterations to one site affect the second. The kinetics analysis is consistent with X-ray crystal structures of I-SceI/DNA complexes that reveal a role for the lysines in establishing important solvent networks that include nucleophilic water molecules thought to attack the scissile phosphodiester bonds.
Collapse
Affiliation(s)
- Yan Niu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
42
|
Li JJ, Chu Y, Lee BYH, Xie XS. Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Res 2008; 36:e36. [PMID: 18304948 PMCID: PMC2346604 DOI: 10.1093/nar/gkn033] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 01/09/2008] [Accepted: 01/21/2008] [Indexed: 01/19/2023] Open
Abstract
Molecular beacons represent a new family of fluorescent probes for nucleic acids, and have found broad applications in recent years due to their unique advantages over traditional probes. Detection of nucleic acids using molecular beacons has been based on hybridization between target molecules and molecular beacons in a 1:1 stoichiometric ratio. The stoichiometric hybridization, however, puts an intrinsic limitation on detection sensitivity, because one target molecule converts only one beacon molecule to its fluorescent form. To increase the detection sensitivity, a conventional strategy has been target amplification through polymerase chain reaction. Instead of target amplification, here we introduce a scheme of signal amplification, nicking enzyme signal amplification, to increase the detection sensitivity of molecular beacons. The mechanism of the signal amplification lies in target-dependent cleavage of molecular beacons by a DNA nicking enzyme, through which one target DNA can open many beacon molecules, giving rise to amplification of fluorescent signal. Our results indicate that one target DNA leads to cleavage of hundreds of beacon molecules, increasing detection sensitivity by nearly three orders of magnitude. We designed two versions of signal amplification. The basic version, though simple, requires that nicking enzyme recognition sequence be present in the target DNA. The extended version allows detection of target of any sequence by incorporating rolling circle amplification. Moreover, the extended version provides one additional level of signal amplification, bringing the detection limit down to tens of femtomolar, nearly five orders of magnitude lower than that of conventional hybridization assay.
Collapse
Affiliation(s)
| | | | | | - Xiaoliang Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
43
|
Gao W, Li X, Zeng L, Peng T. Rapid isothermal detection assay: a probe amplification method for the detection of nucleic acids. Diagn Microbiol Infect Dis 2007; 60:133-41. [PMID: 17910999 DOI: 10.1016/j.diagmicrobio.2007.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 08/10/2007] [Accepted: 08/12/2007] [Indexed: 11/28/2022]
Abstract
Simple, accurate, and stable diagnostic tests are essential to control viral infectious diseases such as avian influenza virus. The current technologies are often inaccessible to people who need them, mainly because of the specialized equipment and the need for highly trained technologists. Here, we describe a rapid isothermal nucleic acid detection assay (RIDA) that can be used to detect both DNA and RNA targets. Using chemically modified probes, we designed a lateral-flow (LF) immunoassay that can be used in combination with RIDA for equipment-free nucleic acid target detection. RIDA is a "probe amplification" assay that uses the single-strand nicking activity of restriction nicking endonucleases to repeatedly cleave synthetic probes hybridizing to the same target sequences. In the RIDA-LF combined assay, chemically labeled probes are covalently conjugated to magnetic microbeads, which is propitious to separate cleaved probes from the reaction solution. The cleaved probes in the solution are then detected with an LF immunoassay. The real-time assay shows that RIDA is able to specifically detect target sequences in 5 to 15 min. The RIDA-LF combined assay can specifically detect nucleic acid targets without sophisticated equipment. In this report, our data suggest that RIDA is a flexible simple assay that could be applied for point-of-care detection. The modified-RIDA described in this report further extends the application of this technology.
Collapse
Affiliation(s)
- Wenjuan Gao
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510663, China
| | | | | | | |
Collapse
|
44
|
Kiesling T, Cox K, Davidson EA, Dretchen K, Grater G, Hibbard S, Lasken RS, Leshin J, Skowronski E, Danielsen M. Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA). Nucleic Acids Res 2007; 35:e117. [PMID: 17827214 PMCID: PMC2094061 DOI: 10.1093/nar/gkm654] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a new method for identifying specific single- or double-stranded DNA sequences called nicking endonuclease signal amplification (NESA). A probe and target DNA anneal to create a restriction site that is recognized by a strand-specific endonuclease that cleaves the probe into two pieces leaving the target DNA intact. The target DNA can then act as a template for fresh probe and the process of hybridization, cleavage and dissociation repeats. Laser-induced fluorescence coupled with capillary electrophoresis was used to measure the probe cleavage products. The reaction is rapid; full cleavage of probe occurs within one minute under ideal conditions. The reaction is specific since it requires complete complementarity between the oligonucleotide and the template at the restriction site and sufficient complementarity overall to allow hybridization. We show that both Bacillus subtilis and B. anthracis genomic DNA can be detected and specifically differentiated from DNA of other Bacillus species. When combined with multiple displacement amplification, detection of a single copy target from less than 30 cfu is possible. This method should be applicable whenever there is a requirement to detect a specific DNA sequence. Other applications include SNP analysis and genotyping. The reaction is inherently simple to multiplex and is amenable to automation.
Collapse
Affiliation(s)
- Traci Kiesling
- Department of Biochemistry and Molecular Biology & Cellular Biology, Department of Pharmacology, Georgetown University School of Medicine, Washington DC 20057, Anteon Corporation, Fairfax, VA 22030, J. Craig Venter Institute, La Jolla, CA 92037 and General Dynamics, Fairfax, VA 22030, USA
| | - Kendra Cox
- Department of Biochemistry and Molecular Biology & Cellular Biology, Department of Pharmacology, Georgetown University School of Medicine, Washington DC 20057, Anteon Corporation, Fairfax, VA 22030, J. Craig Venter Institute, La Jolla, CA 92037 and General Dynamics, Fairfax, VA 22030, USA
| | - Eugene A. Davidson
- Department of Biochemistry and Molecular Biology & Cellular Biology, Department of Pharmacology, Georgetown University School of Medicine, Washington DC 20057, Anteon Corporation, Fairfax, VA 22030, J. Craig Venter Institute, La Jolla, CA 92037 and General Dynamics, Fairfax, VA 22030, USA
| | - Kenneth Dretchen
- Department of Biochemistry and Molecular Biology & Cellular Biology, Department of Pharmacology, Georgetown University School of Medicine, Washington DC 20057, Anteon Corporation, Fairfax, VA 22030, J. Craig Venter Institute, La Jolla, CA 92037 and General Dynamics, Fairfax, VA 22030, USA
| | - Guy Grater
- Department of Biochemistry and Molecular Biology & Cellular Biology, Department of Pharmacology, Georgetown University School of Medicine, Washington DC 20057, Anteon Corporation, Fairfax, VA 22030, J. Craig Venter Institute, La Jolla, CA 92037 and General Dynamics, Fairfax, VA 22030, USA
| | - Shannon Hibbard
- Department of Biochemistry and Molecular Biology & Cellular Biology, Department of Pharmacology, Georgetown University School of Medicine, Washington DC 20057, Anteon Corporation, Fairfax, VA 22030, J. Craig Venter Institute, La Jolla, CA 92037 and General Dynamics, Fairfax, VA 22030, USA
| | - Roger S. Lasken
- Department of Biochemistry and Molecular Biology & Cellular Biology, Department of Pharmacology, Georgetown University School of Medicine, Washington DC 20057, Anteon Corporation, Fairfax, VA 22030, J. Craig Venter Institute, La Jolla, CA 92037 and General Dynamics, Fairfax, VA 22030, USA
| | - Jonathan Leshin
- Department of Biochemistry and Molecular Biology & Cellular Biology, Department of Pharmacology, Georgetown University School of Medicine, Washington DC 20057, Anteon Corporation, Fairfax, VA 22030, J. Craig Venter Institute, La Jolla, CA 92037 and General Dynamics, Fairfax, VA 22030, USA
| | - Evan Skowronski
- Department of Biochemistry and Molecular Biology & Cellular Biology, Department of Pharmacology, Georgetown University School of Medicine, Washington DC 20057, Anteon Corporation, Fairfax, VA 22030, J. Craig Venter Institute, La Jolla, CA 92037 and General Dynamics, Fairfax, VA 22030, USA
| | - Mark Danielsen
- Department of Biochemistry and Molecular Biology & Cellular Biology, Department of Pharmacology, Georgetown University School of Medicine, Washington DC 20057, Anteon Corporation, Fairfax, VA 22030, J. Craig Venter Institute, La Jolla, CA 92037 and General Dynamics, Fairfax, VA 22030, USA
- *To whom correspondence should be addressed. +1 202 687 4169+1 202 687 7186
| |
Collapse
|
45
|
Xu SY, Zhu Z, Zhang P, Chan SH, Samuelson JC, Xiao J, Ingalls D, Wilson GG. Discovery of natural nicking endonucleases Nb.BsrDI and Nb.BtsI and engineering of top-strand nicking variants from BsrDI and BtsI. Nucleic Acids Res 2007; 35:4608-18. [PMID: 17586812 PMCID: PMC1950550 DOI: 10.1093/nar/gkm481] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 05/30/2007] [Accepted: 06/01/2007] [Indexed: 11/13/2022] Open
Abstract
BsrDI and BtsI restriction endonucleases recognize and cleave double-strand DNA at the sequences GCAATG (2/0) and GCAGTG (2/0), respectively. We have purified and partially characterized these two enzymes, and analyzed the genes that encode them. BsrDI and BtsI are unusual in two respects: each cleaves DNA as a heterodimer of one large subunit (B subunit) and one small subunit (A subunit); and, in the absence of their small subunits, the large subunits behave as sequence-specific DNA nicking enzymes and only nick the bottom strand of the sequences at these respective positions: GCAATG (-/0) and GCAGTG (-/0). We refer to the single subunit, the bottom-strand nicking forms as 'hemidimers'. Amino acid sequence comparisons reveal that BsrDI and BtsI belong to a family of restriction enzymes that possess two catalytic sites: a canonical PD-X(n)-EXK and a second non-canonical PD-X(n)-E-X12-QR. Interestingly, the other family members, which include BsrI (ACTGG 1/-1) and BsmI/Mva1269I (GAATGC 1/-1) are single polypeptide chains, i.e. monomers, rather than heterodimers. In BsrDI and BtsI, the two catalytic sites are found in two separate subunits. Site-directed mutagenesis confirmed that the canonical catalytic site located at the N-terminus of the large subunit is responsible for the bottom-strand cleavage, whereas the non-canonical catalytic site located in the small subunit is responsible for hydrolysis of the top strand. Top-strand specific nicking variants, Nt.BsrDI and Nt.BtsI, were successfully engineered by combining the catalytic-deficient B subunit with wild-type A subunit.
Collapse
Affiliation(s)
- Shuang-Yong Xu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Xiao M, Phong A, Ha C, Chan TF, Cai D, Leung L, Wan E, Kistler AL, DeRisi JL, Selvin PR, Kwok PY. Rapid DNA mapping by fluorescent single molecule detection. Nucleic Acids Res 2006; 35:e16. [PMID: 17175538 PMCID: PMC1807959 DOI: 10.1093/nar/gkl1044] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DNA mapping is an important analytical tool in genomic sequencing, medical diagnostics and pathogen identification. Here we report an optical DNA mapping strategy based on direct imaging of individual DNA molecules and localization of multiple sequence motifs on the molecules. Individual genomic DNA molecules were labeled with fluorescent dyes at specific sequence motifs by the action of nicking endonuclease followed by the incorporation of dye terminators with DNA polymerase. The labeled DNA molecules were then stretched into linear form on a modified glass surface and imaged using total internal reflection fluorescence (TIRF) microscopy. By determining the positions of the fluorescent labels with respect to the DNA backbone, the distribution of the sequence motif recognized by the nicking endonuclease can be established with good accuracy, in a manner similar to reading a barcode. With this approach, we constructed a specific sequence motif map of lambda-DNA. We further demonstrated the capability of this approach to rapidly type a human adenovirus and several strains of human rhinovirus.
Collapse
Affiliation(s)
- Ming Xiao
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
- To whom correspondence should be addressed at: 513, Parnassus Avenue, HSW-901A, San Francisco, CA 94143, USA. Tel: +1 41 551 43876; Fax: +1 41 547 62956;
| | - Angie Phong
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Connie Ha
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Ting-Fung Chan
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Dongmei Cai
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Lucinda Leung
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Eunice Wan
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Amy L. Kistler
- Department of Biochemistry and Biophysics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Paul R. Selvin
- Department of Physics and Center of Biophysics, University of Illinois at Urbana-ChampaignUrbana, IL 61801, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
- Department of Dermatology, University of CaliforniaSan Francisco, CA 94115, USA
| |
Collapse
|
47
|
Yunusova AK, Rogulin EA, Artyukh RI, Zheleznaya LA, Matvienko NI. Nickase and a protein encoded by an open reading frame downstream from the nickase BspD6I gene form a restriction endonuclease complex. BIOCHEMISTRY (MOSCOW) 2006; 71:815-20. [PMID: 16903837 DOI: 10.1134/s0006297906070157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We are the first to have isolated a protein (186 amino acid residues) encoded by the open reading frame adjacent to the end of the BspD6I nickase (N.BspD6I) gene. Cleavage of both DNA strands near the sequence recognized by nickase (5 -GAGTC/5 -GACTC) occurs when this protein is added to the reaction mixture containing N.BspD6I. The protein encoded by the open reading frame and the nickase are suggested to be subunits of heterodimeric restriction endonuclease R.BspD6I.
Collapse
Affiliation(s)
- A K Yunusova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | | | | | |
Collapse
|
48
|
Robertson RM, Laib S, Smith DE. Diffusion of isolated DNA molecules: dependence on length and topology. Proc Natl Acad Sci U S A 2006; 103:7310-4. [PMID: 16648255 PMCID: PMC1450111 DOI: 10.1073/pnas.0601903103] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conformation and dynamics of circular polymers is a subject of considerable theoretical and experimental interest. DNA is an important example because it occurs naturally in different topological states, including linear, relaxed circular, and supercoiled circular forms. A fundamental question is how the diffusion coefficients of isolated polymers scale with molecular length and how they vary for different topologies. Here, diffusion coefficients D for relaxed circular, supercoiled, and linear DNA molecules of length L ranging from approximately 6 to 290 kbp were measured by tracking the Brownian motion of single molecules. A topology-independent scaling law D approximately L(-nu) was observed with nu(L) = 0.571 +/- 0.014, nu(C) = 0.589 +/- 0.018, and nu(S) = 0.571 +/- 0.057 for linear, relaxed circular, and supercoiled DNA, respectively, in good agreement with the scaling exponent of nu congruent with 0.588 predicted by renormalization group theory for polymers with significant excluded volume interactions. Our findings thus provide evidence in support of several theories that predict an effective diameter of DNA much greater than the Debye screening length. In addition, the measured ratio D(Circular)/D(Linear) = 1.32 +/- 0.014 was closer to the value of 1.45 predicted by using renormalization group theory than the value of 1.18 predicted by classical Kirkwood hydrodynamic theory and agreed well with a value of 1.31 predicted when incorporating a recently proposed expression for the radius of gyration of circular polymers into the Zimm model.
Collapse
Affiliation(s)
- Rae M. Robertson
- Department of Physics, University of California at San Diego, Mail Code 0379, 9500 Gilman Drive, La Jolla, CA 92093
| | - Stephan Laib
- Department of Physics, University of California at San Diego, Mail Code 0379, 9500 Gilman Drive, La Jolla, CA 92093
| | - Douglas E. Smith
- Department of Physics, University of California at San Diego, Mail Code 0379, 9500 Gilman Drive, La Jolla, CA 92093
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Gololobova NS, Okhapkina SS, Abdurashitov MA, Degtyarev SK. Primary Structure of NM.BstSEI Operon from Bacillus stearothermophilus, the Producer of N.BstSEI Site-Specific Nicking Endonuclease. Mol Biol 2005. [DOI: 10.1007/s11008-005-0103-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Heiter DF, Lunnen KD, Wilson GG. Site-Specific DNA-nicking Mutants of the Heterodimeric Restriction Endonuclease R.BbvCI. J Mol Biol 2005; 348:631-40. [PMID: 15826660 DOI: 10.1016/j.jmb.2005.02.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 02/12/2005] [Accepted: 02/18/2005] [Indexed: 10/25/2022]
Abstract
The restriction enzyme R.BbvCI cleaves duplex DNA within a seven base-pair asymmetric recognition sequence, thus: CCTCAGC/GCTGAGG-->CC--TCAGC/GC--TGAGG. We show that R.BbvCI comprises two different subunits, R(1) and R(2); that each subunit contains a catalytic site for DNA strand hydrolysis; and that these sites act independently and strand-specifically. In turn, each catalytic site was inactivated by mutagenesis to form dimeric enzymes in which only one site remained functional. The altered enzymes hydrolyzed just one strand of the recognition sequence, nicking the DNA rather than cleaving it. Enzymes in which the catalytic site in the R(1) subunit remained functional nicked the bottom strand of the sequence, producing CCTCAGC/GC--TGAGG, while those in which the catalytic site in the R(2) subunit remained functional nicked the top strand, producing CC--TCAGC/GCTGAGG. These DNA-nicking enzymes could prove useful for investigation of DNA repair, recombination, and replication, and for laboratory procedures that initiate from nicks, such as DNA degradation, synthesis, and amplification.
Collapse
Affiliation(s)
- Daniel F Heiter
- New England Biolabs Inc., 32 Tozer Road, Beverly, MA 01915, USA
| | | | | |
Collapse
|