1
|
Sotiropoulou G, Zingkou E, Bisyris E, Pampalakis G. Activity-Based Probes for Proteases Pave the Way to Theranostic Applications. Pharmaceutics 2022; 14:pharmaceutics14050977. [PMID: 35631563 PMCID: PMC9145445 DOI: 10.3390/pharmaceutics14050977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Proteases are important enzymes in health and disease. Their activities are regulated at multiple levels. In fact, proteases are synthesized as inactive proenzymes (zymogens) that are activated by proteolytic removal of their pro-peptide sequence and can remain active or their activity can be attenuated by complex formation with specific endogenous inhibitors or by limited proteolysis or degradation. Consequently, quite often, only a fraction of the protease molecules is in the active/functional form, thus, the abundance of a protease is not always linearly proportional to the (patho)physiological function(s). Therefore, assays to determine the active forms of proteases are needed, not only in research but also in molecular diagnosis and therapy. Activity-based probes (ABPs) are chemical entities that bind covalently to the active enzyme/protease. ABPs carry a detection tag to enable localization and quantification of specific enzymatic/proteolytic activities with applications in molecular imaging and diagnosis. Moreover, ABPs act as suicide inhibitors of proteases, which can be exploited for delineation of the functional role(s) of a given protease in (patho) biological context and as potential therapeutics. In this sense, ABPs represent new theranostic agents. We outline recent developments pertaining to ABPs for proteases with potential therapeutic applications, with the aim to highlight their importance in theranostics.
Collapse
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
- Correspondence: (G.S.); (G.P.)
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
| | - Evangelos Bisyris
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
| | - Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (G.S.); (G.P.)
| |
Collapse
|
2
|
Hsin IL, Shen HP, Chang HY, Ko JL, Wang PH. Suppression of PI3K/Akt/mTOR/c-Myc/mtp53 Positive Feedback Loop Induces Cell Cycle Arrest by Dual PI3K/mTOR Inhibitor PQR309 in Endometrial Cancer Cell Lines. Cells 2021; 10:cells10112916. [PMID: 34831139 PMCID: PMC8616154 DOI: 10.3390/cells10112916] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Gene mutations in PIK3CA, PIK3R1, KRAS, PTEN, and PPP2R1A commonly detected in type I endometrial cancer lead to PI3K/Akt/mTOR pathway activation. Bimiralisib (PQR309), an orally bioavailable selective dual inhibitor of PI3K and mTOR, has been studied in preclinical models and clinical trials. The aim of this study is to evaluate the anticancer effect of PQR309 on endometrial cancer cells. PQR309 decreased cell viability in two-dimensional and three-dimensional cell culture models. PQR309 induced G1 cell cycle arrest and little cell death in endometrial cancer cell lines. It decreased CDK6 expression and increased p27 expression. Using the Proteome Profiler Human XL Oncology Array and Western blot assay, the dual inhibitor could inhibit the expressions of c-Myc and mtp53. KJ-Pyr-9, a c-Myc inhibitor, was used to prove the role of c-Myc in endometrial cancer survival and regulating the expression of mtp53. Knockdown of mtp53 lowered cell proliferation, Akt/mTOR pathway activity, and the expressions of c-Myc. mtp53 silence enhanced PQR309-inhibited cell viability, spheroid formation, and the expressions of p-Akt, c-Myc, and CDK6. This is the first study to reveal the novel finding of the PI3K/mTOR dual inhibitor in lowering cell viability by abolishing the PI3K/Akt/mTOR/c-Myc/mtp53 positive feedback loop in endometrial cancer cell lines.
Collapse
Affiliation(s)
- I-Lun Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (I.-L.H.); (H.-P.S.); (H.-Y.C.); (J.-L.K.)
| | - Huang-Pin Shen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (I.-L.H.); (H.-P.S.); (H.-Y.C.); (J.-L.K.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hui-Yi Chang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (I.-L.H.); (H.-P.S.); (H.-Y.C.); (J.-L.K.)
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (I.-L.H.); (H.-P.S.); (H.-Y.C.); (J.-L.K.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Division of Medical Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (I.-L.H.); (H.-P.S.); (H.-Y.C.); (J.-L.K.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: ; Tel.: 886-4-24739595 (ext. 21721)
| |
Collapse
|
3
|
Gong W, Liu Y, Preis S, Geng X, Petit-Courty A, Kiechle M, Muckenhuber A, Dreyer T, Dorn J, Courty Y, Magdolen V. Prognostic value of kallikrein-related peptidase 12 (KLK12) mRNA expression in triple-negative breast cancer patients. Mol Med 2020; 26:19. [PMID: 32028882 PMCID: PMC7006133 DOI: 10.1186/s10020-020-0145-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The serine protease KLK12 belongs to the human fifteen-member family of kallikrein-related peptidases. Differential expression accompanied by either increased or decreased enzymatic activity has been linked to several diseases including cancer. Triple-negative breast cancer (TNBC) represents a very aggressive subgroup of breast cancer with high tumor recurrence rates and poor patient prognosis. Here, we quantified the KLK12 mRNA expression levels in tumor tissue of TNBC patients and analyzed their prognostic value. METHODS In the present study, KLK12 mRNA expression in tumor tissue of TNBC patients (n = 116) was determined by quantitative real-time PCR assay. The association of KLK12 mRNA levels with clinical parameters, and patients' outcome was analyzed using Chi-square tests, Cox regression models and Kaplan-Meier survival analysis. RESULTS Positive, but low KLK12 mRNA levels were detected in about half of the cases (54 out of 116; 47%), the other samples were negative for KLK12 mRNA expression. No significant association was observed between KLK12 mRNA levels and clinicopathological variables (age, lymph node status, tumor size, and histological grade). In univariate Cox analyses, positive KLK12 mRNA expression was significantly associated with shortened disease-free survival (DFS; hazard ratio [HR] = 2.12, 95% CI = 1.19-3.78, p = 0.010) as well as overall survival (OS; HR = 1.91, 95% CI = 1.04-3.50, p = 0.037). In multivariable Cox analysis, including all clinical parameters plus KLK12 mRNA, the latter - together with age - remained an independent unfavorable predictive marker for DFS (HR = 2.33, 95% CI = 1.28-4.24, p = 0.006) and showed a trend towards significance in case of OS (HR = 1.80, 95% CI = 0.96-3.38, p = 0.066). CONCLUSIONS Positive KLK12 expression is remarkably associated with shortened DFS and OS, suggesting that KLK12 plays a tumor-supporting role in TNBC.
Collapse
Affiliation(s)
- Weiwei Gong
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, 81576, Munich, Germany
| | - Yueyang Liu
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, 81576, Munich, Germany.,Department of Gynecology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Sarah Preis
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, 81576, Munich, Germany
| | - Xiaocong Geng
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, 81576, Munich, Germany
| | - Agnes Petit-Courty
- INSERM, U1100 - Centre d'Etude des Pathologies Respiratoires, Tours, France
| | - Marion Kiechle
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, 81576, Munich, Germany
| | | | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, 81576, Munich, Germany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, 81576, Munich, Germany
| | - Yves Courty
- INSERM, U1100 - Centre d'Etude des Pathologies Respiratoires, Tours, France
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, 81576, Munich, Germany.
| |
Collapse
|
4
|
Pampalakis G, Zingkou E, Sidiropoulos KG, Diamandis EP, Zoumpourlis V, Yousef GM, Sotiropoulou G. Biochemical pathways mediated by KLK6 protease in breast cancer. Mol Oncol 2019; 13:2329-2343. [PMID: 30980596 PMCID: PMC6822253 DOI: 10.1002/1878-0261.12493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/20/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Kallikrein-related peptidase 6 (KLK6) is a serine protease normally expressed in mammary tissue and aberrantly regulated in breast cancer. At physiological levels, KLK6 functions as a suppressor of breast cancer, while its aberrant overexpression (> 50-fold higher than normal) is characteristic of a subset of breast cancers and has been linked to accelerated growth of primary breast tumors in severe combined immunodeficiency mice (Pampalakis et al. Cancer Res 2009, 69, 3779). Here, we investigated the molecular mechanisms underlying the concentration-dependent functions of KLK6 by comparing MDA-MB-231 stable transfectants expressing increasing levels of KLK6 in in vitro and in vivo tumorigenicity assays (soft agar, xenograft growth, tail vein metastasis). Quantitative proteomics was applied to identify proteins that are altered upon re-expression of KLK6 in MDA-MB-231 at normal or constitutive levels. Overexpression of KLK6 is associated with increased metastatic ability of breast cancer cells into lungs, increased expression of certain S100 proteins (S100A4, S100A11) and keratins (KRT), and downregulation of the apoptosis-related proteases CASP7 and CASP8, and RABs. On the other hand, KLK6 re-expression at physiological levels leads to inhibition of lung metastases associated with suppression of S100 proteins (S100A4, S100A10, S100A13, S100A16) and induced CASP7 and CASP8 expression. As this is the first report that KLK6 expression is associated with S100 proteins, caspases, RABs, and KRTs, we validated this finding in clinical datasets. By integrating proteomics and microarray data from breast cancer patients, we generated two composite scores, KLK6 + S100B-S100A7 and KLK6 + S100B-S100A14-S100A16, to predict long-term survival of breast cancer patients. We present previously unknown pathways implicating KLK6 in breast cancer. The findings promise to aid our understanding of the functional roles of KLK6 in breast cancer and may yield new biomarkers for the cancer types in which KLK6 is known to be aberrantly upregulated.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Konstantinos Gus Sidiropoulos
- The Keenan Research Center in the Li Ka Shing Knowledge Institute, Department of Laboratory Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | | | | | - George M Yousef
- The Keenan Research Center in the Li Ka Shing Knowledge Institute, Department of Laboratory Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| |
Collapse
|
5
|
Qin YZ, Zhang YH, Qin XY, Zhu HH. Methylation pattern of preferentially expressed antigen of melanoma in acute myeloid leukemia and myelodysplastic syndromes. Oncol Lett 2017; 13:2823-2830. [PMID: 28454473 DOI: 10.3892/ol.2017.5790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/19/2017] [Indexed: 11/05/2022] Open
Abstract
Preferentially expressed antigen of melanoma (PRAME), a tumor-associated antigen, is overexpressed in a variety of hematologic malignancies with a great variation in expression. The majority of patients with acute myeloid leukemia (AML) 1-eight-twenty one (ETO)+ AML and a certain number of myelodysplastic syndromes (MDS) have an abnormally high increase in PRAME expression level. The landscape of PRAME methylation requires evaluation in order to determine the most relevant sites and the exact association of its methylation with expression level and type of disease. In the present study, bone marrow samples collected from 8 AML1-ETO+ AML, 4 MDS, 3 AML1-ETO- AML and 2 normal volunteers underwent bisulfate sequencing to analyze the methylation status of all four 5'-C-phosphate-G-3' (CpG) regions within the entire PRAME gene. The median PRAME transcript level of 15 patients was 204.5% (range, 0.02-710.3%). PRAME transcript levels were inversely associated with the degree of methylation of the -389 to -146 CpG sites (r=-0.69; P=0.002) in the 3' part of the promoter region and the +132 to +363 CpG sites (r=-0.69; P=0.006) in the exon 1b region. However, not every sample strictly followed this correlation: Certain samples with high degrees of methylation demonstrated abnormally high expression levels, and vice versa. The methylation ratios of CpG sites in exon 1a were low for all samples (range, 0.0-13.8%), and those in exon 2 were similar in 16 samples (range, 72.4-93.4%), with the exception of one patient with high expression (425.2%) and significantly low degree of methylation in the PRAME gene (22.2%). MDS patients revealed similar methylation ratios in the 3' section of the promoter region, but tended to have lower methylation ratios in the exon 1b region (P=0.62 and P=0.09, respectively) compared with those observed in AML1-ETO+ patients with AML and similar degree of PRAME overexpression. Therefore, the hypomethylation of CpG sites in the 3' part of the promoter region and in exon 1b was typically found with PRAME overexpression in AML and MDS. Methylation of other CpG islands, epigenetic and genetic mechanisms, and type of disease may also be involved.
Collapse
Affiliation(s)
- Ya-Zhen Qin
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, P.R. China
| | - Yan-Huan Zhang
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, P.R. China
| | - Xiao-Ying Qin
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, P.R. China
| | - Hong-Hu Zhu
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, P.R. China
| |
Collapse
|
6
|
Sidiropoulos KG, Ding Q, Pampalakis G, White NMA, Boulos P, Sotiropoulou G, Yousef GM. KLK6-regulated miRNA networks activate oncogenic pathways in breast cancer subtypes. Mol Oncol 2016; 10:993-1007. [PMID: 27093921 DOI: 10.1016/j.molonc.2016.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
KLK6 is expressed in normal mammary tissues and is aberrantly regulated in breast cancer. At physiological levels of expression, i.e. those found in normal mammary tissues, KLK6 acts as a tumor suppressor in human breast cancer. However, aberrant overexpression of KLK6 (i.e. 50-100-fold higher than normal), a characteristic of a subset of human breast cancers is associated with increased tumorigenicity (Pampalakis et al. Cancer Res 69:3779-3787, 2009). Here, we stably transfected KLK6-non-expressing MDA-MB-231 breast cancer cells with the full-length KLK6 cDNA to overexpress KLK6 at levels comparable to those observed in patients, and investigated potential oncogenic miRNA networks regulated by these abnormally high KLK6 expression levels and increased activity of this serine protease. A number of miRNAs that are upregulated (e.g. miR-146a) or downregulated (e.g. miR-34a) via KLK6-induced alterations in the miRNA biogenesis machinery were identified. Integrated experimental and bioinformatics analyses identified convergent miRNA networks targeting the cell cycle, MYC, MAPK, and other signaling pathways. In large clinical datasets, significant correlations between KLK6 and downstream MAPK and MYC targets at both the RNA and protein levels was confirmed, as well as negative correlation with GATA3. It was also demonstrated that KLK6 overexpression and likely its proteolytic activity is associated with alterations in downstream miRNAs and their targets, and these differ with the molecular subtypes of breast cancer. The data partly explains the different characteristics of breast cancer subtypes. Importantly, we introduce a combined KLK6-CDKN1B+MYC+CDKN1C score for prediction of long-term patient survival outcomes, with higher scores indicating poor survival.
Collapse
Affiliation(s)
- Konstantinos G Sidiropoulos
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Qiang Ding
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada
| | | | - Nicole M A White
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Peter Boulos
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada
| | | | - George M Yousef
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada.
| |
Collapse
|
7
|
Jimenez L, Sharma VP, Condeelis J, Harris T, Ow TJ, Prystowsky MB, Childs G, Segall JE. MicroRNA-375 Suppresses Extracellular Matrix Degradation and Invadopodial Activity in Head and Neck Squamous Cell Carcinoma. Arch Pathol Lab Med 2015; 139:1349-61. [PMID: 26172508 DOI: 10.5858/arpa.2014-0471-oa] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT Head and neck squamous cell carcinoma (HNSCC) is a highly invasive cancer with an association with locoregional recurrence and lymph node metastasis. We have previously reported that low microRNA-375 (miR-375) expression levels correlate with poor patient survival, increased locoregional recurrence, and distant metastasis. Increasing miR-375 expression in HNSCC cell lines to levels found in normal cells results in suppressed invasive properties. HNSCC invasion is mediated in part by invadopodia-associated degradation of the extracellular matrix. OBJECTIVE To determine whether elevated miR-375 expression in HNSCC cell lines also affects invadopodia formation and activity. DESIGN For evaluation of the matrix degradation properties of the HNSCC lines, an invadopodial matrix degradation assay was used. The total protein levels of invadopodia-associated proteins were measured by Western blot analyses. Immunoprecipitation experiments were conducted to evaluate the tyrosine phosphorylation state of cortactin. Human protease arrays were used for the detection of the secreted proteases. Quantitative real time-polymerase chain reaction measurements were used to evaluate the messenger RNA (mRNA) expression of the commonly regulated proteases. RESULTS Increased miR-375 expression in HNSCC cells suppresses extracellular matrix degradation and reduces the number of mature invadopodia. Higher miR-375 expression does not reduce cellular levels of selected invadopodia-associated proteins, nor is tyrosine phosphorylation of cortactin altered. However, HNSCC cells with higher miR-375 expression had significant reductions in the mRNA expression levels and secreted levels of specific proteases. CONCLUSIONS MicroRNA-375 regulates invadopodia maturation and function potentially by suppressing the expression and secretion of proteases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeffrey E Segall
- From the Departments of Pathology (Ms Jimenez and Drs Harris, Ow, Prystowsky, Childs, and Segall) and Anatomy & Structural Biology (Ms Jimenez and Drs Sharma, Condeelis, and Segall), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
8
|
Schrader CH, Kolb M, Zaoui K, Flechtenmacher C, Grabe N, Weber KJ, Hielscher T, Plinkert PK, Hess J. Kallikrein-related peptidase 6 regulates epithelial-to-mesenchymal transition and serves as prognostic biomarker for head and neck squamous cell carcinoma patients. Mol Cancer 2015; 14:107. [PMID: 25990935 PMCID: PMC4437453 DOI: 10.1186/s12943-015-0381-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/08/2015] [Indexed: 12/14/2022] Open
Abstract
Background Dysregulated expression of Kallikrein-related peptidase 6 (KLK6) is a common feature for many human malignancies and numerous studies evaluated KLK6 as a promising biomarker for early diagnosis or unfavorable prognosis. However, the expression of KLK6 in carcinomas derived from mucosal epithelia, including head and neck squamous cell carcinoma (HNSCC), and its mode of action has not been addressed so far. Methods Stable clones of human mucosal tumor cell lines were generated with shRNA-mediated silencing or ectopic overexpression to characterize the impact of KLK6 on tumor relevant processes in vitro. Tissue microarrays with primary HNSCC samples from a retrospective patient cohort (n = 162) were stained by immunohistochemistry and the correlation between KLK6 staining and survival was addressed by univariate Kaplan-Meier and multivariate Cox proportional hazard model analysis. Results KLK6 expression was detected in head and neck tumor cell lines (FaDu, Cal27 and SCC25), but not in HeLa cervix carcinoma cells. Silencing in FaDu cells and ectopic expression in HeLa cells unraveled an inhibitory function of KLK6 on tumor cell proliferation and mobility. FaDu clones with silenced KLK6 expression displayed molecular features resembling epithelial-to-mesenchymal transition, nuclear β-catenin accumulation and higher resistance against irradiation. Low KLK6 protein expression in primary tumors from oropharyngeal and laryngeal SCC patients was significantly correlated with poor progression-free (p = 0.001) and overall survival (p < 0.0005), and served as an independent risk factor for unfavorable clinical outcome. Conclusions In summary, detection of low KLK6 expression in primary tumors represents a promising tool to stratify HNSCC patients with high risk for treatment failure. These patients might benefit from restoration of KLK6 expression or pharmacological targeting of signaling pathways implicated in EMT. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0381-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carola H Schrader
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| | - Markus Kolb
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| | - Karim Zaoui
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| | | | - Niels Grabe
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, Heidelberg, Germany. .,Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Klaus-Josef Weber
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany.
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Peter K Plinkert
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany. .,Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Kallikrein-related peptidase-6 (KLK6) mRNA expression is an independent prognostic tissue biomarker of poor disease-free and overall survival in colorectal adenocarcinoma. Tumour Biol 2014; 35:4673-85. [PMID: 24430362 DOI: 10.1007/s13277-014-1612-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022] Open
Abstract
Members of the family of tissue kallikrein and kallikrein-related peptidases possess important prognostic value in cancer. Moreover, the oncogenic role of kallikrein-related peptidase-6 (KLK6) in colorectal cancer has been well documented so far. This study investigated the prognostic value of KLK6 mRNA expression as a molecular tissue biomarker in colorectal adenocarcinoma. For this purpose, KLK6 mRNA expression was studied in 110 primary colorectal adenocarcinomas and 39 paired noncancerous colorectal specimens. A dramatic upregulation of KLK6 mRNA expression was observed in colorectal tumors. KLK6 mRNA overexpression was associated with high depth of tumor invasion, presence of distant metastases, and tumor-node-metastasis (TNM) stage of patients. Furthermore, KLK6 mRNA expression was shown to predict poor disease-free and overall survival independently of patient gender, age, tumor size, location, histological subtype, grade, venous invasion, lymphatic invasion, TNM stage, radiotherapy, and chemotherapy treatment. Moreover, Kaplan-Meier survival analysis revealed that colorectal adenocarcinoma patients with negative regional lymph nodes (N0) and those without distant metastases (M0) harboring KLK6 mRNA-positive colorectal tumors tended to relapse and die earlier than N0 and M0 patients with KLK6 mRNA-negative colorectal adenocarcinoma. Thus, KLK6 mRNA expression could be considered as an independent, unfavorable molecular prognostic biomarker in colorectal adenocarcinoma, with additional prognostic value in patients without regional or distant metastases.
Collapse
|
10
|
Olkhov-Mitsel E, Van der Kwast T, Kron KJ, Ozcelik H, Briollais L, Massey C, Recker F, Kwiatkowski M, Fleshner NE, Diamandis EP, Zlotta AR, Bapat B. Quantitative DNA methylation analysis of genes coding for kallikrein-related peptidases 6 and 10 as biomarkers for prostate cancer. Epigenetics 2012; 7:1037-45. [PMID: 22874102 DOI: 10.4161/epi.21524] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
DNA methylation plays an important role in carcinogenesis and is being recognized as a promising diagnostic and prognostic biomarker for a variety of malignancies including Prostate cancer (PCa). The human kallikrein-related peptidases (KLKs) have emerged as an important family of cancer biomarkers, with KLK3, encoding for Prostate Specific Antigen, being most recognized. However, few studies have examined the epigenetic regulation of KLKs and its implications to PCa. To assess the biological effect of DNA methylation on KLK6 and KLK10 expression, we treated PC3 and 22RV1 PCa cells with a demethylating drug, 5-aza-2'deoxycytidine, and observed increased expression of both KLKs, establishing that DNA methylation plays a role in regulating gene expression. Subsequently, we have quantified KLK6 and KLK10 DNA methylation levels in two independent cohorts of PCa patients operated by radical prostatectomy between 2007-2011 (Cohort I, n = 150) and 1998-2001 (Cohort II, n = 124). In Cohort I, DNA methylation levels of both KLKs were significantly higher in cancerous tissue vs. normal. Further, we evaluated the relationship between DNA methylation and clinicopathological parameters. KLK6 DNA methylation was significantly associated with pathological stage only in Cohort I while KLK10 DNA methylation was significantly associated with pathological stage in both cohorts. In Cohort II, low KLK10 DNA methylation was associated with biochemical recurrence in univariate and multivariate analyses. A similar trend for KLK6 DNA methylation was observed. The results suggest that KLK6 and KLK10 DNA methylation distinguishes organ confined from locally invasive PCa and may have prognostic value.
Collapse
|
11
|
Petraki C, Dubinski W, Scorilas A, Saleh C, Pasic MD, Komborozos V, Khalil B, Gabril MY, Streutker C, Diamandis EP, Yousef GM. Evaluation and prognostic significance of human tissue kallikrein-related peptidase 6 (KLK6) in colorectal cancer. Pathol Res Pract 2012; 208:104-8. [PMID: 22285222 DOI: 10.1016/j.prp.2011.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/29/2011] [Accepted: 12/27/2011] [Indexed: 12/25/2022]
Abstract
The prognosis of patients with colorectal cancer (CRC) is assessed through conventional clinicopathological parameters, which are not always accurate. Members of the human kallikrein-related peptidases gene family represent potential cancer biomarkers. The aim of this study was to investigate the expression of human tissue kallikrein-related peptidase 6 (KLK6) by immunohistochemistry in CRC to correlate this expression with various histopathological and clinical variables, and to evaluate its significance as a predictor of disease outcome. KLK6 expression was evaluated by immunohistochemistry and an expression score was calculated for each case. In CRC, KLK6 expression was decreased compared to normal colonic mucosa. A statistically significant, positive association was observed between KLK6 and tumor stage (p=0.036), lymph node metastases (p=0.030), and liver metastases (p=0.025). Univariate analysis showed that KLK6 expression and stage had statistically significant correlation with disease-free survival (p=0.045 and p<0.001, respectively) and overall survival (p=0.027 and p<0.001, respectively). Cox multivariate analysis showed that KLK6 expression was an independent predictor of unfavorable overall survival (p=0.041). Kaplan-Meier survival curves showed that KLK6-positive patients have statistically significant lower disease-free and overall survival. In conclusion, KLK6 immunostaining is an independent prognostic marker in patients with CRC.
Collapse
|
12
|
Bayani J, Diamandis EP. The physiology and pathobiology of human kallikrein-related peptidase 6 (KLK6). Clin Chem Lab Med 2011; 50:211-33. [PMID: 22047144 DOI: 10.1515/cclm.2011.750] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/21/2011] [Indexed: 12/11/2022]
Abstract
The human kallikrein-related peptidase 6 (KLK6) gene belongs to the 15-member kallikrein (KLK) gene family mapping to chromosome 19q13.3-13.4. Encoding for an enzyme with trypsin-like properties, KLK6 can degrade components of the extracellular matrix. The successful utilisation of another KLK member (KLK3/PSA) for prostate cancer diagnosis has led many to evaluate KLK6 as a potential biomarker for other cancer and diseased states. The observed dysregulated expression in cancers, neurodegenerative diseases and skin conditions has led to the discovery that KLK6 participates in other cellular pathways including inflammation, receptor activation and regulation of apoptosis. Moreover, the improvements in high-throughput genomics have not only enabled the identification of sequence polymorphisms, but of transcript variants, whose functional significances have yet to be realised. This comprehensive review will summarise the current findings of KLK6 pathophysiology and discuss its potential as a viable biomarker.
Collapse
Affiliation(s)
- Jane Bayani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
13
|
Bayani J, Marrano P, Graham C, Zheng Y, Li L, Katsaros D, Lassus H, Butzow R, Squire JA, Diamandis EP. Genomic instability and copy-number heterogeneity of chromosome 19q, including the kallikrein locus, in ovarian carcinomas. Mol Oncol 2011; 5:48-60. [PMID: 20800559 PMCID: PMC3110681 DOI: 10.1016/j.molonc.2010.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 12/28/2022] Open
Abstract
Many tissue kallikrein (KLK) genes and proteins are candidate diagnostic, prognostic and predictive biomarkers for ovarian cancer (OCa). We previously demonstrated that the KLK locus (19q13.3/4) is subject to copy-number gains and structural rearrangements in a pilot study of cell lines and ovarian cancer primary tissues, shown to overexpress KLK gene family members. To determine the overall frequency of genomic instability and copy-number changes, a retrospective study was conducted using formalin-fixed paraffin embedded (FFPE) tissues. Eighty-one chemotherapy naïve serous OCas were examined using 3-colour fluorescence in situ hybridization (FISH) to identify structural and numerical changes on 19q, including the KLK locus; in addition to immunohistochemistry (IHC) for KLK6, which has been shown to be overexpressed in OCa. The KLK locus was subject to copy-number changes in ∼83% of cases: net gain in 51%, net loss in 30% and amplified in 2%; and found to be chromosomally unstable (p < 0.001). All cases showed a wide range of immuoreactivity for KLK6 by IHC. Although no strong correlation could be found with copy-number, the latter was contributing factor to the observed KLK6 protein overexpression. Moreover, univariate and multivariate analyses showed an association between the net loss of the KLK locus and longer disease-free survival. Interestingly, FISH analyses indicated that chromosome 19q was subjected to structural rearrangement in 62% of cases and was significantly correlated to tumor grade (p < 0.001). We conclude that numerical and structural aberrations of chromosome 19q, affect genes including the KLK gene members, may contribute to ovarian carcinoma progression and aggressiveness.
Collapse
Affiliation(s)
- Jane Bayani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, 6th Floor, Room 6-201, Box 32, 60 Murray Street, Toronto, Ontario M5T 3L9, Canada
| | - Paula Marrano
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, 555 University Ave., 3rd Floor, Toronto, Ontario M5G 1X8, Canada
| | - Cassandra Graham
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, 555 University Ave., 3rd Floor, Toronto, Ontario M5G 1X8, Canada
| | - Yingye Zheng
- Department of Biostatistics & Bioinfomatics, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, PO Box 19024, Seattle, WA 98109 1024, USA
| | - Lin Li
- Department of Biostatistics & Bioinfomatics, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, PO Box 19024, Seattle, WA 98109 1024, USA
| | - Dionyssios Katsaros
- Department of Obstetrics and Gynecology, University of Turin, via Ventimiglia 3, 10126 Torino, Italy
| | - Heini Lassus
- Department of Pathology, University of Helsinki, Research Laboratory, Haartmaninkatu 8 FIN-00029 HUS Helsinki, Finland
| | - Ralf Butzow
- Department of Pathology, University of Helsinki, Research Laboratory, Haartmaninkatu 8 FIN-00029 HUS Helsinki, Finland
| | - Jeremy A. Squire
- Department of Laboratory Medicine and Pathobiology, Queen's University, Kingston General Hospital, Translational Laboratory Research, NCIC Clinical Trials Group, Room 201e, 88 Stuart St Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Eleftherios P. Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, 6th Floor, Room 6-201, Box 32, 60 Murray Street, Toronto, Ontario M5T 3L9, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer. Br J Cancer 2010; 102:1244-53. [PMID: 20354523 PMCID: PMC2856011 DOI: 10.1038/sj.bjc.6605634] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Kallikrein-related peptidases (KLKs) are a family of serine proteases that have been shown to be dysregulated in several malignancies including ovarian cancer. The control of kallikrein genes and their physiological function in cancer is not well understood. We hypothesized that microRNAs (miRNAs) represent a novel mechanism for post-transcriptional control of KLK expression in cancer. METHODS We first analysed miRNA expression in ovarian cancer in silico. A total of 98 miRNAs were reported to have altered expression in ovarian cancer. Three of these miRNAs were predicted to target KLK10. We experimentally verified the predicted miR-KLK10 interaction using two independent techniques, a luciferase assay with a construct containing the KLK10 3' untranslated region (UTR), pMIR-KLK10, and measuring KLK10 protein levels after transfection with miRNA. RESULTS When we co-transfected cells with pMIR-KLK10 and either let-7f, miR-224, or mR-516a, we saw decreased luciferase signal, suggesting that these miRNAs can target KLK10. We then examined the effect of these three miRNAs on KLK10 protein expression and cell growth. Transfection of all miRNAs, let-7f, miR-224, and miR-516a led to a decrease in protein expression and cellular growth. This effect was shown to be dose dependent. The KLK10 protein levels were partially restored by co-transfecting let-7f and its inhibitor. In addition, there was a slight decrease in KLK10 mRNA expression after transfection with let-7f. CONCLUSION Our results confirm that KLKs can be targeted by more than one miRNA. Increased expression of certain miRNAs in ovarian cancer can lead to decreased KLK protein expression and subsequently have a negative effect on cell proliferation. This dose-dependent effect suggests that a 'tweaking' or 'fine-tuning' mechanism exists in which the expression of one KLK can be controlled by multiple miRNAs. These data together suggest that miRNA may be used as potential therapeutic options and further studies are required.
Collapse
|
15
|
Sotiropoulou G, Pampalakis G, Diamandis EP. Functional roles of human kallikrein-related peptidases. J Biol Chem 2009; 284:32989-94. [PMID: 19819870 DOI: 10.1074/jbc.r109.027946] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Kallikrein-related peptidases constitute a single family of 15 (chymo)trypsin-like proteases (KLK1-15) with pleiotropic physiological roles. Aberrant regulation of KLKs has been associated with diverse diseases such as hypertension, renal dysfunction, skin disorders, inflammation, neurodegeneration, and cancer. Recent studies suggested that coordinated activation and regulation of KLK activity are achieved via a complex network of interactions referred to as the "KLK activome." However, it remains to be validated whether these hypothetical KLK activation cascade pathways are operative in vivo. In addition, KLKs have emerged as versatile signaling molecules. In summary, KLKs represent attractive biomarkers for clinical applications and potential therapeutic targets for common human pathologies.
Collapse
|
16
|
Nathalie HV, Chris P, Serge G, Catherine C, Benjamin B, Claire B, Christelle P, Briollais L, Pascale R, Marie-Lise J, Yves C. High kallikrein-related peptidase 6 in non-small cell lung cancer cells: an indicator of tumour proliferation and poor prognosis. J Cell Mol Med 2009; 13:4014-22. [PMID: 19426157 PMCID: PMC4516548 DOI: 10.1111/j.1582-4934.2009.00763.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The human kallikrein-related peptidases (KLK) are serine proteases whose concentrations are often abnormal in common human malignancies and contribute to neoplastic progression through multifaceted roles. However, little attention has been paid to their synthesis and involvement in the development and dissemination of lung cancer, the leading cause of cancer mortality worldwide. We have analysed the production of KLK6 in normal lung and tumour tissues from patients with non-small cell lung cancer (NSCLC). KLK6 immunoreactivity was restricted to epithelial cells of the normal bronchi, but most of the cancer samples were moderately or highly immunoreactive, regardless of the histological subtype. In contrast, little or no KLK6 was detected in NSCLC cells. We have developed NSCLC lines expressing wild-type KLK6 in order to investigate the role of KLK6 in lung cancer biology, and analysed its impact on proliferation. Ectopic KLK6 dramatically enhanced NSCLC cell growth and KLK6-producing NSCLC cells had accelerated cell cycles, between the G1 and S phases. This was accompanied by a marked increase in cyclin E and decrease in p21. KLK6 production was also associated with enhanced synthesis of c-Myc, which is known to promote cell-cycle progression. Finally, examination of specimens from patients with NSCLC revealed that KLK6 mRNA is overexpressed in tumour tissue, and high KLK6 concentrations were associated with lower survival rates. We conclude that a high concentration of KLK6 is an indicator of tumour proliferation and an independent predictive factor in NSCLC.
Collapse
|
17
|
Pampalakis G, Prosnikli E, Agalioti T, Vlahou A, Zoumpourlis V, Sotiropoulou G. A Tumor-Protective Role for Human Kallikrein-Related Peptidase 6 in Breast Cancer Mediated by Inhibition of Epithelial-to-Mesenchymal Transition. Cancer Res 2009; 69:3779-87. [DOI: 10.1158/0008-5472.can-08-1976] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Hinshelwood RA, Clark SJ. Breast cancer epigenetics: normal human mammary epithelial cells as a model system. J Mol Med (Berl) 2008; 86:1315-28. [PMID: 18716754 DOI: 10.1007/s00109-008-0386-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 06/17/2008] [Accepted: 06/25/2008] [Indexed: 12/23/2022]
Abstract
DNA hypermethylation and histone modifications are two critical players involved in epigenetic regulation and together play an important role in silencing tumor-suppressor genes in all cancers, including breast cancer. One of the major challenges facing breast cancer researchers is the problem of how to identify critical genes that are epigenetically silenced early in cancer initiation as these genes provide potential early diagnostic and/or therapeutic targets for breast cancer management. This review will focus on compelling evidence that normal Human Mammary Epithelial Cells (HMECs) that escape senescence in culture mimic genetic and epigenetic events occurring in early breast cancer, and provide a valuable system to delineate the early steps in epigenetic deregulation that often occur during transition of a normal breast cell to a premalignant cell. In particular, this model system has been used to investigate the relationship between gene silencing, DNA methylation, histone modifications, and polycomb association that may occur early in oncogenic transformation.
Collapse
Affiliation(s)
- Rebecca A Hinshelwood
- The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
| | | |
Collapse
|
19
|
Bayani J, Paliouras M, Planque C, Shan SJC, Graham C, Squire JA, Diamandis EP. Impact of cytogenetic and genomic aberrations of the kallikrein locus in ovarian cancer. Mol Oncol 2008; 2:250-60. [PMID: 19383346 DOI: 10.1016/j.molonc.2008.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 07/14/2008] [Indexed: 11/19/2022] Open
Abstract
The tissue kallikrein (KLK) genes are a new source for biomarkers in ovarian cancer. However, there has been no systematic analysis of copy number and structural rearrangements related to their protein expression. Chromosomal rearrangements and copy number changes of the KLK region were studied by FISH with protein levels measured by ELISA. Ovarian cancer and cell lines revealed the KLK region was subject to copy number imbalances or involved in unbalanced translocations and were associated with increased protein expression of KLKs 5, 6, 7, 8, 9, 10 and 11. In this initial study, we introduce the potential for long-range chromosomal effects and copy number as a mechanism for the previously reported aberrant expression of many KLK genes in ovarian cancers.
Collapse
Affiliation(s)
- Jane Bayani
- Department of Applied Molecular Oncology, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Abstract
microRNAs (miRNAs) are a recently discovered class of small non-coding RNAs that regulate gene expression. Rapidly accumulating evidence has revealed that miRNAs are associated with cancer. The human tissue kalli-krein gene family is the largest contiguous family of proteases in the human genome, containing 15 genes. Many kallikreins have been reported as potential tumor markers. In this review, recent bioinformatics and experimental evidence is presented indicating that kallikreins are potential miRNA targets. The available experimental approaches to investigate these interactions and the potential diagnostic and therapeutic applications are also discussed. miRNAs represent a possible regulatory mechanism for controlling kallikrein expression at the post-transcriptional level. Many miRNAs were predicted to target kallikreins and a single miRNA can target more than one kallikrein. Recent evidence suggests that miRNAs can also exert ‘quantitative’ control of kallikreins by utilizing multiple targeting sites in the kallikrein mRNA. More research is needed to experimentally verify the in silico predictions and to investigate the possible role in tumor initiation and/or progression.
Collapse
|
21
|
Henkhaus RS, Roy UKB, Cavallo-Medved D, Sloane BF, Gerner EW, Ignatenko NA. Caveolin-1-mediated expression and secretion of kallikrein 6 in colon cancer cells. Neoplasia 2008; 10:140-8. [PMID: 18283336 PMCID: PMC2244689 DOI: 10.1593/neo.07817] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/23/2007] [Accepted: 11/26/2007] [Indexed: 01/05/2023]
Abstract
Kallikreins are secreted proteases that may play a functional role and/or serve as a serum biomarker for the presence or progression of certain types of cancers. Kallikrein 6 (KLK6) has been shown to be upregulated in several types of cancers, including colon. The aims of this study were to elucidate pathways that influence KLK6 gene expression and KLK6 protein secretion in the HCT116 human colon cancer cells. Our data indicate a central role for caveolin-1 (CAV-1), the main structural protein of caveolae, in both KLK6 gene expression and protein secretion. Sucrose gradient subcellular fractionation reveals that CAV-1 and KLK6 colocalize to lipid raft domains in the plasma membrane of HCT116 cells. Furthermore, we show that CAV-1, although it does not directly interact with the KLK6 molecule, enhances KLK6 secretion from the cells. Deactivation of CAV-1, through SRC-mediated phosphorylation, decreased KLK6 secretion. We also demonstrate that, in colon cancer cells, CAV-1 increased the amount of phosphorylated AKT in cells by inhibiting the activity of the AKT-negative regulators PP1 and PP2A. This study demonstrates that proteins such as CAV-1 and AKT, which are known to be altered in colon cancer, affect KLK6 expression and KLK6 secretion.
Collapse
Affiliation(s)
- Rebecca S Henkhaus
- Department of Cancer Biology, Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | |
Collapse
|
22
|
Paliouras M, Diamandis EP. Androgens act synergistically to enhance estrogen-induced upregulation of human tissue kallikreins 10, 11, and 14 in breast cancer cells via a membrane bound androgen receptor. Mol Oncol 2008; 1:413-24. [PMID: 19383315 DOI: 10.1016/j.molonc.2008.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/28/2007] [Accepted: 01/01/2008] [Indexed: 12/24/2022] Open
Abstract
The regulation of gene expression by steroid hormones plays an important role in the normal development and function of many organs, as well as in the pathogenesis of endocrine-related cancers, especially breast cancer. However, clinical data suggest that combined testosterone and estrogen treatments on post-menopausal women increase the risk of breast cancer. Experiments have shown that many, if not all kallikreins are under steroid hormone regulation in breast cancer cell lines. Their implication as prognostic and diagnostic markers has also been well-documented. Thus, we investigated the effect of combined hormone stimulation with androgens and 17beta-estradiol on the ductal caricinoma cell line BT474. This cell line has been shown to be sensitive to both, androgens (secreting PSA) and estrogens (secreting a number of kallikreins including KLK10, 11, and KLK14). We found that PSA expression was downregulated upon combined hormone stimulation, confirming reports that estrogen can antagonize and block the activity of the androgen receptor. Upon analysis of estrogen-sensitive kallikreins 10, 11, and 14, all showed to be synergistically enhanced in their expression three- to fourfold, upon joint hormone treatment versus individual hormone stimulation. The enhancement is dependent upon the action of androgens as treatment with the androgen receptor antagonist cyproterone actetate normalized the expression of KLK10, 11, and KLK14 to estrogen-stimulation levels. The synergistic effects between estrogens and androgens on estrogen-sensitive genes may have implications on the role of the kallikreins in associated risk of breast cancer and progression.
Collapse
Affiliation(s)
- Miltiadis Paliouras
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
23
|
Identification and analysis of mammalian KLK6 orthologue genes for prediction of physiological substrates. Comput Biol Chem 2007; 32:111-21. [PMID: 18243805 DOI: 10.1016/j.compbiolchem.2007.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/25/2007] [Accepted: 11/17/2007] [Indexed: 10/22/2022]
Abstract
Human kallikrein-related peptidase 6 (KLK6) is a novel serine protease that is aberrantly expressed in human cancers and represents a serum biomarker for the molecular diagnosis and monitoring of ovarian cancer. Here, we report the cloning and analysis of human kallikrein-related peptidase 6 gene (KLK6) orthologues in model organisms and farm animals. The corresponding full-length cDNAs were assembled from partial sequences retrieved from EST and genomic databases. Alignment of inferred protein sequences indicated a high degree of conservation of the encoded enzyme. We found that, similarly to (HUMAN)KLK6, monkey, cattle, mouse and rat orthologue genes encode for multiple transcript variants. This strengthens our previously published data showing that (HUMAN)KLK6 transcription is coordinately regulated by alternative promoters. Analysis of the KLK6 upstream genomic region led to the identification of multiple conserved regulatory regions with motifs for nuclear receptor transcription factors. Interestingly, we found that specific CpG dinucleotides in the proximal promoter, that were shown to regulate (HUMAN)KLK6 gene expression via DNA methylation, are conserved in orthologue genes, indicating epigenetic regulation of the KLK6 gene. Construction of a protein-protein interaction network indicated that KLK6 likely acts on the TGF-b1 signal transduction pathway to regulate certain cytoskeletal proteins, such as vimentin and keratin 8, thus, KLK6 may control cell shape that, in turn, regulates cell migration and motility.
Collapse
|
24
|
Emami N, Diamandis EP. New insights into the functional mechanisms and clinical applications of the kallikrein-related peptidase family. Mol Oncol 2007; 1:269-87. [PMID: 19383303 DOI: 10.1016/j.molonc.2007.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/04/2007] [Accepted: 09/07/2007] [Indexed: 11/28/2022] Open
Abstract
The Kallikrein-related peptidase (KLK) family consists of fifteen conserved serine proteases that form the largest contiguous cluster of proteases in the human genome. While primarily recognized for their clinical utilities as potential disease biomarkers, new compelling evidence suggests that this family plays a significant role in various physiological processes, including skin desquamation, semen liquefaction, neural plasticity, and body fluid homeostasis. KLK activation is believed to be mediated through highly organized proteolytic cascades, regulated through a series of feedback loops, inhibitors, auto-degradation and internal cleavages. Gene expression is mainly hormone-dependent, even though transcriptional epigenetic regulation has also been reported. These regulatory mechanisms are integrated with various signaling pathways to mediate multiple functions. Dysregulation of these pathways has been implicated in a large number of neoplastic and non-neoplastic pathological conditions. This review highlights our current knowledge of structural/phylogenetic features, functional role and regulatory/signaling mechanisms of this important family of enzymes.
Collapse
Affiliation(s)
- Nashmil Emami
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
25
|
Emami N, Diamandis EP. Human tissue kallikreins: A road under construction. Clin Chim Acta 2007; 381:78-84. [PMID: 17382920 DOI: 10.1016/j.cca.2007.02.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 02/13/2007] [Indexed: 01/28/2023]
Abstract
BACKGROUND The human tissue kallikrein gene family, located at chromosome 19q13.4, is the largest contiguous family of proteases in the human genome. The locus encodes all 15 members of the family, 13 of which have been reported as potential biomarkers for several carcinomas and other non-neoplastic diseases. Kallikreins are expressed by a wide range of tissues and implicated in a number of physiological functions, including skin desquamation, semen liquefaction, neural plasticity and the regulation of blood pressure. Kallikrein function is regulated at various levels, including transcription, translation and post-translation. The proteolytic activity of kallikreins is believed to be cascade mediated and may cross-talk with other proteases. These cascades are highly regulated through a series of feedback loops, inhibitors, (auto) degradation and internal cleavage. Uncontrolled proteolytic activity of kallikreins is implicated in a large number of neoplastic and non-neoplastic pathological conditions. CONCLUSIONS As our understanding of their regulatory and functional mechanisms continues to expand, kallikreins are expected to become novel targets for the design of new therapeutics.
Collapse
Affiliation(s)
- Nashmil Emami
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
26
|
Paliouras M, Borgono C, Diamandis EP. Human tissue kallikreins: the cancer biomarker family. Cancer Lett 2007; 249:61-79. [PMID: 17275179 DOI: 10.1016/j.canlet.2006.12.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 12/14/2006] [Indexed: 11/28/2022]
Abstract
Human tissue kallikreins (KLKs) are attracting increased attention due to their role as biomarkers for the screening, diagnosis, prognosis, and monitoring of various cancers including those of the prostate, ovarian, breast, testicular, and lung. Human tissue kallikrein genes represent the largest contiguous group of proteases within the human genome. Originally thought to consist of three genes, the identification of the human kallikrein locus has expanded this number to fifteen. These genes, and their encoded proteins, share a high degree of homology and are expressed in different tissues. Prostate-specific antigen (PSA), the most commonly known kallikrein, is a useful biomarker for prostate cancer. Several other kallikreins, including kallikreins 2 (KLK2) and 11 (KLK11) are emerging as complementary prostate cancer biomarkers. Along with these kallikreins, several others have been implicated in the other cancers. For example, KLK5, 6, 7, 10, 11, and 14 are emerging biomarkers for ovarian cancer. The identification of kallikrein substrates and the development of proteolytic cascade models implicate kallikrein proteins in cancer progression. This review describes the current status of kallikreins as cancer biomarkers.
Collapse
Affiliation(s)
- Miltiadis Paliouras
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|