1
|
Characterization of the catalytic properties of the membrane-anchored metalloproteinase ADAM9 in cell-based assays. Biochem J 2017; 474:1467-1479. [PMID: 28264989 DOI: 10.1042/bcj20170075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 11/17/2022]
Abstract
ADAM9 (A Disintegrin And Metalloprotease 9) is a membrane-anchored metalloproteinase that has been implicated in pathological retinal neovascularization and in tumor progression. ADAM9 has constitutive catalytic activity in both biochemical and cell-based assays and can cleave several membrane proteins, including epidermal growth factor and Ephrin receptor B4; yet little is currently known about the catalytic properties of ADAM9 and its post-translational regulation and inhibitor profile in cell-based assays. To address this question, we monitored processing of the membrane-anchored Ephrin receptor B4 (EphB4) by co-expressing ADAM9, with the catalytically inactive ADAM9 E > A mutant serving as a negative control. We found that ADAM9-dependent shedding of EphB4 was not stimulated by three commonly employed activators of ADAM-dependent ectodomain shedding: phorbol esters, pervanadate or calcium ionophores. With respect to the inhibitor profile, we found that ADAM9 was inhibited by the hydroxamate-based metalloprotease inhibitors marimastat, TAPI-2, BB94, GM6001 and GW280264X, and by 10 nM of the tissue inhibitor of metalloproteinases (TIMP)-3, but not by up to 20 nM of TIMP-1 or -2. Additionally, we screened a non-hydroxamate small-molecule library for novel ADAM9 inhibitors and identified four compounds that selectively inhibited ADAM9-dependent proteolysis over ADAM10- or ADAM17-dependent processing. Taken together, the present study provides new information about the molecular fingerprint of ADAM9 in cell-based assays by showing that it is not stimulated by strong activators of ectodomain shedding and by defining a characteristic inhibitor profile. The identification of novel non-hydroxamate inhibitors of ADAM9 could provide the basis for designing more selective compounds that block the contribution of ADAM9 to pathological neovascularization and cancer.
Collapse
|
2
|
Gutiérrez-López MD, Gilsanz A, Yáñez-Mó M, Ovalle S, Lafuente EM, Domínguez C, Monk PN, González-Alvaro I, Sánchez-Madrid F, Cabañas C. The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9. Cell Mol Life Sci 2011; 68:3275-92. [PMID: 21365281 PMCID: PMC11115118 DOI: 10.1007/s00018-011-0639-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/23/2010] [Accepted: 01/20/2011] [Indexed: 01/06/2023]
Abstract
ADAM17/TACE is a metalloproteinase responsible for the shedding of the proinflammatory cytokine TNF-α and many other cell surface proteins involved in development, cell adhesion, migration, differentiation, and proliferation. Despite the important biological function of ADAM17, the mechanisms of regulation of its metalloproteinase activity remain largely unknown. We report here that the tetraspanin CD9 and ADAM17 partially co-localize on the surface of endothelial and monocytic cells. In situ proximity ligation, co-immunoprecipitation, crosslinking, and pull-down experiments collectively demonstrate a direct association between these molecules. Functional studies reveal that treatment with CD9-specific antibodies or neoexpression of CD9 exert negative regulatory effects on ADAM17 sheddase activity. Conversely, CD9 silencing increased the activity of ADAM17 against its substrates TNF-α and ICAM-1. Taken together, our results show that CD9 associates with ADAM17 and, through this interaction, negatively regulates the sheddase activity of ADAM17.
Collapse
Affiliation(s)
- Maria Dolores Gutiérrez-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
- Present Address: Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | - Alvaro Gilsanz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - María Yáñez-Mó
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria Princesa, 28006 Madrid, Spain
| | - Susana Ovalle
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Esther M. Lafuente
- Departamento de Microbiología I (Inmunología), Facultad de Medicina, UCM, 28040 Madrid, Spain
| | - Carmen Domínguez
- Servicio de Reumatología, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Peter N. Monk
- University of Sheffield Medical School, Sheffield S10 2RX, Sheffield, United Kingdom
| | | | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria Princesa, 28006 Madrid, Spain
- Departamento de Biología Vascular e Inflamación, CNIC, 28029 Madrid, Spain
| | - Carlos Cabañas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
- Departamento de Microbiología I (Inmunología), Facultad de Medicina, UCM, 28040 Madrid, Spain
| |
Collapse
|
3
|
Marguerre AK, Krämer R. Lanthanide-based fluorogenic peptide substrate for the highly sensitive detection of thermolysin. Bioorg Med Chem Lett 2009; 19:5757-9. [DOI: 10.1016/j.bmcl.2009.07.152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
|
4
|
Xu J, Liu X, Chen J, Zacharek A, Cui X, Savant-Bhonsale S, Chopp M, Liu Z. Cell-cell interaction promotes rat marrow stromal cell differentiation into endothelial cell via activation of TACE/TNF-alpha signaling. Cell Transplant 2009; 19:43-53. [PMID: 19796498 PMCID: PMC2850940 DOI: 10.3727/096368909x474339] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Marrow stromal cells (MSCs) are capable of differentiating into various cell types including endothelial cells. Microenvironment is important in cell fate determination. Tumor necrosis factor-alpha converting enzyme (TACE), a well-characterized "sheddase," participates in the differentiation process of multiple lineages by the proteolytic release of membrane-bound proteins such as tumor necrosis factor-alpha (TNF-alpha). We investigated the endothelial differentiation of MSCs under two coculture conditions: 1) direct MSCs-rat brain microvascular endothelial cells (rBMECs) contact coculture; and 2) indirect coculture of MSCs and rBMECs. Also, we examined the role of TACE/TNF-alpha signaling in the process of differentiation under direct coculture condition. We found that endothelial differentiation of MSCs was substantially enhanced in MSCs-rBMECs direct contact coculture, but not in indirect transwell coculture condition. Transcript levels of TACE and TNF-alpha as well as TACE protein expression were significantly upregulated in direct, but not in indirect, coculture condition. Addition of human recombinant TACE promoted gene expression of endothelial specific markers including vWF, CD31, VE-cadherin, Flk-1, and Flt-1 in the differentiating MSCs. Furthermore, inhibition of TACE with TAPI-2 or inhibition of TNF-alpha with Etanercept attenuated endothelial differentiation of MSCs in the direct coculture condition. We demonstrated for the first time that direct MSCs-rBMECs interaction stimulated the endothelial differentiation of MSCs via TACE/TNFalpha signaling.
Collapse
Affiliation(s)
- Jian Xu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, China
- Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, OH
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, China
| | - Jieli Chen
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI
| | - Alex Zacharek
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI
| | - Xu Cui
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| | - Zhenguo Liu
- Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, OH
| |
Collapse
|
5
|
Han X, Kawai T, Taubman MA. Interference with immune-cell-mediated bone resorption in periodontal disease. Periodontol 2000 2007; 45:76-94. [PMID: 17850450 DOI: 10.1111/j.1600-0757.2007.00215.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaozhe Han
- Department of Immunology, The Forsyth Institute, Harvard Medical School, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | |
Collapse
|
6
|
Elston C, Wallach J, Saulnier J. New continuous and specific fluorometric assays for Pseudomonas aeruginosa elastase and LasA protease. Anal Biochem 2007; 368:87-94. [PMID: 17553454 DOI: 10.1016/j.ab.2007.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 04/23/2007] [Accepted: 04/23/2007] [Indexed: 11/19/2022]
Abstract
A highly sensitive assay based on new internally quenched fluorogenic peptide substrates has been developed for monitoring protease activities. These novel substrates comprise an Edans (5-(2-aminoethylamino)-1-naphthalenesulfonic acid) group at the C terminus and a Dabsyl (4-(dimethylamino)azobenzene-4'-sulfonyl chloride) fluorophore at the N terminus of the peptide chains. The Edans fluorescence increases upon peptide hydrolysis by Pseudomonas aeruginosa proteases, and this increase is directly proportional to the amount of substrate cleaved, i.e., protease activity. The substrates Dabsyl-Ala-Ala-Phe-Ala-Edans and Dabsyl-Leu-Gly-Gly-Gly-Ala-Edans were used for testing the peptidasic activities of P. aeruginosa elastase and LasA protease, respectively. Elastase and LasA kinetic parameters were calculated and a sensitive assay was designed for the detection of P. aeruginosa proteases in bacterial supernatants. The sensitivity and the small sample requirements make the assay suitable for high-throughput screening of biological samples. Furthermore, this P. aeruginosa protease assay improves upon existing assays because it is simple, it requires only one step, and even more significantly it is enzyme specific.
Collapse
Affiliation(s)
- Caroline Elston
- Laboratoire de Biochimie Analytique & Synthèse Bioorganique, UFR Chimie-Biochimie, Université Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
7
|
Reil JC, Gilles S, Zahler S, Brandl A, Drexler H, Hültner L, Matrisian LM, Welsch U, Becker BF. Insights from knock-out models concerning postischemic release of TNFalpha from isolated mouse hearts. J Mol Cell Cardiol 2006; 42:133-41. [PMID: 17101148 DOI: 10.1016/j.yjmcc.2006.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/30/2006] [Accepted: 09/29/2006] [Indexed: 11/17/2022]
Abstract
The inflammatory cytokine tumor necrosis factor alpha (TNFalpha) is controversially discussed in ischemia/reperfusion damage of the heart. Purpose of this study was to elucidate cellular sources of TNFalpha and parameters which possibly influence its release in the heart following ischemia. Isolated hearts of mice were subjected to 15 min of global ischemia and 90 min of reperfusion. We employed hearts of various mice knock-out strains (interleukin-6(-/-), matrix metalloprotease-7(-/-), mast-cell deficient WBB6F1-Kit(W)/Kit(W-v), TNF-R1(-/-)) and wildtype mice, the latter perfused without and with infusion of cycloheximide or TNFalpha-cleaving-enzyme inhibitor (TAPI-2). Normoxic control hearts showed basal release of TNFalpha during the whole experiment. Immunohistology identified cardiac mast cells, macrophages and endothelial cells as main sources. TNFalpha release was stimulated during postischemic reperfusion, occurring in a two-peak pattern: directly after ischemia (0-10 min) and again after 60-90 min. The first peak mainly reflects tissue washout of TNFalpha accumulated during ischemia. The second, protracted peak arose continuously from the basal level and was abolished by protein synthesis inhibitor cycloheximide. Both properties are characteristic for de novo synthesis of TNFalpha, e.g., in cardiac muscle cells. However, immunohistological staining for TNFalpha failed in cardiomyocytes after 90 min of reperfusion. In contrast to hearts of TNF-R1(-/-) and Kit(W/W-v)-mice, those of IL-6(-/-) and MMP-7(-/-) mice lacked the late TNFalpha peak. TAPI did not suppress release of TNFalpha. While autostimulation via TNF-R1 also does not seem obligatory and mast cell can be ignored as source of the second peak, IL-6 may support de novo synthesis of TNFalpha. Additionally, TNFalpha release may essentially involve cleavage of membrane bound TNFalpha by MMP-7.
Collapse
Affiliation(s)
- J-C Reil
- Department of Physiology, University of Munich, Schillerstr. 44, 80336 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Weimer S, Oertel K, Fuchsbauer HL. A quenched fluorescent dipeptide for assaying dispase- and thermolysin-like proteases. Anal Biochem 2006; 352:110-9. [PMID: 16564490 DOI: 10.1016/j.ab.2006.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 02/22/2006] [Accepted: 02/26/2006] [Indexed: 11/23/2022]
Abstract
Metalloproteases such as dispase and thermolysin play a crucial role in the life cycle of bacteria. Commonly, they prefer hydrophobic amino acids at P1' of substrate proteins, thereby cleaving the peptide bond at the alpha amino group. Activity of such proteases has been measured by the use of tailor-made oligopeptides provided with fluorescence resonance energy transfer dyes. We can now show that the short dipeptide Dabcyl-Ser-Phe-EDANS is an appropriate substrate of dispase and thermolysin. It was cleaved by both enzymes at the single peptide bond accompanied by a steep increase in fluorescence. Substantial quenching effects of the formed products were observed only when more than 80microM substrate was hydrolyzed. High affinity of the proteases for the dipeptide resulted in low K(m) values of 91+/-9 and 104+/-18microM, which are comparable to those measured for longer peptides. Dabcyl-Ser-Phe-EDANS was also used to determine the pH and optimal temperature of dispase, which were found at pH 7.0 and 50 degrees C. Buffer substances such as acetate, citrate, and tris(hydroxymethyl)aminomethane had no significant effect on enzyme activity. Measurements up to 100 degrees C revealed that hydrolysis of the quenched fluorescent dipeptide took place only in the presence of active dispase.
Collapse
Affiliation(s)
- Stefanie Weimer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, D-64287 Darmstadt, Germany
| | | | | |
Collapse
|
9
|
Alvarez-Iglesias M, Wayne G, O'Dea KP, Amour A, Takata M. Continuous real-time measurement of tumor necrosis factor-alpha converting enzyme activity on live cells. J Transl Med 2005; 85:1440-8. [PMID: 16127421 DOI: 10.1038/labinvest.3700340] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF) converting enzyme (TACE) is responsible for shedding of various membrane proteins including proinflammatory cytokine TNF. In vivo regulation of TACE is poorly understood mainly due to lack of reliable methodology to measure TACE activity in cell-based assays. Here we report a novel enzyme assay that enables continuous real-time measurement of TACE activity on the surface of live cells. Cells were incubated with a new fluorescent resonance energy transfer peptide consisting of a TACE-sensitive TNF sequence and fluorescein-tetramethylrhodamine (FAM-TAMRA), and enzyme activity was monitored by the rate of increase in fluorescent signal due to peptide cleavage. Validation studies using resting as well as stimulated monocytic cells indicated that the assay was sensitive, reproducible and quantitative. Pharmacological studies with various inhibitors indicated that the observed enzyme activity could largely be ascribed to TACE. Thus, the FAM-TAMRA peptide provides a powerful tool for measurement of constitutive and inducible cellular TACE activity. The principles developed may be applied to analyses of enzyme activity of various sheddases on live cells.
Collapse
Affiliation(s)
- Montserrat Alvarez-Iglesias
- Department of Anaesthetics and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | | | | | | | | |
Collapse
|
10
|
Doedens JR, Mahimkar RM, Black RA. TACE/ADAM-17 enzymatic activity is increased in response to cellular stimulation. Biochem Biophys Res Commun 2003; 308:331-8. [PMID: 12901873 DOI: 10.1016/s0006-291x(03)01381-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tumor necrosis factor-alpha converting enzyme (TACE/ADAM-17) is a metalloprotease disintegrin that cleaves a variety of membrane proteins, releasing ("shedding") their extracellular domains from cells. Most TACE-mediated shedding events occur at low basal rates that are enhanced by treatment of cells with a variety of stimuli. To study the mechanism of induced shedding, we developed a peptide-cleavage assay that measures the cellular TACE activity. In unstimulated cells, cleavage of a TNFalpha processing-site peptide was mediated mainly by enzymes other than TACE. However, stimulation of cells with phorbol-12-myristate-13-acetate (PMA) increased peptide cleavage in a TACE-dependent manner. PMA treatment did not increase the amount of TACE on the cell surface. Moreover, the cytoplasmic domain of TACE was not required for the induced activity. Based on these observations, induction of TACE-mediated shedding events occurs at least in part via an increase in the enzymatic activity of cellular TACE, independent of its cytoplasmic domain.
Collapse
Affiliation(s)
- John R Doedens
- Department of Cell Biology, Amgen Inc., 51 University St., Seattle, WA 98101, USA.
| | | | | |
Collapse
|