1
|
Mélida H, Kappel L, Ullah SF, Bulone V, Srivastava V. Quantitative proteomic analysis of plasma membranes from the fish pathogen Saprolegnia parasitica reveals promising targets for disease control. Microbiol Spectr 2024; 12:e0034824. [PMID: 38888349 PMCID: PMC11302233 DOI: 10.1128/spectrum.00348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
The phylum Oomycota contains economically important pathogens of animals and plants, including Saprolegnia parasitica, the causal agent of the fish disease saprolegniasis. Due to intense fish farming and banning of the most effective control measures, saprolegniasis has re-emerged as a major challenge for the aquaculture industry. Oomycete cells are surrounded by a polysaccharide-rich cell wall matrix that, in addition to being essential for cell growth, also functions as a protective "armor." Consequently, the enzymes responsible for cell wall synthesis provide potential targets for disease control. Oomycete cell wall biosynthetic enzymes are predicted to be plasma membrane proteins. To identify these proteins, we applied a quantitative (iTRAQ) mass spectrometry-based proteomics approach to the plasma membrane of the hyphal cells of S. parasitica, providing the first complete plasma membrane proteome of an oomycete species. Of significance is the identification of 65 proteins enriched in detergent-resistant microdomains (DRMs). In silico analysis showed that DRM-enriched proteins are mainly involved in molecular transport and β-1,3-glucan synthesis, potentially contributing to pathogenesis. Moreover, biochemical characterization of the glycosyltransferase activity in these microdomains further supported their role in β-1,3-glucan synthesis. Altogether, the knowledge gained in this study provides a basis for developing disease control measures targeting specific plasma membrane proteins in S. parasitica.IMPORTANCEThe significance of this research lies in its potential to combat saprolegniasis, a detrimental fish disease, which has resurged due to intensive fish farming and regulatory restrictions. By targeting enzymes responsible for cell wall synthesis in Saprolegnia parasitica, this study uncovers potential avenues for disease control. Particularly noteworthy is the identification of several proteins enriched in membrane microdomains, offering insights into molecular mechanisms potentially involved in pathogenesis. Understanding the role of these proteins provides a foundation for developing targeted disease control measures. Overall, this research holds promise for safeguarding the aquaculture industry against the challenges posed by saprolegniasis.
Collapse
Affiliation(s)
- Hugo Mélida
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Lisa Kappel
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Sadia Fida Ullah
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| |
Collapse
|
2
|
Heimburg T. The excitable fluid mosaic. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184104. [PMID: 36642342 DOI: 10.1016/j.bbamem.2022.184104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023]
Abstract
The Fluid Mosaic Model by Singer & Nicolson proposes that biological membranes consist of a fluid lipid layer into which integral proteins are embedded. The lipid membrane acts as a two-dimensional liquid in which the proteins can diffuse and interact. Until today, this view seems very reasonable and is the predominant picture in the literature. However, there exist broad melting transitions in biomembranes some 10-20 degrees below physiological temperatures that reach up to body temperature. Since they are found below body temperature, Singer & Nicolson did not pay any further attention to the melting process. But this is a valid view only as long as nothing happens. The transition temperature can be influenced by membrane tension, pH, ionic strength and other variables. Therefore, it is not generally correct that the physiological temperature is above this transition. The control over the membrane state by changing the intensive variables renders the membrane as a whole excitable. One expects phase behavior and domain formation that leads to protein sorting and changes in membrane function. Thus, the lipids become an active ingredient of the biological membrane. The melting transition affects the elastic constants of the membrane. This allows for the generation of propagating pulses in nerves and the formation of ion-channel-like pores in the lipid membranes. Here we show that on top of the fluid mosaic concept there exists a wealth of excitable phenomena that go beyond the original picture of Singer & Nicolson.1.
Collapse
Affiliation(s)
- Thomas Heimburg
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Myconoside Affects the Viability of Polarized Epithelial MDCKII Cell Line by Interacting with the Plasma Membrane and the Apical Junctional Complexes. SEPARATIONS 2022. [DOI: 10.3390/separations9090239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The phenyl glycoside myconoside, extracted from Balkan endemic Haberlea rhodopensis, has a positive effect on human health, but the exact molecular mechanism of its action is still unknown. The cell membrane and its associated junctional complex are the first targets of exogenous compound action. We aimed to study the effect of myconoside on membrane organization and cytoskeleton components involved in the maintenance of cell polarity in the MDCKII cell line. By fluorescent spectroscopy and microscopy, we found that at low concentrations, myconoside increases the cell viability by enhancing membrane lipid order and adherent junctions. The opposite effect is observed in high myconoside doses. We hypothesized that the cell morphological and physicochemical changes of the analyzed cell compartments are directly related to cell viability and cell apical-basal polarity. Our finding contributes to a better understanding of the beneficial application of phytochemical myconoside in pharmacology and medicine.
Collapse
|
4
|
Tian Y, Zeng H, Wu J, Huang J, Gao Q, Tang D, Cai L, Liao Z, Wang Y, Liu X, Lin J. Screening DHHCs of S-acylated proteins using an OsDHHC cDNA library and bimolecular fluorescence complementation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1763-1780. [PMID: 35411551 DOI: 10.1111/tpj.15769] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 05/28/2023]
Abstract
S-acylation is an important lipid modification that primarily involves DHHC proteins (DHHCs) and associated S-acylated proteins. No DHHC-S-acylated protein pair has been reported so far in rice (Oryza sativa L.) and the molecular mechanisms underlying S-acylation in plants are largely unknown. We constructed an OsDHHC cDNA library for screening corresponding pairs of DHHCs and S-acylated proteins using bimolecular fluorescence complementation assays. Five DHHC-S-acylated protein pairs (OsDHHC30-OsCBL2, OsDHHC30-OsCBL3, OsDHHC18-OsNOA1, OsDHHC13-OsNAC9, and OsDHHC14-GSD1) were identified in rice. Among the pairs, OsCBL2 and OsCBL3 were S-acylated by OsDHHC30 in yeast and rice. The localization of OsCBL2 and OsCBL3 in the endomembrane depended on S-acylation mediated by OsDHHC30. Meanwhile, all four OsDHHCs screened complemented the thermosensitive phenotype of an akr1 yeast mutant, and their DHHC motifs were required for S-acyltransferase activity. Overexpression of OsDHHC30 in rice plants improved their salt and oxidative tolerance. Together, these results contribute to our understanding of the molecular mechanism underlying S-acylation in plants.
Collapse
Affiliation(s)
- Ye Tian
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Hui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jicai Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jian Huang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Qiang Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Dongying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Lipeng Cai
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zhaoyi Liao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Yan Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jianzhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| |
Collapse
|
5
|
Levic DS, Bagnat M. Self-organization of apical membrane protein sorting in epithelial cells. FEBS J 2022; 289:659-670. [PMID: 33864720 PMCID: PMC8522177 DOI: 10.1111/febs.15882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self-organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein-based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH-dependent glycan interactions.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
6
|
Mela A, Momany M. Septins coordinate cell wall integrity and lipid metabolism in a sphingolipid-dependent process. J Cell Sci 2021; 135:256543. [PMID: 33912961 DOI: 10.1242/jcs.258336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/31/2020] [Indexed: 01/09/2023] Open
Abstract
Septins colocalize with membrane sterol-rich regions and facilitate recruitment of cell wall synthases during wall remodeling. We show that null mutants missing an Aspergillus nidulans core septin present in hexamers and octamers (ΔaspAcdc11, ΔaspBcdc3 or ΔaspCcdc12) are sensitive to multiple cell wall-disturbing agents that activate the cell wall integrity MAPK pathway. The null mutant missing the octamer-exclusive core septin (ΔaspDcdc10) showed similar sensitivity, but only to a single cell wall-disturbing agent and the null mutant missing the noncore septin (ΔaspE) showed only very mild sensitivity to a different single agent. Core septin mutants showed changes in wall polysaccharide composition and chitin synthase localization. Mutants missing any of the five septins resisted ergosterol-disrupting agents. Hexamer mutants showed increased sensitivity to sphingolipid-disrupting agents. Core septins mislocalized after treatment with sphingolipid-disrupting agents, but not after ergosterol-disrupting agents. Our data suggest that the core septins are involved in cell wall integrity signaling, that all five septins are involved in monitoring ergosterol metabolism, that the hexamer septins are required for sphingolipid metabolism and that septins require sphingolipids to coordinate the cell wall integrity response.
Collapse
Affiliation(s)
- Alexander Mela
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| |
Collapse
|
7
|
Metabolic Changes by Wine Flor-Yeasts with Gluconic Acid as the Sole Carbon Source. Metabolites 2021; 11:metabo11030150. [PMID: 33800958 PMCID: PMC8001445 DOI: 10.3390/metabo11030150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/30/2022] Open
Abstract
Gluconic acid consumption under controlled conditions by a Saccharomyces cerevisiae flor yeast was studied in artificial media. Gluconic acid was the sole carbon source and the compounds derived from this metabolism were tracked by endo-metabolomic analysis using a Gas Chromatography-Mass Spectrometry (GC-MSD) coupled methodology. After 6 days, about 30% of gluconic acid (1.5 g/L) had been consumed and 34 endo-metabolites were identified. Metabolomic pathway analysis showed the TCA cycle, glyoxylate-dicarboxylate, glycine-serine-threonine, and glycerolipid metabolic pathway were significantly affected. These results contribute to the knowledge of intracellular metabolomic fluctuations in flor yeasts during gluconic acid uptake, opening possibilities for future experiments to improve their applications to control gluconic acid contents during the production of fermented beverages.
Collapse
|
8
|
Levic DS, Ryan S, Marjoram L, Honeycutt J, Bagwell J, Bagnat M. Distinct roles for luminal acidification in apical protein sorting and trafficking in zebrafish. J Cell Biol 2020; 219:133852. [PMID: 32328632 PMCID: PMC7147097 DOI: 10.1083/jcb.201908225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial cell physiology critically depends on the asymmetric distribution of channels and transporters. However, the mechanisms targeting membrane proteins to the apical surface are still poorly understood. Here, we performed a visual forward genetic screen in the zebrafish intestine and identified mutants with defective apical targeting of membrane proteins. One of these mutants, affecting the vacuolar H+-ATPase gene atp6ap1b, revealed specific requirements for luminal acidification in apical, but not basolateral, membrane protein sorting and transport. Using a low temperature block assay combined with genetic and pharmacologic perturbation of luminal pH, we monitored transport of newly synthesized membrane proteins from the TGN to apical membrane in live zebrafish. We show that vacuolar H+-ATPase activity regulates sorting of O-glycosylated proteins at the TGN, as well as Rab8-dependent post-Golgi trafficking of different classes of apical membrane proteins. Thus, luminal acidification plays distinct and specific roles in apical membrane biogenesis.
Collapse
Affiliation(s)
| | - Sean Ryan
- Department of Cell Biology, Duke University, Durham, NC
| | | | | | | | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC
| |
Collapse
|
9
|
Pan X, Fang L, Liu J, Senay-Aras B, Lin W, Zheng S, Zhang T, Guo J, Manor U, Van Norman J, Chen W, Yang Z. Auxin-induced signaling protein nanoclustering contributes to cell polarity formation. Nat Commun 2020; 11:3914. [PMID: 32764676 PMCID: PMC7410848 DOI: 10.1038/s41467-020-17602-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/05/2020] [Indexed: 11/25/2022] Open
Abstract
Cell polarity is fundamental to the development of both eukaryotes and prokaryotes, yet the mechanisms behind its formation are not well understood. Here we found that, phytohormone auxin-induced, sterol-dependent nanoclustering of cell surface transmembrane receptor kinase 1 (TMK1) is critical for the formation of polarized domains at the plasma membrane (PM) during the morphogenesis of cotyledon pavement cells (PC) in Arabidopsis. Auxin-induced TMK1 nanoclustering stabilizes flotillin1-associated ordered nanodomains, which in turn promote the nanoclustering of ROP6 GTPase that acts downstream of TMK1 to regulate cortical microtubule organization. In turn, cortical microtubules further stabilize TMK1- and flotillin1-containing nanoclusters at the PM. Hence, we propose a new paradigm for polarity formation: A diffusive signal triggers cell polarization by promoting cell surface receptor-mediated nanoclustering of signaling components and cytoskeleton-mediated positive feedback that reinforces these nanodomains into polarized domains.
Collapse
Affiliation(s)
- Xue Pan
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Linjing Fang
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jianfeng Liu
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Betul Senay-Aras
- Department of Mathematics, University of California, Riverside, CA, 92521, USA
| | - Wenwei Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Shuan Zheng
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tong Zhang
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jingzhe Guo
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jaimie Van Norman
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, CA, 92521, USA.
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
10
|
An Erg11 lanosterol 14-α-demethylase-Arv1 complex is required for Candida albicans virulence. PLoS One 2020; 15:e0235746. [PMID: 32678853 PMCID: PMC7367482 DOI: 10.1371/journal.pone.0235746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Azole resistant fungal infections remain a health problem for the immune compromised. Current therapies are limited due to rises in new resistance mechanisms. Therefore, it is important to identify new drug targets for drug discovery and novel therapeutics. Arv1 (are1 are2required for viability 1) function is highly conserved between multiple pathogenic fungal species. Candida albicans (C. albicans) cells lacking CaArv1 are azole hypersusceptible and lack virulence. Saccharomyces cerevisiae (S. cerevisiae) Scarv1 cells are also azole hypersusceptible, a phenotype reversed by expression of CaArv1, indicating conservation in the molecular mechanism for azole susceptibility. To define the relationship between Arv1 function and azole susceptibility, we undertook a structure/function analysis of ScArv1. We identified several conserved amino acids within the ScArv1 homology domain (ScAhd) required for maintaining normal azole susceptibility. Erg11 lanosterol 14-α-demethylase is the rate-limiting enzyme in sterol biosynthesis and is the direct target of azole antifungals, so we used our ScArv1 mutants in order to explore the relationship between ScArv1 and ScErg11. Specific ScArv1 mutants ectopically expressed from a low copy plasmid were unable to restore normal azole susceptibility to Scarv1 cells and had reduced Erg11 protein levels. Erg11 protein stability depended on its ability to form a heterodimeric complex with Arv1. Complex formation was required for maintaining normal azole susceptibility. Scarv1 cells expressing orthologous CaArv1 mutants also had reduced CaErg11 levels, were unable to form a CaArv1-CaErg11 complex, and were azole hypersusceptible. Scarv1 cells expressing CaArv1 mutants unable to interact with CaErg11 could not sustain proper levels of the azole resistant CaErg11Y132F F145L protein. Caarv1/Caarv1 cells expressing CaArv1 mutants unable to interact with CaErg11 were found to lack virulence using a disseminated candidiasis mouse model. Expressing CaErg11Y132F F145L did not reverse the lack of virulence. We hypothesize that the role of Arv1 in Erg11-dependent azole resistance is to stabilize Erg11 protein level. Arv1 inhibition may represent an avenue for treating azole resistance.
Collapse
|
11
|
Mužić T, Tounsi F, Madsen SB, Pollakowski D, Konrad M, Heimburg T. Melting transitions in biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183026. [PMID: 31465764 DOI: 10.1016/j.bbamem.2019.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022]
Abstract
We investigated melting transitions in native biological membranes containing their membrane proteins. The membranes originated from E. coli, B. subtilis, lung surfactant and nerve tissue from the spinal cord of several mammals. For some preparations, we studied the pressure, pH and ionic strength dependence of the transition. For porcine spine, we compared the transition of the native membrane to that of the extracted lipids. All preparations displayed melting transitions of 10-20° below physiological or growth temperature, independent of the organism of origin and the respective cell type. We found that the position of the transitions in E. coli membranes depends on the growth temperature. We discuss these findings in the context of the thermodynamic theory of membrane fluctuations close to transition that predicts largely altered elastic constants, an increase in fluctuation lifetime and in membrane permeability. We also discuss how to distinguish lipid melting from protein unfolding transitions. Since the feature of a transition slightly below physiological temperature is conserved even when growth conditions change, we conclude that the transitions are likely to be of major biological importance for the survival and the function of the cell.
Collapse
Affiliation(s)
- Tea Mužić
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark
| | - Fatma Tounsi
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark
| | - Søren B Madsen
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark
| | - Denis Pollakowski
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark
| | - Manfred Konrad
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Thomas Heimburg
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark.
| |
Collapse
|
12
|
Řezanka T, Kolouchová I, Gharwalová L, Doležalová J, Nedbalová L, Sigler K. Sphingolipidomics of Thermotolerant Yeasts. Lipids 2018; 53:627-639. [PMID: 30206958 DOI: 10.1002/lipd.12076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023]
Abstract
Mass spectrometry-based shotgun lipidomics was applied to the analysis of sphingolipids of 11 yeast strains belonging to four genera, that is Cryptococcus, Saccharomyces, Schizosaccharomyces, and Wickerhamomyces. The analysis yielded comprehensive results on both qualitative and quantitative representation of complex sphingolipids of three classes-phosphoinositol ceramide (PtdInsCer), mannosyl inositol phosphoceramide (MInsPCer), and mannosyl diinositol phosphoceramide (M(InsP)2 Cer). In total, nearly 150 molecular species of complex sphingolipids were identified. Individual strains were cultured at five different temperatures, that is 5, 10, 20, 30, and 40 °C (Wickerhamomyces genus only up to 30 °C), and the change in the culture temperature was found to affect the representation of both the sphingolipid classes and the length of the long-chain bases (LCB). Individual classes of sphingolipids differing in polar heads differed in the temperature response. The relative content of PtdInsCer increased with increasing temperature, whereas that of M(InsP)2 Cer decreased. Molecular species having C18-LCB were associated with low cultivation temperature, and a higher proportion of C20-LCB molecular species was produced at higher temperatures regardless of the type of polar head. On the other hand, the influence of temperature on the representation of very long-chain fatty acids (VLCFA) was less noticeable, the effect of the taxonomic affiliation of the strains being more pronounced than the cultivation temperature. For example, lignoceric and 2-hydrocylo-lignoceric acids were characteristic of the genera Cryptococcus and Schizosaccharomyces, and of Saccharomyces genus cultivated at high temperatures.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Lab of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Irena Kolouchová
- Department of Biotechnology, University of Chemical Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Lucia Gharwalová
- Department of Biotechnology, University of Chemical Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Jana Doležalová
- Department of Biotechnology, University of Chemical Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Karel Sigler
- Lab of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20, Prague, Czech Republic
| |
Collapse
|
13
|
The Bardet-Biedl syndrome protein complex is an adapter expanding the cargo range of intraflagellar transport trains for ciliary export. Proc Natl Acad Sci U S A 2018; 115:E934-E943. [PMID: 29339469 DOI: 10.1073/pnas.1713226115] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a ciliopathy resulting from defects in the BBSome, a conserved protein complex. BBSome mutations affect ciliary membrane composition, impairing cilia-based signaling. The mechanism by which the BBSome regulates ciliary membrane content remains unknown. Chlamydomonas bbs mutants lack phototaxis and accumulate phospholipase D (PLD) in the ciliary membrane. Single particle imaging revealed that PLD comigrates with BBS4 by intraflagellar transport (IFT) while IFT of PLD is abolished in bbs mutants. BBSome deficiency did not alter the rate of PLD entry into cilia. Membrane association and the N-terminal 58 residues of PLD are sufficient and necessary for BBSome-dependent transport and ciliary export. The replacement of PLD's ciliary export sequence (CES) caused PLD to accumulate in cilia of cells with intact BBSomes and IFT. The buildup of PLD inside cilia impaired phototaxis, revealing that PLD is a negative regulator of phototactic behavior. We conclude that the BBSome is a cargo adapter ensuring ciliary export of PLD on IFT trains to regulate phototaxis.
Collapse
|
14
|
Villasmil ML, Gallo-Ebert C, Liu HY, Francisco J, Nickels JT. A link between very long chain fatty acid elongation and mating-specific yeast cell cycle arrest. Cell Cycle 2017; 16:2192-2203. [PMID: 28745545 DOI: 10.1080/15384101.2017.1329065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Ceramides and sphingolipid intermediates are well-established regulators of the cell cycle. In the budding yeast Saccharomyces cerevisae, the complex sphingolipid backbone, ceramide, comprises a long chain sphingoid base, a polar head group, and a very long chain fatty acid (VLCFA). While ceramides and long chain bases have been extensively studied as to their roles in regulating cell cycle arrest under multiple conditions, the roles of VLCFAs are not well understood. Here, we used the yeast elo2 and elo3 mutants, which are unable to elongate fatty acids, as tools to explore if maintaining VLCFA elongation is necessary for cell cycle arrest in response to yeast mating. We found that both elo2 and elo3 cells had severely reduced mating efficiencies and were unable to form polarized shmoo projections that are necessary for cell-cell contact during mating. They also lacked functional MAP kinase signaling activity and were defective in initiating a cell cycle arrest in response to pheromone. Additional data suggests that mislocalization of the Ste5 scaffold in elo2 and elo3 mutants upon mating initiation may be responsible for the inability to initiate a cell cycle arrest. Moreover, the lack of proper Ste5 localization may be caused by the inability of mutant cells to mobilize PIP2. We suggest that VLCFAs are required for Ste5 localization, which is a necessary event for initiating MAP kinase signaling and cell cycle arrest during yeast mating initiation.
Collapse
Affiliation(s)
| | - Christina Gallo-Ebert
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| | - Hsing-Yin Liu
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| | | | - Joseph T Nickels
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| |
Collapse
|
15
|
Adelantado N, Tarazona P, Grillitsch K, García-Ortega X, Monforte S, Valero F, Feussner I, Daum G, Ferrer P. The effect of hypoxia on the lipidome of recombinant Pichia pastoris. Microb Cell Fact 2017; 16:86. [PMID: 28526017 PMCID: PMC5437588 DOI: 10.1186/s12934-017-0699-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/10/2017] [Indexed: 01/17/2023] Open
Abstract
Background Cultivation of recombinant Pichia pastoris (Komagataella sp.) under hypoxic conditions has a strong positive effect on specific productivity when the glycolytic GAP promoter is used for recombinant protein expression, mainly due to upregulation of glycolytic conditions. In addition, transcriptomic analyses of hypoxic P. pastoris pointed out important regulation of lipid metabolism and unfolded protein response (UPR). Notably, UPR that plays a role in the regulation of lipid metabolism, amino acid metabolism and protein secretion, was found to be upregulated under hypoxia. Results To improve our understanding of the interplay between lipid metabolism, UPR and protein secretion, the lipidome of a P. pastoris strain producing an antibody fragment was studied under hypoxic conditions. Furthermore, lipid composition analyses were combined with previously available transcriptomic datasets to further understand the impact of hypoxia on lipid metabolism. Chemostat cultures operated under glucose-limiting conditions under normoxic and hypoxic conditions were analyzed in terms of intra/extracellular product distribution and lipid composition. Integrated analysis of lipidome and transcriptome datasets allowed us to demonstrate an important remodeling of the lipid metabolism under limited oxygen availability. Additionally, cells with reduced amounts of ergosterol through fluconazole treatment were also included in the study to observe the impact on protein secretion and its lipid composition. Conclusions Our results show that cells adjust their membrane composition in response to oxygen limitation mainly by changing their sterol and sphingolipid composition. Although fluconazole treatment results a different lipidome profile than hypoxia, both conditions result in higher recombinant protein secretion levels. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0699-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Núria Adelantado
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain.,Evonik Nutrition & Care GmbH, Hanau, Germany
| | - Pablo Tarazona
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Karlheinz Grillitsch
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Xavier García-Ortega
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Sergi Monforte
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Günther Daum
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria. .,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria.
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| |
Collapse
|
16
|
Unrean P. Flux control-based design of furfural-resistance strains of Saccharomyces cerevisiae for lignocellulosic biorefinery. Bioprocess Biosyst Eng 2016; 40:611-623. [DOI: 10.1007/s00449-016-1725-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022]
|
17
|
Lucas C, Ferreira C, Cazzanelli G, Franco-Duarte R, Tulha J, Roelink H, Conway SJ. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications. J Dev Biol 2016; 4:E33. [PMID: 29615596 PMCID: PMC5831804 DOI: 10.3390/jdb4040033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information.
Collapse
Affiliation(s)
- Cândida Lucas
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Célia Ferreira
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Giulia Cazzanelli
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Ricardo Franco-Duarte
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Joana Tulha
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | | | | |
Collapse
|
18
|
Lipid transfer proteins and the tuning of compartmental identity in the Golgi apparatus. Chem Phys Lipids 2016; 200:42-61. [DOI: 10.1016/j.chemphyslip.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
19
|
Makushok T, Alves P, Huisman SM, Kijowski AR, Brunner D. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity. Cell 2016; 165:1182-1196. [PMID: 27180904 DOI: 10.1016/j.cell.2016.04.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/20/2015] [Accepted: 04/13/2016] [Indexed: 12/26/2022]
Abstract
Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.
Collapse
Affiliation(s)
- Tatyana Makushok
- University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94143, USA
| | - Paulo Alves
- IGBMC, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Stephen Michiel Huisman
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Adam Rafal Kijowski
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Damian Brunner
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
20
|
El-Mounadi K, Islam KT, Hernández-Ortiz P, Read ND, Shah DM. Antifungal mechanisms of a plant defensin MtDef4 are not conserved between the ascomycete fungi Neurospora crassa and Fusarium graminearum. Mol Microbiol 2016; 100:542-59. [PMID: 26801962 DOI: 10.1111/mmi.13333] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2016] [Indexed: 12/14/2022]
Abstract
Defensins play an important role in plant defense against fungal pathogens. The plant defensin, MtDef4, inhibits growth of the ascomycete fungi, Neurospora crassa and Fusarium graminearum, at micromolar concentrations. We have reported that MtDef4 is transported into the cytoplasm of these fungi and exerts its antifungal activity on intracellular targets. Here, we have investigated whether the antifungal mechanisms of MtDef4 are conserved in these fungi. We show that N. crassa and F. graminearum respond differently to MtDef4 challenge. Membrane permeabilization is required for the antifungal activity of MtDef4 against F. graminearum but not against N. crassa. We find that MtDef4 is targeted to different subcellular compartments in each fungus. Internalization of MtDef4 in N. crassa is energy-dependent and involves endocytosis. By contrast, MtDef4 appears to translocate into F. graminearum autonomously using a partially energy-dependent pathway. MtDef4 has been shown to bind to the phospholipid phosphatidic acid (PA). We provide evidence that the plasma membrane localized phospholipase D, involved in the biosynthesis of PA, is needed for entry of this defensin in N. crassa, but not in F. graminearum. To our knowledge, this is the first example of a defensin which inhibits the growth of two ascomycete fungi via different mechanisms.
Collapse
Affiliation(s)
| | - Kazi T Islam
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Patricia Hernández-Ortiz
- Manchester Fungal Infection Group, Institution of Inflammation and Repair, University of Manchester, Manchester, M13 9NT, UK
| | - Nick D Read
- Manchester Fungal Infection Group, Institution of Inflammation and Repair, University of Manchester, Manchester, M13 9NT, UK
| | - Dilip M Shah
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| |
Collapse
|
21
|
Rollero S, Mouret JR, Sanchez I, Camarasa C, Ortiz-Julien A, Sablayrolles JM, Dequin S. Key role of lipid management in nitrogen and aroma metabolism in an evolved wine yeast strain. Microb Cell Fact 2016; 15:32. [PMID: 26861624 PMCID: PMC4748530 DOI: 10.1186/s12934-016-0434-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/27/2016] [Indexed: 01/08/2023] Open
Abstract
Background Fermentative aromas play a key role in the organoleptic profile of young wines. Their production depends both on yeast strain and fermentation conditions. A present-day trend in the wine industry consists in developing new strains with aromatic properties using adaptive evolution approaches. An evolved strain, Affinity™ ECA5, overproducing esters, was recently obtained. In this study, dynamics of nitrogen consumption and of the fermentative aroma synthesis of the evolved and its ancestral strains were compared and coupled with a transcriptomic analysis approach to better understand the metabolic reshaping of Affinity™ ECA5. Results Nitrogen assimilation was different between the two strains, particularly amino acids transported by carriers regulated by nitrogen catabolite repression. We also observed differences in the kinetics of fermentative aroma production, especially in the bioconversion of higher alcohols into acetate esters. Finally, transcriptomic data showed that the enhanced bioconversion into acetate esters by the evolved strain was associated with the repression of genes involved in sterol biosynthesis rather than an enhanced expression of ATF1 and ATF2 (genes coding for the enzymes responsible for the synthesis of acetate esters from higher alcohols). Conclusions An integrated approach to yeast metabolism—combining transcriptomic analyses and online monitoring data—showed differences between the two strains at different levels. Differences in nitrogen source consumption were observed suggesting modifications of NCR in the evolved strain. Moreover, the evolved strain showed a different way of managing the lipid source, which notably affected the production of acetate esters, likely because of a greater availability of acetyl-CoA for the evolved strain. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0434-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stéphanie Rollero
- INRA, UMR1083, 34060, Montpellier, France. .,SupAgro, UMR1083, 34060, Montpellier, France. .,Universite Montpellier, UMR1083, 34060, Montpellier, France. .,Lallemand SAS, 31700, Blagnac, France.
| | - Jean-Roch Mouret
- INRA, UMR1083, 34060, Montpellier, France. .,SupAgro, UMR1083, 34060, Montpellier, France. .,Universite Montpellier, UMR1083, 34060, Montpellier, France.
| | - Isabelle Sanchez
- INRA, UMR1083, 34060, Montpellier, France. .,SupAgro, UMR1083, 34060, Montpellier, France. .,Universite Montpellier, UMR1083, 34060, Montpellier, France.
| | - Carole Camarasa
- INRA, UMR1083, 34060, Montpellier, France. .,SupAgro, UMR1083, 34060, Montpellier, France. .,Universite Montpellier, UMR1083, 34060, Montpellier, France.
| | | | - Jean-Marie Sablayrolles
- INRA, UMR1083, 34060, Montpellier, France. .,SupAgro, UMR1083, 34060, Montpellier, France. .,Universite Montpellier, UMR1083, 34060, Montpellier, France.
| | - Sylvie Dequin
- INRA, UMR1083, 34060, Montpellier, France. .,SupAgro, UMR1083, 34060, Montpellier, France. .,Universite Montpellier, UMR1083, 34060, Montpellier, France.
| |
Collapse
|
22
|
Rella A, Farnoud AM, Del Poeta M. Plasma membrane lipids and their role in fungal virulence. Prog Lipid Res 2015; 61:63-72. [PMID: 26703191 DOI: 10.1016/j.plipres.2015.11.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022]
Abstract
There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies.
Collapse
Affiliation(s)
- Antonella Rella
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
23
|
Characterization of AnNce102 and its role in eisosome stability and sphingolipid biosynthesis. Sci Rep 2015; 5:15200. [PMID: 26468899 PMCID: PMC4606592 DOI: 10.1038/srep15200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022] Open
Abstract
The plasma membrane is implicated in a variety of functions, whose coordination necessitates highly dynamic organization of its constituents into domains of distinct protein and lipid composition. Eisosomes, at least partially, mediate this lateral plasma membrane compartmentalization. In this work, we show that the Nce102 homologue of Aspergillus nidulans colocalizes with eisosomes and plays a crucial role in density/number of PilA/SurG foci in the head of germlings. In addition we demonstrate that AnNce102 and PilA negatively regulate sphingolipid biosynthesis, since their deletions partially suppress the thermosensitivity of basA mutant encoding sphingolipid C4-hydroxylase and the growth defects observed upon treatment with inhibitors of sphingolipid biosynthesis, myriocin and Aureobasidin A. Moreover, we show that YpkA repression mimics genetic or pharmacological depletion of sphingolipids, conditions that induce the production of Reactive Oxygen Species (ROS), and can be partially overcome by deletion of pilA and/or annce102 at high temperatures. Consistent with these findings, pilAΔ and annce102Δ also show differential sensitivity to various oxidative agents, while AnNce102 overexpression can bypass sphingolipid depletion regarding the PilA/SurG foci number and organization, also leading to the mislocalization of PilA to septa.
Collapse
|
24
|
Farnoud AM, Toledo AM, Konopka JB, Del Poeta M, London E. Raft-like membrane domains in pathogenic microorganisms. CURRENT TOPICS IN MEMBRANES 2015; 75:233-68. [PMID: 26015285 DOI: 10.1016/bs.ctm.2015.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids, commonly known as lipid rafts, are believed to exist, and reports on the presence of sterol- or protein-mediated microdomains in bacterial cell membranes are also appearing. Despite increasing attention, little is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and bacteria. The current literature on characterization of microdomains in pathogens is reviewed, and their potential role in growth, pathogenesis, and drug resistance is discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of their pathogenesis and development of raft-mediated approaches for therapy.
Collapse
Affiliation(s)
- Amir M Farnoud
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Alvaro M Toledo
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
25
|
Schuberth C, Wedlich-Söldner R. Building a patchwork - The yeast plasma membrane as model to study lateral domain formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:767-74. [PMID: 25541280 DOI: 10.1016/j.bbamcr.2014.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/01/2014] [Accepted: 12/14/2014] [Indexed: 01/03/2023]
Abstract
The plasma membrane (PM) has to fulfill a wide range of biological functions including selective uptake of substances, signal transduction and modulation of cell polarity and cell shape. To allow efficient regulation of these processes many resident proteins and lipids of the PM are laterally segregated into different functional domains. A particularly striking example of lateral segregation has been described for the budding yeast PM, where integral membrane proteins as well as lipids exhibit very slow translational mobility and form a patchwork of many overlapping micron-sized domains. Here we discuss the molecular and physical mechanisms contributing to the formation of a multi-domain membrane and review our current understanding of yeast PM organization. Many of the fundamental principles underlying membrane self-assembly and organization identified in yeast are expected to equally hold true in other organisms, even for the more transient and elusive organization of the PM in mammalian cells. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Christian Schuberth
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany.
| |
Collapse
|
26
|
Affiliation(s)
- Fred Chang
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032;
| | - Nicolas Minc
- Institut Jacques Monod, UMR7592 CNRS, 75205 Paris cedex 13, France;
| |
Collapse
|
27
|
Silva PM, Gonçalves S, Santos NC. Defensins: antifungal lessons from eukaryotes. Front Microbiol 2014; 5:97. [PMID: 24688483 PMCID: PMC3960590 DOI: 10.3389/fmicb.2014.00097] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/21/2014] [Indexed: 01/07/2023] Open
Abstract
Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed.
Collapse
Affiliation(s)
- Patrícia M Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
28
|
Stanislas T, Grebe M, Boutté Y. Sterol dynamics during endocytic trafficking in Arabidopsis. Methods Mol Biol 2014; 1209:13-29. [PMID: 25117272 DOI: 10.1007/978-1-4939-1420-3_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sterols are lipids found in membranes of eukaryotic cells. Functions of sterols have been demonstrated for various cellular processes including endocytic trafficking in animal, fungal, and plant cells. The ability to visualize sterols at the subcellular level is crucial to understand sterol distribution and function during endocytic trafficking. In plant cells, the polyene antibiotic filipin is the most extensively used tool for the specific detection of fluorescently labeled 3-β-hydroxysterols in situ. Filipin can to some extent be used to track sterol internalization in live cells, but this application is limited, due to the inhibitory effects filipin exerts on sterol-dependent endocytosis. Nevertheless, filipin-sterol labeling can be performed on aldehyde-fixed cells which allows for sterol detection in endocytic compartments. This approach can combine studies correlating sterol distribution with experimental manipulations of endocytic trafficking pathways. Here, we describe step-by-step protocols and troubleshooting for procedures on live and fixed cells to visualize sterols during endocytic trafficking. We also provide a detailed discussion of advantages and limitations of both methods. Moreover, we illustrate the use of the endocytic recycling inhibitor brefeldin A and a genetically modified version of one of its target molecules for studying endocytic sterol trafficking.
Collapse
Affiliation(s)
- Thomas Stanislas
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, 90 187, Sweden
| | | | | |
Collapse
|
29
|
Borklu Yucel E, Ulgen KO. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches. MOLECULAR BIOSYSTEMS 2013; 9:2914-31. [DOI: 10.1039/c3mb70248k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Bal J, Lee HJ, Cheon SA, Lee KJ, Oh DB, Kim JY. Ylpex5 mutation partially suppresses the defective hyphal growth of a Yarrowia lipolytica ceramide synthase mutant, Yllac1, by recovering lipid raft polarization and vacuole morphogenesis. Fungal Genet Biol 2012. [PMID: 23200743 DOI: 10.1016/j.fgb.2012.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sphingolipids are involved in cell differentiation and morphogenesis in eukaryotic cells. In this study, YlLac1p, a ceramide synthase required for glucosylceramide (GlcCer) synthesis, was found to be essential for hyphal growth in Yarrowia lipolytica. Y. lipolytica GlcCer was shown to be composed of a C16:0 fatty acid, which is hydroxylated at C2, and a C18:2 long chain base, which is unsaturated at both C4 and C8 and methylated at C9. Domain swapping analysis revealed that the entire TRAM/Lag1/CLN8 (TLC) domain, not the Lag1 motif, is crucial for the function of YlLac1p. YlDes1p, the C4 desaturase of the ceramide synthesized by YlLac1p, was also required for Y. lipolytica morphogenesis. Both Yllac1Δ and Yldes1Δ mutants neither polarize lipid rafts nor form normal vacuoles. Interestingly, mutation in YlPEX5, which encode a peroxisomal targeting signal receptor, partially suppressed the defective hyphal growth of Yllac1Δ. The Yllac1ΔYlpex5Δ mutant restored the ability to polarize lipid rafts and to form normal vacuoles, although it could not synthesize GlcCer. Taken together, our results suggest that GlcCer or GlcCer derivatives may be involved in hyphal morphogenesis in Y. lipolytica, at least in part, by affecting polarization of lipid rafts and vacuole morphogenesis.
Collapse
Affiliation(s)
- Jyotiranjan Bal
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
31
|
Wang L, Jia Y, Tang RJ, Xu Z, Cao YB, Jia XM, Jiang YY. Proteomic analysis of Rta2p-dependent raft-association of detergent-resistant membranes in Candida albicans. PLoS One 2012; 7:e37768. [PMID: 22662216 PMCID: PMC3360622 DOI: 10.1371/journal.pone.0037768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/24/2012] [Indexed: 11/19/2022] Open
Abstract
In Candida albicans, lipid rafts (also called detergent-resistant membranes, DRMs) are involved in many cellular processes and contain many important proteins. In our previous study, we demonstrated that Rta2p was required for calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Here, we found that Rta2p was co-localized with raft-constituted ergosterol on the plasma membrane of C. albicans. Furthermore, this membrane expression pattern was totally disturbed by inhibitors of either ergosterol or sphingolipid synthesis. Biochemical fractionation of DRMs together with immunoblot uncovered that Rta2p, along with well-known DRM-associated proteins (Pma1p and Gas1p homologue), was associated with DRMs and their associations were blocked by inhibitors of either ergosterol or sphingolipid synthesis. Finally, we used the proteomic analysis together with immunoblot and identified that Rta2p was required for the association of 10 proteins with DRMs. These 5 proteins (Pma1p, Gas1p homologue, Erg11p, Pmt2p and Ali1p) have been reported to be DRM-associated and also that Erg11p is a well-known target of azoles in C. albicans. In conclusion, our results showed that Rta2p was predominantly localized in lipid rafts and was required for the association of certain membrane proteins with lipid rafts in C. albicans.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Department of Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yu Jia
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ren-Jie Tang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zheng Xu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yong-Bing Cao
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xin-Ming Jia
- Department of Immunology, Tongji University School of Medicine, Shanghai, China
- * E-mail: (X-MJ); (Y-YJ)
| | - Yuan-Ying Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- * E-mail: (X-MJ); (Y-YJ)
| |
Collapse
|
32
|
Vandenbosch D, Bink A, Govaert G, Cammue BPA, Nelis HJ, Thevissen K, Coenye T. Phytosphingosine-1-phosphate is a signaling molecule involved in miconazole resistance in sessile Candida albicans cells. Antimicrob Agents Chemother 2012; 56:2290-4. [PMID: 22354293 PMCID: PMC3346612 DOI: 10.1128/aac.05106-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 02/11/2012] [Indexed: 01/06/2023] Open
Abstract
Previous research has shown that 1% to 10% of sessile Candida albicans cells survive treatment with high doses of miconazole (a fungicidal imidazole). In the present study, we investigated the involvement of sphingolipid biosynthetic intermediates in this survival. We observed that the LCB4 gene, coding for the enzyme that catalyzes the phosphorylation of dihydrosphingosine and phytosphingosine, is important in governing the miconazole resistance of sessile Saccharomyces cerevisiae and C. albicans cells. The addition of 10 nM phytosphingosine-1-phosphate (PHS-1-P) drastically reduced the intracellular miconazole concentration and significantly increased the miconazole resistance of a hypersusceptible C. albicans heterozygous LCB4/lcb4 mutant, indicating a protective effect of PHS-1-P against miconazole-induced cell death in sessile cells. At this concentration of PHS-1-P, we did not observe any effect on the fluidity of the cytoplasmic membrane. The protective effect of PHS-1-P was not observed when the efflux pumps were inhibited or when tested in a mutant without functional efflux systems. Also, the addition of PHS-1-P during miconazole treatment increased the expression levels of genes coding for efflux pumps, leading to the hypothesis that PHS-1-P acts as a signaling molecule and enhances the efflux of miconazole in sessile C. albicans cells.
Collapse
Affiliation(s)
- Davy Vandenbosch
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Anna Bink
- Centre of Microbial and Plant Genetics, K. U. Leuven, Heverlee, Belgium
| | - Gilmer Govaert
- Centre of Microbial and Plant Genetics, K. U. Leuven, Heverlee, Belgium
| | | | - Hans J. Nelis
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, K. U. Leuven, Heverlee, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Philpott CC, Leidgens S, Frey AG. Metabolic remodeling in iron-deficient fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1509-20. [PMID: 22306284 DOI: 10.1016/j.bbamcr.2012.01.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/13/2012] [Accepted: 01/18/2012] [Indexed: 01/12/2023]
Abstract
Eukaryotic cells contain dozens, perhaps hundreds, of iron-dependent proteins, which perform critical functions in nearly every major cellular process. Nutritional iron is frequently available to cells in only limited amounts; thus, unicellular and higher eukaryotes have evolved mechanisms to cope with iron scarcity. These mechanisms have been studied at the molecular level in the model eukaryotes Saccharomyces cerevisiae and Schizosaccharomyces pombe, as well as in some pathogenic fungi. Each of these fungal species exhibits metabolic adaptations to iron deficiency that serve to reduce the cell's reliance on iron. However, the regulatory mechanisms that accomplish these adaptations differ greatly between fungal species. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Caroline C Philpott
- Genetics and Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10, Rm. 9B-16, 10 Center Drive, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
34
|
Cheon SA, Bal J, Song Y, Hwang HM, Kim AR, Kang WK, Kang HA, Hannibal-Bach HK, Knudsen J, Ejsing CS, Kim JY. Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of Candida albicans. Mol Microbiol 2012; 83:728-45. [PMID: 22211636 DOI: 10.1111/j.1365-2958.2011.07961.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lag1p and Lac1p catalyse ceramide synthesis in Saccharomyces cerevisiae. This study shows that Lag1 family proteins are generally required for polarized growth in hemiascomycetous yeast. However, in contrast to S. cerevisiae where these proteins are functionally redundant, C. albicans Lag1p (CaLag1p) and Lac1p (CaLac1p) are functionally distinct. Lack of CaLag1p, but not CaLac1p, caused severe defects in the growth and hyphal morphogenesis of C. albicans. Deletion of CaLAG1 decreased expression of the hypha-specific HWP1 and ECE1 genes. Moreover, overexpression of CaLAG1 induced pseudohyphal growth in this organism under non-hypha-inducing conditions, suggesting that CaLag1p is necessary for relaying signals to induce hypha-specific gene expression. Analysis of ceramide and sphingolipid composition revealed that CaLag1p predominantly synthesizes ceramides with C24:0/C26:0 fatty acid moieties, which are involved in generating inositol-containing sphingolipids, whereas CaLac1p produces ceramides with C18:0 fatty acid moieties, which are precursors for glucosylsphingolipids. Thus, our study demonstrates that CaLag1p and CaLac1p have distinct substrate specificities and physiological roles in C. albicans.
Collapse
Affiliation(s)
- Seon Ah Cheon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Surma MA, Klose C, Simons K. Lipid-dependent protein sorting at the trans-Golgi network. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:1059-67. [PMID: 22230596 DOI: 10.1016/j.bbalip.2011.12.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/02/2011] [Accepted: 12/03/2011] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, the trans-Golgi network serves as a sorting station for post-Golgi traffic. In addition to coat- and adaptor-mediated mechanisms, studies in mammalian epithelial cells and yeast have provided evidence for lipid-dependent protein sorting as a major delivery mechanism for cargo sorting to the cell surface. The mechanism for lipid-mediated sorting is the generation of raft platforms of sphingolipids, sterols and specific sets of cargo proteins by phase segregation in the TGN. Here, we review the evidence for such lipid-raft-based sorting at the TGN, as well as their involvement in the formation of TGN-to-PM transport carriers. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Michal A Surma
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | | | |
Collapse
|
36
|
Nimrichter L, Rodrigues ML. Fungal glucosylceramides: from structural components to biologically active targets of new antimicrobials. Front Microbiol 2011; 2:212. [PMID: 22025918 PMCID: PMC3198225 DOI: 10.3389/fmicb.2011.00212] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 09/30/2011] [Indexed: 01/09/2023] Open
Abstract
The first work reporting synthesis of glucosylceramide (cerebrin, GlcCer) by yeasts was published in 1930. During approximately 70 years members of this class of glycosphingolipids (GSL) were considered merely structural components of plasma membrane in fungi. However, in the last decade GlcCer was reported to be involved with fungal growth, differentiation, virulence, immunogenicity, and lipid raft architecture in at least two human pathogens. Fungal GlcCer are structurally distinct from their mammalian counterparts and enriched at the cell wall, which makes this molecule an effective target for antifungal activity of specific ligands (peptides and antibodies to GlcCer). Therefore, GSL are promising targets for new drugs to combat fungal diseases. This review discusses the most recent information on biosynthesis and role of GlcCer in fungal pathogens.
Collapse
Affiliation(s)
- Leonardo Nimrichter
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | |
Collapse
|
37
|
Melser S, Molino D, Batailler B, Peypelut M, Laloi M, Wattelet-Boyer V, Bellec Y, Faure JD, Moreau P. Links between lipid homeostasis, organelle morphodynamics and protein trafficking in eukaryotic and plant secretory pathways. PLANT CELL REPORTS 2011; 30:177-193. [PMID: 21120657 DOI: 10.1007/s00299-010-0954-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/15/2010] [Indexed: 05/30/2023]
Abstract
The role of lipids as molecular actors of protein transport and organelle morphology in plant cells has progressed over the last years through pharmacological and genetic investigations. The manuscript is reviewing the roles of various lipid families in membrane dynamics and trafficking in eukaryotic cells, and summarizes some of the related physicochemical properties of the lipids involved. The article also focuses on the specific requirements of the sphingolipid glucosylceramide (GlcCer) in Golgi morphology and protein transport through the plant secretory pathway. The use of a specific inhibitor of plant glucosylceramide synthase and selected Arabidopsis thaliana RNAi lines stably expressing several markers of the plant secretory pathway, establishes specific steps sensitive to GlcCer biosynthesis. Collectively, data of the literature demonstrate the existence of links between protein trafficking, organelle morphology, and lipid metabolism/homeostasis in eukaryotic cells including plant cells.
Collapse
Affiliation(s)
- Su Melser
- Laboratoire de Biogenèse Membranaire, UMR 5200 Université Bordeaux 2-CNRS, Université Bordeaux 2, case 92, 146 rue Léo-Saignat, 33076 Bordeaux, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The putative lipid transporter, Arv1, is required for activating pheromone-induced MAP kinase signaling in Saccharomyces cerevisiae. Genetics 2010; 187:455-65. [PMID: 21098723 DOI: 10.1534/genetics.110.120725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae haploid cells respond to extrinsic mating signals by forming polarized projections (shmoos), which are necessary for conjugation. We have examined the role of the putative lipid transporter, Arv1, in yeast mating, particularly the conserved Arv1 homology domain (AHD) within Arv1 and its role in this process. Previously it was shown that arv1 cells harbor defects in sphingolipid and glycosylphosphatidylinositol (GPI) biosyntheses and may harbor sterol trafficking defects. Here we demonstrate that arv1 cells are mating defective and cannot form shmoos. They lack the ability to initiate pheromone-induced G1 cell cycle arrest, due to failure to polarize PI(4,5)P(2) and the Ste5 scaffold, which results in weakened MAP kinase signaling activity. A mutant Ste5, Ste5(Q59L), which binds more tightly to the plasma membrane, suppresses the MAP kinase signaling defects of arv1 cells. Filipin staining shows arv1 cells contain altered levels of various sterol microdomains that persist throughout the mating process. Data suggest that the sterol trafficking defects of arv1 affect PI(4,5)P(2) polarization, which causes a mislocalization of Ste5, resulting in defective MAP kinase signaling and the inability to mate. Importantly, our studies show that the AHD of Arv1 is required for mating, pheromone-induced G1 cell cycle arrest, and for sterol trafficking.
Collapse
|
39
|
Shakoury-Elizeh M, Protchenko O, Berger A, Cox J, Gable K, Dunn TM, Prinz WA, Bard M, Philpott CC. Metabolic response to iron deficiency in Saccharomyces cerevisiae. J Biol Chem 2010; 285:14823-33. [PMID: 20231268 DOI: 10.1074/jbc.m109.091710] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential cofactor for enzymes involved in numerous cellular processes, yet little is known about the impact of iron deficiency on cellular metabolism or iron proteins. Previous studies have focused on changes in transcript and proteins levels in iron-deficient cells, yet these changes may not reflect changes in transport activity or flux through a metabolic pathway. We analyzed the metabolomes and transcriptomes of yeast grown in iron-rich and iron-poor media to determine which biosynthetic processes are altered when iron availability falls. Iron deficiency led to changes in glucose metabolism, amino acid biosynthesis, and lipid biosynthesis that were due to deficiencies in specific iron-dependent enzymes. Iron-sulfur proteins exhibited loss of iron cofactors, yet amino acid synthesis was maintained. Ergosterol and sphingolipid biosynthetic pathways had blocks at points where heme and diiron enzymes function, whereas Ole1, the essential fatty acid desaturase, was resistant to iron depletion. Iron-deficient cells exhibited depletion of most iron enzyme activities, but loss of activity during iron deficiency did not consistently disrupt metabolism. Amino acid homeostasis was robust, but iron deficiency impaired lipid synthesis, altering the properties and functions of cellular membranes.
Collapse
Affiliation(s)
- Minoo Shakoury-Elizeh
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kotz A, Wagener J, Engel J, Routier F, Echtenacher B, Pich A, Rohde M, Hoffmann P, Heesemann J, Ebel F. The mitA gene of Aspergillus fumigatus is required for mannosylation of inositol-phosphorylceramide, but is dispensable for pathogenicity. Fungal Genet Biol 2010; 47:169-78. [DOI: 10.1016/j.fgb.2009.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022]
|
41
|
Dickson RC. Roles for sphingolipids in Saccharomyces cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:217-31. [PMID: 20919657 PMCID: PMC5612324 DOI: 10.1007/978-1-4419-6741-1_15] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies using Saccharomyces cerevisiae, the common baker's or brewer's yeast, have progressed over the past twenty years from knowing which sphingolipids are present in cells and a basic outline of how they are made to a complete or nearly complete directory of the genes that catalyze their anabolism and catabolism. In addition, cellular processes that depend upon sphingolipids have been identified including protein trafficking/exocytosis, endocytosis and actin cytoskeleton dynamics, membrane microdomains, calcium signaling, regulation of transcription and translation, cell cycle control, stress resistance, nutrient uptake and aging. These will be summarized here along with new data not previously reviewed. Advances in our knowledge of sphingolipids and their roles in yeast are impressive but molecular mechanisms remain elusive and are a primary challenge for further progress in understanding the specific functions of sphingolipids.
Collapse
Affiliation(s)
- Robert C Dickson
- Department of Molecular and Cellular Biochemistry, Lucille P. Markey Cancer Center, University of Kentucky College of Medicine, 741 S. Limestone St., BBSRB, 8173, Lexington, Kentucky 40536-0509, USA.
| |
Collapse
|
42
|
Rolli E, Ragni E, Calderon J, Porello S, Fascio U, Popolo L. Immobilization of the glycosylphosphatidylinositol-anchored Gas1 protein into the chitin ring and septum is required for proper morphogenesis in yeast. Mol Biol Cell 2009; 20:4856-70. [PMID: 19793924 DOI: 10.1091/mbc.e08-11-1155] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Gas1p is a glucan-elongase that plays a crucial role in yeast morphogenesis. It is predominantly anchored to the plasma membrane through a glycosylphosphatidylinositol, but a fraction was also found covalently bound to the cell wall. We have used fusions with the green fluorescent protein or red fluorescent protein (RFP) to determine its localization. Gas1p was present in microdomains of the plasma membrane, at the mother-bud neck and in the bud scars. By exploiting the instability of RFP-Gas1p, we identified mobile and immobile pools of Gas1p. Moreover, in chs3Delta cells the chitin ring and the cross-linked Gas1p were missing, but this unveiled an additional unexpected localization of Gas1p along the septum line in cells at cytokinesis. Localization of Gas1p was also perturbed in a chs2Delta mutant where a remedial septum is produced. Phenotypic analysis of cells expressing a fusion of Gas1p to a transmembrane domain unmasked new roles of the cell wall-bound Gas1p in the maintenance of the bud neck size and in cell separation. We present evidence that Crh1p and Crh2p are required for tethering Gas1p to the chitin ring and bud scar. These results reveal a new mechanism of protein immobilization at specific sites of the cell envelope.
Collapse
Affiliation(s)
- Eleonora Rolli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Furt F, Moreau P. Importance of lipid metabolism for intracellular and mitochondrial membrane fusion/fission processes. Int J Biochem Cell Biol 2009; 41:1828-36. [PMID: 19703652 DOI: 10.1016/j.biocel.2009.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/06/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
Abstract
Mitochondria move along cytoskeletal tracks, fuse and divide. These dynamic features have been shown to be critical for several mitochondrial functions in cell viability and cell death. After a rapid recall of the proteic machineries that are known to be involved, the review will focus on lipids, other key molecular actors of membrane dynamics. A summary of the current knowledge on lipids and their implication in various cellular membrane fusion/fission processes will be first presented. The review will then report what has been discovered or can be expected on the role of the different families of lipids in mitochondrial membrane fusion and fission processes.
Collapse
Affiliation(s)
- Fabienne Furt
- Membrane Biogenesis Laboratory, UMR 5200, University of Bordeaux II-CNRS, France
| | | |
Collapse
|
44
|
Guan XL, Souza CM, Pichler H, Dewhurst G, Schaad O, Kajiwara K, Wakabayashi H, Ivanova T, Castillon GA, Piccolis M, Abe F, Loewith R, Funato K, Wenk MR, Riezman H. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol Biol Cell 2009; 20:2083-95. [PMID: 19225153 DOI: 10.1091/mbc.e08-11-1126] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sterols and sphingolipids are limited to eukaryotic cells, and their interaction has been proposed to favor formation of lipid microdomains. Although there is abundant biophysical evidence demonstrating their interaction in simple systems, convincing evidence is lacking to show that they function together in cells. Using lipid analysis by mass spectrometry and a genetic approach on mutants in sterol metabolism, we show that cells adjust their membrane composition in response to mutant sterol structures preferentially by changing their sphingolipid composition. Systematic combination of mutations in sterol biosynthesis with mutants in sphingolipid hydroxylation and head group turnover give a large number of synthetic and suppression phenotypes. Our unbiased approach provides compelling evidence that sterols and sphingolipids function together in cells. We were not able to correlate any cellular phenotype we measured with plasma membrane fluidity as measured using fluorescence anisotropy. This questions whether the increase in liquid order phases that can be induced by sterol-sphingolipid interactions plays an important role in cells. Our data revealing that cells have a mechanism to sense the quality of their membrane sterol composition has led us to suggest that proteins might recognize sterol-sphingolipid complexes and to hypothesize the coevolution of sterols and sphingolipids.
Collapse
Affiliation(s)
- Xue Li Guan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cell wall polysaccharide synthases are located in detergent-resistant membrane microdomains in oomycetes. Appl Environ Microbiol 2009; 75:1938-49. [PMID: 19201970 DOI: 10.1128/aem.02728-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathways responsible for cell wall polysaccharide biosynthesis are vital in eukaryotic microorganisms. The corresponding synthases are potential targets of inhibitors such as fungicides. Despite their fundamental and economical importance, most polysaccharide synthases are not well characterized, and their molecular mechanisms are poorly understood. With the example of Saprolegnia monoica as a model organism, we show that chitin and (1-->3)-beta-d-glucan synthases are located in detergent-resistant membrane microdomains (DRMs) in oomycetes, a phylum that comprises some of the most devastating microorganisms in the agriculture and aquaculture industries. Interestingly, no cellulose synthase activity was detected in the DRMs. The purified DRMs exhibited similar biochemical features as lipid rafts from animal, plant, and yeast cells, although they contained some species-specific lipids. This report sheds light on the lipid environment of the (1-->3)-beta-d-glucan and chitin synthases, as well as on the sterol biosynthetic pathways in oomycetes. The results presented here are consistent with a function of lipid rafts in cell polarization and as platforms for sorting specific sets of proteins targeted to the plasma membrane, such as carbohydrate synthases. The involvement of DRMs in the biosynthesis of major cell wall polysaccharides in eukaryotic microorganisms suggests a function of lipid rafts in hyphal morphogenesis and tip growth.
Collapse
|
46
|
Cánovas D, Pérez-Martín J. Sphingolipid biosynthesis is required for polar growth in the dimorphic phytopathogen Ustilago maydis. Fungal Genet Biol 2009; 46:190-200. [DOI: 10.1016/j.fgb.2008.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 10/21/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
|
47
|
Berchtold D, Walther TC. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol Biol Cell 2009; 20:1565-75. [PMID: 19144819 DOI: 10.1091/mbc.e08-10-1001] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The conserved target of rapamycin (TOR) kinases regulate many aspects of cellular physiology. They exist in two distinct complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2), that posses both overlapping and distinct components. TORC1 and TORC2 respond differently to the drug rapamycin and have different cellular functions: whereas the rapamycin-sensitive TORC1 controls many aspects of cell growth and has been characterized in great detail, the TOR complex 2 is less understood and regulates actin polymerization, cell polarity, and ceramide metabolism. How signaling specificity and discrimination between different input signals for the two kinase complexes is achieved is not understood. Here, we show that TORC1 and TORC2 have different localizations in Saccharomyces cerevisiae. TORC1 is localized exclusively to the vacuolar membrane, whereas TORC2 is localized dynamically in a previously unrecognized plasma membrane domain, which we term membrane compartment containing TORC2 (MCT). We find that plasma membrane localization of TORC2 is essential for viability and mediated by lipid binding of the C-terminal domain of the Avo1 subunit. From these data, we suggest that the TOR complexes are spatially separated to determine downstream signaling specificity and their responsiveness to different inputs.
Collapse
Affiliation(s)
- Doris Berchtold
- Organelle Architecture and Dynamics, Max Planck Institute of Biochemistry, 82152 Martinsried/Munich, Germany
| | | |
Collapse
|
48
|
|
49
|
Grossmann G, Malinsky J, Stahlschmidt W, Loibl M, Weig-Meckl I, Frommer WB, Opekarová M, Tanner W. Plasma membrane microdomains regulate turnover of transport proteins in yeast. ACTA ACUST UNITED AC 2008; 183:1075-88. [PMID: 19064668 PMCID: PMC2600745 DOI: 10.1083/jcb.200806035] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we investigate whether the stable segregation of proteins and lipids within the yeast plasma membrane serves a particular biological function. We show that 21 proteins cluster within or associate with the ergosterol-rich membrane compartment of Can1 (MCC). However, proteins of the endocytic machinery are excluded from MCC. In a screen, we identified 28 genes affecting MCC appearance and found that genes involved in lipid biosynthesis and vesicle transport are significantly overrepresented. Deletion of Pil1, a component of eisosomes, or of Nce102, an integral membrane protein of MCC, results in the dissipation of all MCC markers. These deletion mutants also show accelerated endocytosis of MCC-resident permeases Can1 and Fur4. Our data suggest that release from MCC makes these proteins accessible to the endocytic machinery. Addition of arginine to wild-type cells leads to a similar redistribution and increased turnover of Can1. Thus, MCC represents a protective area within the plasma membrane to control turnover of transport proteins.
Collapse
Affiliation(s)
- Guido Grossmann
- Institute of Cell Biology and Plant Physiology, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Insenser M, Nombela C, Molero G, Gil C. Proteomic analysis of detergent-resistant membranes from Candida albicans. Proteomics 2008; 6 Suppl 1:S74-81. [PMID: 16534748 DOI: 10.1002/pmic.200500465] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lipid rafts are membrane microdomains with a higher amount of saturated fatty acids and sterols than the rest of the membrane. They are more resistant to the action of non-anionic detergents, and are called, for this reason, detergent-resistant membranes (DRMs). Lipid rafts are involved in many cellular processes, like signaling, cytokinesis, response to environment, etc., and therefore must contain important proteins. We have obtained a fraction enriched in proteins from Candida albicans DRMs. The sample has been analyzed by SDS-PAGE and 29 proteins have been identified including markers for lipid rafts in Saccharomyces cerevisiae, like Pma1p and a glycosylphosphatidylinositol (GPI)-anchored protein belonging to the Phr family. Ecm33p, a GPI-anchored protein involved in cell wall biogenesis, has been found for the first time in lipid rafts. We have also identified proteins implicated in protein glycosylation, like the mannosyltransferases Mnn7p, Pmt2p and Mnt1p; proteins involved in lipid metabolism, like Erg11p and Scs7p; and heat shock proteins, like Ssa1p and Hsp90p. Most of the proteins identified are located in plasma, mitochondrial, Golgi or ER membranes, supporting the postulated existence of lipid-raft domains in all the membranes.
Collapse
Affiliation(s)
- María Insenser
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|