1
|
Shao S, Liu K, Du J, Yin C, Wang M, Wang Y. Functional characterization of serine proteinase inhibitor Kazal-Type in the red claw crayfish Cherax quadricarinatus. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109525. [PMID: 38537926 DOI: 10.1016/j.fsi.2024.109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/09/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Serine protease inhibitors Kazal type (SPINKs) function in physiological and immunological processes across multicellular organisms. In the present study, we identified a SPINK gene, designated as CqSPINK, in the red claw crayfish Cherax quadricarinatus, which is the ortholog of human SPINK5. The deduced CqSPINK contains two Kazal domains consisting of 45 amino acid residues with a typical signature motif C-X3-C-X5-PVCG-X5-Y-X3-C-X6-C-X12-14-C. Each Kazal domain contains six conserved cysteine residues forming three pairs of disulfide bonds, segmenting the structure into three rings. Phylogenetic analysis revealed CqSPINK as a homolog of human SPINK5. CqSPINK expression was detected exclusively in hepatopancreas and epithelium, with rapid up-regulation in hepatopancreas upon Vibrio parahaemolyticus E1 challenge. Recombinant CqSPINK protein (rCqSPINK) was heterologously expressed in Escherichia coli and purified for further study. Proteinase inhibition assays demonstrated that rCqSPINK could potently inhibit proteinase K and subtilisin A, weakly inhibit α-chymotrypsin and elastase, but extremely weak inhibit trypsin. Furthermore, CqSPINK inhibited bacterial secretory proteinase activity from Bacillus subtilis, E. coli, and Staphylococcus aureus, and inhibited B. subtilis growth. These findings suggest CqSPINK's involvement in antibacterial immunity through direct inhibition of bacterial proteases, contributing to resistance against pathogen invasion.
Collapse
Affiliation(s)
- Shuoru Shao
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Kexin Liu
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Jiansen Du
- Qingdao International Travel Healthcare Center, Qingdao Customs District PR China, Qingdao, 266000, China
| | - Chenlin Yin
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| | - Yan Wang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| |
Collapse
|
2
|
Rojas L, Cabrera-Muñoz A, Espinosa LA, Montané S, Alvarez-Lajonchere L, Mojarena JD, Moya G, Lorenzo J, González LJ, Betzel C, Alonso-Del-Rivero Antigua M. CogiTx1: A novel subtilisin A inhibitor isolated from the sea anemone Condylactis gigantea belonging to the defensin 4 protein family. Biochimie 2023; 213:41-53. [PMID: 37105301 DOI: 10.1016/j.biochi.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Subtilisin-like enzymes are recognized as key players in many infectious agents. In this context, its inhibitors are very valuable molecular lead compounds for structure based drug discovery and design. Marine invertebrates offer a great source of bioactive molecules, including protease inhibitors. In this work, we describe a new subtilisin inhibitor, from the sea anemone Condylactis gigantea (CogiTx1). CogiTx1 was purified using a combination of cation exchange chromatography, size exclusion chromatography and RP-HPLC chromatography. CogiTx1 it is a protein with 46 amino acid residues, with 4970.44 Da and three disulfide bridges. Is also able to inhibit subtilisin-like enzymes and pancreatic elastase. According to the amino acid sequence, it belongs to the defensin 4 family of proteins. The sequencing showed that CogiTx1 has an amidated C-terminal end, which was confirmed by the presence of the typical -XGR signal for amidation in the protein sequence deduced from the cDNA. This modification was described at protein level for the first time in this family of proteins. CogiTx1 is the first subtilisin inhibitor from the defensin 4 family and accordingly it has a folding consisting primarily in beta-strands in agreement with the analysis by CD and 3D modelling. Therefore, future in-depth functional studies may allow a more detailed characterization and will shed light on structure-function properties.
Collapse
Affiliation(s)
- Laritza Rojas
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, PC: 10400, Cuba
| | - Aymara Cabrera-Muñoz
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, PC: 10400, Cuba
| | - Luis A Espinosa
- Center for Genetic Engineering and Biotechnology, Havana, PC:60 200, Cuba
| | - Sergi Montané
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Cerdanyola del Valles, Barcelona, PC:08193, Spain
| | - Luis Alvarez-Lajonchere
- Felipe Poey Natural History Museum, Faculty of Biology, University of Havana, Havana, PC: 10400, Cuba
| | - Jesús D Mojarena
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, PC: 10400, Cuba
| | - Galina Moya
- Center for Genetic Engineering and Biotechnology, Havana, PC:60 200, Cuba
| | - Julia Lorenzo
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Cerdanyola del Valles, Barcelona, PC:08193, Spain
| | - Luis J González
- Center for Genetic Engineering and Biotechnology, Havana, PC:60 200, Cuba
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, Universität Hamburg, Hamburg, PC: 20146, Germany
| | | |
Collapse
|
3
|
Walvekar VA, Ramesh K, Jobichen C, Kannan M, Sivaraman J, Kini RM, Mok YK. Crystal structure of Aedes aegypti trypsin inhibitor in complex with μ-plasmin reveals role for scaffold stability in Kazal-type serine protease inhibitor. Protein Sci 2022; 31:470-484. [PMID: 34800067 PMCID: PMC8820117 DOI: 10.1002/pro.4245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
Kazal-type protease inhibitor specificity is believed to be determined by sequence of the reactive-site loop that make most, if not all, contacts with the serine protease. Here, we determined the complex crystal structure of Aedes aegypti trypsin inhibitor (AaTI) with μ-plasmin, and compared its reactivities with other Kazal-type inhibitors, infestin-1 and infestin-4. We show that the shortened 99-loop of plasmin creates an S2 pocket, which is filled by phenylalanine at the P2 position of the reactive-site loop of infestin-4. In contrast, AaTI and infestin-1 retain a proline at P2, rendering the S2 pocket unfilled, which leads to lower plasmin inhibitions. Furthermore, the protein scaffold of AaTI is unstable, due to an elongated Cys-V to Cys-VI region leading to a less compact hydrophobic core. Chimeric study shows that the stability of the scaffold can be modified by swapping of this Cys-V to Cys-VI region between AaTI and infestin-4. The scaffold instability causes steric clashing of the bulky P2 residue, leading to significantly reduced inhibition of plasmin by AaTI or infestin-4 chimera. Our findings suggest that surface loops of protease and scaffold stability of Kazal-type inhibitor are both necessary for specific protease inhibition, in addition to reactive site loop sequence. PDB ID code: 7E50.
Collapse
Affiliation(s)
| | - Karthik Ramesh
- Department of Biological SciencesNational University of SingaporeSingapore,Present address:
Department of Biophysics and BiochemistryUT Southwestern Medical CentreDallasTXUSA
| | - Chacko Jobichen
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Muthu Kannan
- Department of Biological SciencesNational University of SingaporeSingapore
| | - J. Sivaraman
- Department of Biological SciencesNational University of SingaporeSingapore
| | - R. Manjunatha Kini
- Department of Biological SciencesNational University of SingaporeSingapore,Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Yu Keung Mok
- Department of Biological SciencesNational University of SingaporeSingapore
| |
Collapse
|
4
|
Rojas L, Cabrera-Muñoz A, Gil Pradas D, González JB, Alonso-Del-Rivero M, González-González Y. Arginine substitution by alanine at the P1 position increases the selectivity of CmPI-II, a non-classical Kazal inhibitor. Biochem Biophys Rep 2021; 26:101008. [PMID: 34027134 PMCID: PMC8131977 DOI: 10.1016/j.bbrep.2021.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
CmPI-II is a Kazal-type tight-binding inhibitor isolated from the Caribbean snail Cenchritis muricatus. This inhibitor has an unusual specificity in the Kazal family, as it can inhibit subtilisin A (SUBTA), elastases and trypsin. An alanine in CmPI-II P1 site could avoid trypsin inhibition while improving/maintaining SUBTA and elastases inhibition. Thus, an alanine mutant of this position (rCmPI-II R12A) was obtained by site-directed mutagenesis. The gene cmpiR12A was expressed in P. pastoris KM71H yeast. The recombinant protein (rCmPI-II R12A) was purified by the combination of two ionic exchange chromatography (1:cationic, 2 anionic) followed by and size exclusion chromatography. The N-terminal sequence obtained as well as the experimental molecular weight allowed verifying the identity of the recombinant protein, while the correct folding was confirmed by CD experiments. rCmPI-II R12A shows a slightly increase in potency against SUBTA and elastases. The alanine substitution at P1 site on CmPI-II abolishes the trypsin inhibition, confirming the relevance of an arginine residue at P1 site in CmPI-II for trypsin inhibition and leading to a molecule with more potentialities in biomedicine.
Collapse
Affiliation(s)
- Laritza Rojas
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Aymara Cabrera-Muñoz
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Dayrom Gil Pradas
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Jessica B González
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Maday Alonso-Del-Rivero
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Yamile González-González
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| |
Collapse
|
5
|
Wang Y, Wang B, Liu M, Jiang K, Wang M, Wang L. Characterization and function analysis of a Kazal-type serine proteinase inhibitor in the red claw crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103871. [PMID: 32946920 DOI: 10.1016/j.dci.2020.103871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Kazal-type serine proteinase inhibitors (KPIs) function in physiological and immunological processes requiring proteinase action. In the present study, the first Cherax quadricarinatus KPI gene (designated CqKPI) was identified and characterized. The open reading frame of CqKPI contains 405 nucleotides and encodes a protein of 134 amino acids. CqKPI has two Kazal domains comprising 44 amino acid residues with the conserved amino acid sequence C-X3-C-X7-C-X6-Y-X3-C-X6-C-X12-C. Each Kazal domain has six conserved cysteine residues, which can form a structural conformation of three pairs of disulfide bonds stabilizing the Kazal domain. CqKPI exhibited high similarity with previously identified KPIs from crayfish hemocytes. The results of tissue distribution showed that CqKPI had the highest expression level in hemocytes, and this was in agreement with phylogenic relationships. Recombinant CqKPI (rCqKPI) was heterologously expressed in Escherichia coli and purified for further study. The proteinase inhibition assays suggested that rCqKPI could potently inhibit elastase and weakly inhibit trypsin, subtilisin A, and proteinase K, but not α-chymotrypsin. It can firmly bind to Bacillus hwajinpoensis, Staphylococcus aureus, and Vibrio parahaemolyticus, with weak binding to Candida albicans. In addition, CqKPI inhibited bacterial secretory proteinase activity and inhibited the growth of B. hwajinpoensis and C. albicans. These data suggest that CqKPI might be involved in anti-bacterial immunity, acting as an inhibitor of the proteinase cascade in the resistance to invasion of pathogens.
Collapse
Affiliation(s)
- Yan Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baojie Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mei Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Keyong Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; The Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of China, Sanya, 572024, China; Center for Marine Molecular Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Lei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, 266237, China; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266400, China.
| |
Collapse
|
6
|
Barzkar N, Khan Z, Tamadoni Jahromi S, Pourmozaffar S, Gozari M, Nahavandi R. A critical review on marine serine protease and its inhibitors: A new wave of drugs? Int J Biol Macromol 2020; 170:674-687. [PMID: 33387547 DOI: 10.1016/j.ijbiomac.2020.12.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023]
Abstract
Marine organisms are rich sources of enzymes and their inhibitors having enormous therapeutic potential. Among different proteolytic enzymes, serine proteases, which can be obtained from various marine organisms show a potential to biomedical application as thrombolytic agents. Although this type of proteases plays a crucial role in almost all biological processes, their uncontrolled activity often leads to several diseases. Accordingly, the actions of these types of proteases are regulated by serine protease inhibitors (SPIs). Marine SPIs control complement activation and various other physiological functions, such as inflammation, immune function, fibrinolysis, blood clotting, and cancer metastasis. This review highlights the potential use of serine proteases and their inhibitors as the new wave of promising drugs.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Zahoor Khan
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar 'Abbas, Iran
| | - Sajjad Pourmozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecological Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Sciences Research Institute, Bandar-e-Lengeh, Iran
| | - Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar 'Abbas, Iran
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
7
|
Cabrera-Muñoz A, Valiente PA, Rojas L, Alonso-Del-Rivero Antigua M, Pires JR. NMR structure of CmPI-II, a non-classical Kazal protease inhibitor: Understanding its conformational dynamics and subtilisin A inhibition. J Struct Biol 2019; 206:280-294. [PMID: 30930219 DOI: 10.1016/j.jsb.2019.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/18/2022]
Abstract
Subtilisin-like proteases play crucial roles in host-pathogen interactions. Thus, protease inhibitors constitute important tools in the regulation of this interaction. CmPI-II is a Kazal proteinase inhibitor isolated from Cenchritis muricatus that inhibits subtilisin A, trypsin and elastases. Based on sequence analysis it defines a new group of non-classical Kazal inhibitors. Lacking solved 3D structures from this group prevents the straightforward structural comparison with other Kazal inhibitors. The 3D structure of CmPI-II, solved in this work using NMR techniques, shows the typical fold of Kazal inhibitors, but has significant differences in its N-terminal moiety, the disposition of the CysI-CysV disulfide bond and the reactive site loop (RSL) conformation. The high flexibility of its N-terminal region, the RSL, and the α-helix observed in NMR experiments and molecular dynamics simulations, suggest a coupled motion of these regions that could explain CmPI-II broad specificity. The 3D structure of the CmPI-II/subtilisin A complex, obtained by modeling, allows understanding of the energetic basis of the subtilisin A inhibition. The residues at the P2 and P2' positions of the inhibitor RSL were predicted to be major contributors to the binding free energy of the complex, rather than those at the P1 position. Site directed mutagenesis experiments confirmed the Trp14 (P2') contribution to CmPI-II/subtilisin A complex formation. Overall, this work provides the structural determinants for the subtilisin A inhibition by CmPI-II and allows the designing of more specific and potent molecules. In addition, the 3D structure obtained supports the existence of a new group in non-classical Kazal inhibitors.
Collapse
Affiliation(s)
- Aymara Cabrera-Muñoz
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Pedro A Valiente
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba
| | - Laritza Rojas
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Maday Alonso-Del-Rivero Antigua
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - José R Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS / Bloco E - sala 32, 21941-902 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Covaleda G, Gallego P, Vendrell J, Georgiadis D, Lorenzo J, Dive V, Aviles FX, Reverter D, Devel L. Synthesis and Structural/Functional Characterization of Selective M14 Metallocarboxypeptidase Inhibitors Based on Phosphinic Pseudopeptide Scaffold: Implications on the Design of Specific Optical Probes. J Med Chem 2019; 62:1917-1931. [PMID: 30688452 DOI: 10.1021/acs.jmedchem.8b01465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Metallocarboxypeptidases (MCPs) of the M14 family are Zn2+-dependent exoproteases present in almost every tissue or fluid in mammals. These enzymes perform a large variety of physiological functions and are involved in several pathologies, such as pancreatic diseases, inflammation, fibrinolysis, and cancer. Here, we describe the synthesis and functional/structural characterization of a series of reversible tight-binding phosphinic pseudopeptide inhibitors that show high specificity and potency toward these proteases. Characterization of their inhibitory potential against a large variety of MCPs, combined with high-resolution crystal structures of three selected candidates in complex with human carboxypeptidase A (CPA)1, allowed to decipher the structural determinants governing selectivity for type-A of the M14A MCP family. Further, the phosphinic pseudopeptide framework was exploited to generate an optical probe selectively targeting human CPAs. The phosphinic pseudopeptides presented here constitute the first example of chemical probes useful to selectively report on type-A MCPs activity in complex media.
Collapse
Affiliation(s)
- Giovanni Covaleda
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Pablo Gallego
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Josep Vendrell
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Dimitris Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry , University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Vincent Dive
- CEA, Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO) , Université Paris-Saclay , Gif-sur-Yvette 91190 , France
| | - Francesc Xavier Aviles
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Laurent Devel
- CEA, Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO) , Université Paris-Saclay , Gif-sur-Yvette 91190 , France
| |
Collapse
|
9
|
Cabrera-Muñoz A, Rojas L, Gil DF, González-González Y, Mansur M, Camejo A, Pires JR, Alonso-Del-Rivero Antigua M. Heterologous expression of Cenchritis muricatus protease inhibitor II (CmPI-II) in Pichia pastoris system: Purification, isotopic labeling and preliminary characterization. Protein Expr Purif 2016; 126:127-136. [PMID: 27353494 DOI: 10.1016/j.pep.2016.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Cenchritis muricatus protease inhibitor II (CmPI-II) is a tight-binding serine protease inhibitor of the Kazal family with an atypical broad specificity, being active against several proteases such as bovine pancreatic trypsin, human neutrophil elastase and subtilisin A. CmPI-II 3D structures are necessary for understanding the molecular basis of its activity. In the present work, we describe an efficient and straightforward recombinant expression strategy, as well as a cost-effective procedure for isotope labeling for NMR structure determination purposes. The vector pCM101 containing the CmPI-II gene, under the control of Pichia pastoris AOX1 promoter was constructed. Methylotrophic Pichia pastoris strain KM71H was then transformed with the plasmid and the recombinant protein (rCmPI-II) was expressed in benchtop fermenter in unlabeled or (15)N-labeled forms using ammonium chloride ((15)N, 99%) as the sole nitrogen source. Protein purification was accomplished by sequential cation exchange chromatography in STREAMLINE DirectHST, anion exchange chromatography on Hitrap Q-Sepharose FF and gel filtration on Superdex 75 10/30, yielding high quantities of pure rCmPI-II and (15)N rCmPI-II. Recombinant proteins displayed similar functional features as compared to the natural inhibitor and NMR spectra indicated folded and homogeneously labeled samples, suitable for further studies of structure and protease-inhibitor interactions.
Collapse
Affiliation(s)
- Aymara Cabrera-Muñoz
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Laritza Rojas
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Dayrom F Gil
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Yamile González-González
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Manuel Mansur
- Institut de Biotecnología i de Biomedicina, Universitat Autònoma de Barcelona, Campus Universitari, 08193, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain.
| | - Ayamey Camejo
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - José R Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, Sala 10, 21941-902, Rio de Janeiro, RJ, Brazil.
| | - Maday Alonso-Del-Rivero Antigua
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| |
Collapse
|
10
|
Cabrera-Muñoz A, Rojas L, Alonso-del-Rivero Antigua M, Pires JR. 1H, 13C and 15N resonance assignments and secondary structure analysis of CmPI-II, a serine protease inhibitor isolated from marine snail Cenchritis muricatus. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:153-156. [PMID: 26547437 DOI: 10.1007/s12104-015-9656-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
A protease inhibitor (CmPI-II) (UNIPROT: IPK2_CENMR) from the marine mollusc Cenchritis muricatus, has been isolated and characterized. It is the first member of a new group (group 3) of non-classical Kazal-type inhibitors. CmPI-II is a tight-binding inhibitor of serine proteases: trypsin, human neutrophil elastase (HNE), subtilisin A and pancreatic elastase. This specificity is exceptional in the members of Kazal-type inhibitor family. Several models of three-dimensional structure of CmPI-II have been constructed by homology with other inhibitors of the family but its structure has not yet been solved experimentally. Here we report the (1)H, (15)N and (13)C chemical shift assignments of CmPI-II as basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified three β-strands β1: residues 14-19, β2: 23-35 and β3: 43-45 and one helix α1: 28-37 arranged in the sequential order β1-β2-α1-β3. These secondary structure elements suggest that CmPI-II adopts the typical scaffold of a Kazal-type inhibitor.
Collapse
Affiliation(s)
- Aymara Cabrera-Muñoz
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, 25 No. 455, Vedado, Havana, Cuba
| | - Laritza Rojas
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, 25 No. 455, Vedado, Havana, Cuba
| | - Maday Alonso-del-Rivero Antigua
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, 25 No. 455, Vedado, Havana, Cuba
| | - José Ricardo Pires
- Instituto de bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 10, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Polar Desolvation and Position 226 of Pancreatic and Neutrophil Elastases Are Crucial to their Affinity for the Kunitz-Type Inhibitors ShPI-1 and ShPI-1/K13L. PLoS One 2015; 10:e0137787. [PMID: 26372354 PMCID: PMC4570792 DOI: 10.1371/journal.pone.0137787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022] Open
Abstract
The Kunitz-type protease inhibitor ShPI-1 inhibits human neutrophil elastase (HNE, Ki = 2.35·10−8 M) but does not interact with the porcine pancreatic elastase (PPE); whereas its P1 site variant, ShPI-1/K13L, inhibits both HNE and PPE (Ki = 1.3·10−9 M, and Ki = 1.2·10−8 M, respectively). By employing a combination of molecular modeling tools, e.g., structural alignment, molecular dynamics simulations and Molecular Mechanics Generalized-Born/Poisson-Boltzmann Surface Area free energy calculations, we showed that D226 of HNE plays a critical role in the interaction of this enzyme with ShPI-1 through the formation of a strong salt bridge and hydrogen bonds with K13 at the inhibitor’s P1 site, which compensate the unfavorable polar-desolvation penalty of the latter residue. Conversely, T226 of PPE is unable to establish strong interactions with K13, thereby precluding the insertion of K13 side-chain into the S1 subsite of this enzyme. An alternative conformation of K13 site-chain placed at the entrance of the S1 subsite of PPE, similar to that observed in the crystal structure of ShPI-1 in complex with chymotrypsin (PDB: 3T62), is also unfavorable due to the lack of stabilizing pair-wise interactions. In addition, our results suggest that the higher affinity of ShPI-1/K13L for both elastases mainly arises from the lower polar-desolvation penalty of L13 compared to that of K13, and not from stronger pair-wise interactions of the former residue with those of each enzyme. These results provide insights into the PPE and HNE inhibition and may contribute to the design of more potent and/or specific inhibitors toward one of these proteases.
Collapse
|
12
|
Qian C, Fang Q, Wang L, Ye GY. Molecular Cloning and Functional Studies of Two Kazal-Type Serine Protease Inhibitors Specifically Expressed by Nasonia vitripennis Venom Apparatus. Toxins (Basel) 2015; 7:2888-905. [PMID: 26248077 PMCID: PMC4549731 DOI: 10.3390/toxins7082888] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/29/2015] [Accepted: 07/27/2015] [Indexed: 12/21/2022] Open
Abstract
Two cDNA sequences of Kazal-type serine protease inhibitors (KSPIs) in Nasonia vitripennis, NvKSPI-1 and NvKSPI-2, were characterized and their open reading frames (ORFs) were 198 and 264 bp, respectively. Both NvKSPI-1 and NvKSPI-2 contained a typical Kazal-type domain. Real-time quantitative PCR (RT-qPCR) results revealed that NvKSPI-1 and NvKSPI-2 mRNAs were mostly detected specifically in the venom apparatus, while they were expressed at lower levels in the ovary and much lower levels in other tissues tested. In the venom apparatus, both NvKSPI-1 and NvKSPI-2 transcripts were highly expressed on the fourth day post eclosion and then declined gradually. The NvKSPI-1 and NvKSPI-2 genes were recombinantly expressed utilizing a pGEX-4T-2 vector, and the recombinant products fused with glutathione S-transferase were purified. Inhibition of recombinant GST-NvKSPI-1 and GST-NvKSPI-2 to three serine protease inhibitors (trypsin, chymotrypsin, and proteinase K) were tested and results showed that only NvKSPI-1 could inhibit the activity of trypsin. Meanwhile, we evaluated the influence of the recombinant GST-NvKSPI-1 and GST-NvKSPI-2 on the phenoloxidase (PO) activity and prophenoloxidase (PPO) activation of hemolymph from a host pupa, Musca domestica. Results showed PPO activation in host hemolymph was inhibited by both recombinant proteins; however, there was no significant inhibition on the PO activity. Our results suggested that NvKSPI-1 and NvKSPI-2 could inhibit PPO activation in host hemolymph and trypsin activity in vitro.
Collapse
Affiliation(s)
- Cen Qian
- College of Life Science, Anhui Agricultural University, Hefei 230036, China.
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qi Fang
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lei Wang
- College of Life Science, Anhui Agricultural University, Hefei 230036, China.
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
García-Fernández R, Perbandt M, Rehders D, Ziegelmüller P, Piganeau N, Hahn U, Betzel C, Chávez MDLÁ, Redecke L. Three-dimensional Structure of a Kunitz-type Inhibitor in Complex with an Elastase-like Enzyme. J Biol Chem 2015; 290:14154-65. [PMID: 25878249 DOI: 10.1074/jbc.m115.647586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 11/06/2022] Open
Abstract
Elastase-like enzymes are involved in important diseases such as acute pancreatitis, chronic inflammatory lung diseases, and cancer. Structural insights into their interaction with specific inhibitors will contribute to the development of novel anti-elastase compounds that resist rapid oxidation and proteolysis. Proteinaceous Kunitz-type inhibitors homologous to the bovine pancreatic trypsin inhibitor (BPTI) provide a suitable scaffold, but the structural aspects of their interaction with elastase-like enzymes have not been elucidated. Here, we increased the selectivity of ShPI-1, a versatile serine protease inhibitor from the sea anemone Stichodactyla helianthus with high biomedical and biotechnological potential, toward elastase-like enzymes by substitution of the P1 residue (Lys(13)) with leucine. The variant (rShPI-1/K13L) exhibits a novel anti-porcine pancreatic elastase (PPE) activity together with a significantly improved inhibition of human neuthrophil elastase and chymotrypsin. The crystal structure of the PPE·rShPI-1/K13L complex determined at 2.0 Å resolution provided the first details of the canonical interaction between a BPTI-Kunitz-type domain and elastase-like enzymes. In addition to the essential impact of the variant P1 residue for complex stability, the interface is improved by increased contributions of the primary and secondary binding loop as compared with similar trypsin and chymotrypsin complexes. A comparison of the interaction network with elastase complexes of canonical inhibitors from the chelonian in family supports a key role of the P3 site in ShPI-1 in directing its selectivity against pancreatic and neutrophil elastases. Our results provide the structural basis for site-specific mutagenesis to further improve the binding affinity and/or direct the selectivity of BPTI-Kunitz-type inhibitors toward elastase-like enzymes.
Collapse
Affiliation(s)
- Rossana García-Fernández
- From the Centro de Estudio de Proteínas, Facultad de Biología, Universidad de la Habana, 20146 Habana, Cuba
| | - Markus Perbandt
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany, the Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany, and
| | - Dirk Rehders
- the Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany, and Institute of Biochemistry, University of Lübeck, c/o Deutsches Elektronen Synchrotron (DESY), 22603 Hamburg, Germany
| | - Patrick Ziegelmüller
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany
| | - Nicolas Piganeau
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany
| | - Ulrich Hahn
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany
| | - Christian Betzel
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany
| | | | - Lars Redecke
- the Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany, and Institute of Biochemistry, University of Lübeck, c/o Deutsches Elektronen Synchrotron (DESY), 22603 Hamburg, Germany
| |
Collapse
|
14
|
Salas-Sarduy E, Cabrera-Muñoz A, Cauerhff A, González-González Y, Trejo SA, Chidichimo A, Chávez-Planes MDLA, Cazzulo JJ. Antiparasitic effect of a fraction enriched in tight-binding protease inhibitors isolated from the Caribbean coral Plexaura homomalla. Exp Parasitol 2013; 135:611-22. [DOI: 10.1016/j.exppara.2013.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 01/13/2023]
|
15
|
García-Fernández R, Pons T, Perbandt M, Valiente PA, Talavera A, González-González Y, Rehders D, Chávez MA, Betzel C, Redecke L. Structural insights into serine protease inhibition by a marine invertebrate BPTI Kunitz-type inhibitor. J Struct Biol 2012; 180:271-9. [PMID: 22975140 DOI: 10.1016/j.jsb.2012.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
Proteins isolated from marine invertebrates are frequently characterized by exceptional structural and functional properties. ShPI-1, a BPTI Kunitz-type inhibitor from the Caribbean Sea anemone Stichodactyla helianthus, displays activity not only against serine-, but also against cysteine-, and aspartate proteases. As an initial step to evaluate the molecular basis of its activities, we describe the crystallographic structure of ShPI-1 in complex with the serine protease bovine pancreatic trypsin at 1.7Å resolution. The overall structure and the important enzyme-inhibitor interactions of this first invertebrate BPTI-like Kunitz-type inhibitor:trypsin complex remained largely conserved compared to mammalian BPTI-Kunitz inhibitor complexes. However, a prominent stabilizing role within the interface was attributed to arginine at position P3. Binding free-energy calculations indicated a 10-fold decrease for the inhibitor affinity against trypsin, if the P3 residue of ShPI-1 is mutated to alanine. Together with the increased role of Arg(11) at P3 position, slightly reduced interactions at the prime side (Pn') of the primary binding loop and at the secondary binding loop of ShPI-1 were detected. In addition, the structure provides important information for site directed mutagenesis to further optimize the activity of rShPI-1A for biotechnological applications.
Collapse
Affiliation(s)
- Rossana García-Fernández
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de la Habana, Calle 25 No 411, Havana, Cuba
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alonso-del-Rivero M, Trejo SA, Reytor ML, Rodriguez-de-la-Vega M, Delfin J, Diaz J, González-González Y, Canals F, Chavez MA, Aviles FX. Tri-domain bifunctional inhibitor of metallocarboxypeptidases A and serine proteases isolated from marine annelid Sabellastarte magnifica. J Biol Chem 2012; 287:15427-38. [PMID: 22411994 DOI: 10.1074/jbc.m111.337261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar K(i) values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature.
Collapse
Affiliation(s)
- Maday Alonso-del-Rivero
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de la Habana, 10400 La Habana, Cuba
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Covaleda G, del Rivero MA, Chávez MA, Avilés FX, Reverter D. Crystal structure of novel metallocarboxypeptidase inhibitor from marine mollusk Nerita versicolor in complex with human carboxypeptidase A4. J Biol Chem 2012; 287:9250-8. [PMID: 22294694 DOI: 10.1074/jbc.m111.330100] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NvCI is a novel exogenous proteinaceous inhibitor of metallocarboxypeptidases from the marine snail Nerita versicolor. The complex between human carboxypeptidase A4 and NvCI has been crystallized and determined at 1.7 Å resolution. The NvCI structure defines a distinctive protein fold basically composed of a two-stranded antiparallel β-sheet connected by three loops and the inhibitory C-terminal tail and stabilized by three disulfide bridges. NvCI is a tight-binding inhibitor that interacts with the active site of the enzyme in a substrate-like manner. NvCI displays an extended and novel interface with human carboxypeptidase A4, responsible for inhibitory constants in the picomolar range for some members of the M14A subfamily of carboxypeptidases. This makes NvCI the strongest inhibitor reported so far for this family. The structural homology displayed by the C-terminal tails of different carboxypeptidase inhibitors represents a relevant example of convergent evolution.
Collapse
Affiliation(s)
- Giovanni Covaleda
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | | | | | | | | |
Collapse
|
18
|
Watanabe RMO, Tanaka-Azevedo AM, Araujo MS, Juliano MA, Tanaka AS. Characterization of thrombin inhibitory mechanism of rAaTI, a Kazal-type inhibitor from Aedes aegypti with anticoagulant activity. Biochimie 2010; 93:618-23. [PMID: 21167902 DOI: 10.1016/j.biochi.2010.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 12/09/2010] [Indexed: 11/16/2022]
Abstract
Saliva of blood-sucking arthropods contains a complex mixture of anti-haemostatic, anti-inflammatory and immune-modulator compounds. Among anti-haemostatic factors, there are anticoagulants, vasodilators and platelet aggregation inhibitors. Previous analyses of the sialotranscriptome of Aedes aegypti showed the potential presence of a Kazal-type serine protease inhibitor in the female salivary glands, carcass and also in the whole male, which inhibitor we named AaTI (A. aegypti thrombin inhibitor). Recently, we expressed and characterized rAaTI as a trypsin inhibitor, and its anticoagulant activity [1]. In this work we characterized the thrombin inhibition mechanism of rAaTI. Recombinant AaTI was able to prolong prothrombin time, activated partial thromboplastin time and thrombin time. In contrast, AaTIΔ (rAaTI truncated form) and C-terminal AaTI acidic tail prolong only thrombin time. In the competition assay, rAaTI, AaTIΔ or C-terminal AaTI acidic tail-thrombin interactions seem to be affected by heparin but not by hirudin, suggesting that rAaTI binds to thrombin exosite 2. Finally, the thrombin inhibition assay of rAaTI showed an uncompetitive inhibition mechanism. In conclusion, rAaTI can probably inhibit thrombin by interacting with thrombin exosite 2, and the interaction is not mediated by the AaTI C-terminal region, since the truncated AaTIΔ form also prolongs thrombin time.
Collapse
Affiliation(s)
- Renata M O Watanabe
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua 3 de Maio 100, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
19
|
A novel trypsin Kazal-type inhibitor from Aedes aegypti with thrombin coagulant inhibitory activity. Biochimie 2010; 92:933-9. [DOI: 10.1016/j.biochi.2010.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 03/26/2010] [Indexed: 11/21/2022]
|
20
|
Rimphanitchayakit V, Tassanakajon A. Structure and function of invertebrate Kazal-type serine proteinase inhibitors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:377-386. [PMID: 19995574 DOI: 10.1016/j.dci.2009.12.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 05/28/2023]
Abstract
Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. The proteinase inhibitors function as modulators for controlling the extent of deleterious proteinase activity. The Kazal-type proteinase inhibitors (KPIs) in family I1 are among the well-known families of proteinase inhibitors, widely found in mammals, avian and a variety of invertebrates. Like those classical KPIs, the invertebrate KPIs can be single or multiple domain proteins containing one or more Kazal inhibitory domains linked together by peptide spacers of variable length. All invertebrate Kazal domains of about 40-60 amino acids in length share a common structure which is dictated by six conserved cysteine residues forming three intra-domain disulfide cross-links despite the variability of amino acid sequences between the half-cystines. Invertebrate KPIs are strong inhibitors as shown by their extremely high association constant of 10(7)-10(13)M(-1). The inhibitory specificity of a Kazal domain varies widely with a different reactive P(1) amino acid. Different invertebrate KPI domains may arise from gene duplication but several KPI proteins can also be derived from alternative splicing. The invertebrate KPIs function as anticoagulants in blood-sucking animals such as leech, mosquitoes and ticks. Several KPIs are likely involved in protecting host from microbial proteinases while some from the parasitic protozoa help protecting the parasites from the host digestive proteinase enzymes. Silk moths produce KPIs to protect their cocoon from predators and microbial destruction.
Collapse
Affiliation(s)
- Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| | | |
Collapse
|
21
|
Alonso-del-Rivero M, Trejo SA, Rodríguez de la Vega M, González Y, Bronsoms S, Canals F, Delfín J, Diaz J, Aviles FX, Chávez MA. A novel metallocarboxypeptidase-like enzyme from the marine annelid Sabellastarte magnifica--a step into the invertebrate world of proteases. FEBS J 2009; 276:4875-90. [PMID: 19694804 DOI: 10.1111/j.1742-4658.2009.07187.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
After screening 25 marine invertebrates, a novel metallocarboxypeptidase (SmCP) has been identified by activity and MS analytical approaches, and isolated from the marine annelid Sabellastarte magnifica. The enzyme, which is a minor component of the molecularly complex animal body, as shown by 2D gel electrophoresis, has been purified from crude extracts to homogeneity by affinity chromatography on potato carboxypeptidase inhibitor and by ion exchange chromatography. SmCP is a protease of 33792 Da, displaying N-terminal and internal sequence homologies with M14 metallocarboxypeptidase-like enzymes, as determined by MS and automated Edman degradation. The enzyme contains one atom of Zn per molecule, is activated by Ca2+ and is drastically inhibited by the metal chelator 1,10-phenanthroline, as well as by excess Zn2+ or Cu2+, but moderately so by EDTA. SmCP is also strongly inhibited by specific inhibitors of metallocarboxypeptidases, such as benzylsuccinic acid and the protein inhibitors found in potato and leech (i.e. recombinant forms, both at nanomolar levels). The enzyme displays high peptidase efficiency towards pancreatic carboxypeptidase-A synthetic substrates, such as those with hydrophobic residues at the C-terminus but, remarkably, also towards the acidic ones. This property, previously described as for carboxypeptidase O-like activity, has been shown on long peptide substrates by MS. The results obtained in the present study indicate that SmCP is a novel member of the M14 metallocarboxypeptidases family (assignable to the M14A or pancreatic-like subfamily) with a wider specificity that has not been described previously.
Collapse
|
22
|
Visetnan S, Donpudsa S, Supungul P, Tassanakajon A, Rimphanitchayakit V. Kazal-type serine proteinase inhibitors from the black tiger shrimp Penaeus monodon and the inhibitory activities of SPIPm4 and 5. FISH & SHELLFISH IMMUNOLOGY 2009; 27:266-274. [PMID: 19497371 DOI: 10.1016/j.fsi.2009.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 05/27/2023]
Abstract
Serine proteinase inhibitors (SPIs) play important roles in physiological and immunological processes involving proteinases in all multicellular organisms. In black tiger shrimp Penaeus monodon, nine different Kazal-type SPIs, namely SPIPm1-9, were identified from the cDNA libraries of hemocyte, hepatopancreas, hematopoietic tissue, ovary and lymphoid organ. They are multi-domain SPIs containing 2-7 and possibly more Kazal domains. Two interesting cDNA clones, SPIPm4 and SPIPm5 coding for two-domain Kazal-type SPIs, were identified from the heat-treated hemocyte cDNA libraries. The SPIPm4 and SPIPm5 consist of open reading frames of 387 and 399 bp coding for polypeptides of 128 and 132 amino acids with putative signal peptides of 21 and 19 amino acid residues and mature SPIs of 107 and 113 amino acid residues, respectively. Recombinant expression in an Escherichia coli expression system yielded recombinant proteins, rSPIPm4 and rSPIPm5, with molecular masses of 12.862 and 13.433 kDa, respectively. The inhibitory activities of SPIPm4 and SPIPm5 were tested against trypsin, chymotrypsin, subtilisin and elastase. The SPIPm4 exhibited potent inhibitory activity against subtilisin and weakly against chymotrypsin whereas the SPIPm5 strongly inhibited subtilisin and elastase. The inhibition was a competitive type with inhibition constants (K(i)) of 14.95 nM for SPIPm4 against subtilisin, 4.19 and 59.64 nM, respectively, for SPIPm5 against subtilisin and elastase. They had no bacteriostatic effect against Gram-positive bacteria: Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, and Gram-negative bacteria: Vibrio harveyi 639, E. coli JM109. Gene expression study revealed that the SPIPm5 gene was up-regulated in response to heat treatment suggesting the involvement of SPIs in stress responses.
Collapse
Affiliation(s)
- Suwattana Visetnan
- Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | |
Collapse
|