1
|
Beer LA, Tatge H, Schneider C, Ruschig M, Hust M, Barton J, Thiemann S, Fühner V, Russo G, Gerhard R. The Binary Toxin CDT of Clostridium difficile as a Tool for Intracellular Delivery of Bacterial Glucosyltransferase Domains. Toxins (Basel) 2018; 10:toxins10060225. [PMID: 29865182 PMCID: PMC6024811 DOI: 10.3390/toxins10060225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
Binary toxins are produced by several pathogenic bacteria. Examples are the C2 toxin from Clostridium botulinum, the iota toxin from Clostridium perfringens, and the CDT from Clostridium difficile. All these binary toxins have ADP-ribosyltransferases (ADPRT) as their enzymatically active component that modify monomeric actin in their target cells. The binary C2 toxin was intensively described as a tool for intracellular delivery of allogenic ADPRTs. Here, we firstly describe the binary toxin CDT from C. difficile as an effective tool for heterologous intracellular delivery. Even 60 kDa glucosyltransferase domains of large clostridial glucosyltransferases can be delivered into cells. The glucosyltransferase domains of five tested large clostridial glucosyltransferases were successfully introduced into cells as chimeric fusions to the CDTa adapter domain (CDTaN). Cell uptake was demonstrated by the analysis of cell morphology, cytoskeleton staining, and intracellular substrate glucosylation. The fusion toxins were functional only when the adapter domain of CDTa was N-terminally located, according to its native orientation. Thus, like other binary toxins, the CDTaN/b system can be used for standardized delivery systems not only for bacterial ADPRTs but also for a variety of bacterial glucosyltransferase domains.
Collapse
Affiliation(s)
- Lara-Antonia Beer
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Carmen Schneider
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Maximilian Ruschig
- Department of Biochemistry and Biotechnology, Technical University Braunschweig, 38106 Braunschweig, Germany.
| | - Michael Hust
- Department of Biochemistry and Biotechnology, Technical University Braunschweig, 38106 Braunschweig, Germany.
| | - Jessica Barton
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Stefan Thiemann
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Viola Fühner
- Department of Biochemistry and Biotechnology, Technical University Braunschweig, 38106 Braunschweig, Germany.
| | - Giulio Russo
- Department of Biochemistry and Biotechnology, Technical University Braunschweig, 38106 Braunschweig, Germany.
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
2
|
Molecular Evolutionary Constraints that Determine the Avirulence State of Clostridium botulinum C2 Toxin. J Mol Evol 2017; 84:174-186. [DOI: 10.1007/s00239-017-9791-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
3
|
Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines. INFECTION GENETICS AND EVOLUTION 2016; 44:17-27. [PMID: 27320793 DOI: 10.1016/j.meegid.2016.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Clostridium botulinum (group-III) is an anaerobic bacterium producing C2 and C3 toxins in addition to botulinum neurotoxins in avian and mammalian cells. C2 and C3 toxins are members of bacterial ADP-ribosyltransferase superfamily, which modify the eukaryotic cell surface proteins by ADP-ribosylation reaction. Herein, the mutant proteins with lack of catalytic and pore forming function derived from C2 (C2I and C2II) and C3 toxins were computationally evaluated to understand their structure-function integrity. We have chosen many structural constraints including local structural environment, folding process, backbone conformation, conformational dynamic sub-space, NAD-binding specificity and antigenic determinants for screening of suitable avirulent toxins. A total of 20 avirulent mutants were identified out of 23 mutants, which were experimentally produced by site-directed mutagenesis. No changes in secondary structural elements in particular to α-helices and β-sheets and also in fold rate of all-β classes. Structural stability was maintained by reordered hydrophobic and hydrogen bonding patterns. Molecular dynamic studies suggested that coupled mutations may restrain the binding affinity to NAD(+) or protein substrate upon structural destabilization. Avirulent toxins of this study have stable energetic backbone conformation with a common blue print of folding process. Molecular docking studies revealed that avirulent mutants formed more favorable hydrogen bonding with the side-chain of amino acids near to conserved NAD-binding core, despite of restraining NAD-binding specificity. Thus, structural constraints in the avirulent toxins would determine their immunogenic nature for the prioritization of protein-based subunit vaccine/immunogens to avian and veterinary animals infected with C. botulinum.
Collapse
|
4
|
Retargeting the Clostridium botulinum C2 toxin to the neuronal cytosol. Sci Rep 2016; 6:23707. [PMID: 27025362 PMCID: PMC4812341 DOI: 10.1038/srep23707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/10/2016] [Indexed: 12/16/2022] Open
Abstract
Many biological toxins are known to attack specific cell types, delivering their enzymatic payloads to the cytosol. This process can be manipulated by molecular engineering of chimeric toxins. Using toxins with naturally unlinked components as a starting point is advantageous because it allows for the development of payloads separately from the binding/translocation components. Here the Clostridium botulinum C2 binding/translocation domain was retargeted to neural cell populations by deleting its non-specific binding domain and replacing it with a C. botulinum neurotoxin binding domain. This fusion protein was used to deliver fluorescently labeled payloads to Neuro-2a cells. Intracellular delivery was quantified by flow cytometry and found to be dependent on artificial enrichment of cells with the polysialoganglioside receptor GT1b. Visualization by confocal microscopy showed a dissociation of payloads from the early endosome indicating translocation of the chimeric toxin. The natural Clostridium botulinum C2 toxin was then delivered to human glioblastoma A172 and synchronized HeLa cells. In the presence of the fusion protein, native cytosolic enzymatic activity of the enzyme was observed and found to be GT1b-dependent. This retargeted toxin may enable delivery of therapeutics to peripheral neurons and be of use in addressing experimental questions about neural physiology.
Collapse
|
5
|
Gurnev PA, Nestorovich EM. Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel) 2014; 6:2483-540. [PMID: 25153255 PMCID: PMC4147595 DOI: 10.3390/toxins6082483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.
Collapse
Affiliation(s)
- Philip A Gurnev
- Physics Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
6
|
Fahrer J, Rausch J, Barth H. A cell-permeable fusion protein based on Clostridium botulinum C2 toxin for delivery of p53 tumorsuppressor into cancer cells. PLoS One 2013; 8:e72455. [PMID: 24039769 PMCID: PMC3764140 DOI: 10.1371/journal.pone.0072455] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 07/18/2013] [Indexed: 01/09/2023] Open
Abstract
Genetically engineered bacterial protein toxins are attractive systems for delivery of exogenous proteins into the cytosol of mammalian cells. The binary C2 toxin from C. botulinum has emerged as powerful delivery vehicle, which rests on its binding/translocation component C2IIa and the genetically modified adaptor domain C2IN that act in concert to trigger cell uptake. The p53 tumor suppressor protein has a crucial function in suppressing carcinogenesis and is frequently inactivated by diverse mechanisms in human tumor cells. Therefore, we constructed a C2IN-p53 fusion protein, which is internalized into cancer cells by C2IIa. To this end, the C2IN-p53 fusion construct was overexpressed in E. coli with good solubility, purified by heparin affinity chromatography and protein identity was confirmed by immunoblotting. We demonstrated that the fusion protein is capable of binding to the p53 consensus-DNA with high affinity in a p53-specific manner in vitro. Next, the internalization of C2IN-p53 was monitored in HeLa cells by cell fractionation and immunoblot analysis, which revealed a C2IIa-mediated translocation of the fusion protein into the cytosol. The uptake was also shown in A549 and Saos-2 cells with similar efficiency. These findings were further corroborated by confocal immunofluorescence analyses of C2IN-p53/C2IIa-treated HeLa and A549 cells, displaying predominantly cytoplasmic localization of the fusion construct.
Collapse
Affiliation(s)
- Jörg Fahrer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany ; Institute of Toxicology, University Medical Center Mainz, Mainz, Germany
| | | | | |
Collapse
|
7
|
Fahrer J, Schweitzer B, Fiedler K, Langer T, Gierschik P, Barth H. C2-streptavidin mediates the delivery of biotin-conjugated tumor suppressor protein p53 into tumor cells. Bioconjug Chem 2013; 24:595-603. [PMID: 23506195 DOI: 10.1021/bc300563c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously generated a recombinant C2-streptavidin fusion protein for the delivery of biotin-labeled molecules of low molecular weight into the cytosol of mammalian cells. A nontoxic moiety of Clostridium botulinum C2 toxin mediates the cellular uptake, whereas the streptavidin unit serves as a binding platform for biotin-labeled cargo molecules. In the present study, we used the C2-streptavidin transporter to introduce biotin-conjugated p53 protein into various mammalian cell lines. The p53 tumor suppressor protein is inactivated in many human cancers by multiple mechanisms and therefore the restoration of its activity in tumor cells is of great therapeutic interest. Recombinant p53 was expressed in insect cells and biotin-labeled. Biotin-p53 retained its specific high-affinity DNA-binding as revealed by gel-shift analysis. Successful conjugation of biotin-p53 to the C2-streptavidin transporter was monitored by an overlay blot technique and confirmed by real-time surface plasmon resonance, providing a KD-value in the low nM range. C2-streptavidin significantly enhanced the uptake of biotin-p53 into African Green Monkey (Vero) epithelial cells as shown by flow cytometry. Using cell fractionation, the cytosolic translocation of biotin-p53 was detected in Vero cells as well as in HeLa cervix carcinoma cells. In line with this finding, confocal microscopy displayed cytoplasmic staining of biotin-p53 in HeLa and HL60 leukemia cells. Internalized biotin-p53 partially colocalized with early endosomes, as confirmed by confocal microscopy. In conclusion, our results demonstrate the successful conjugation of biotin-p53 to C2-streptavidin and its subsequent receptor-mediated endocytosis into different human tumor cell lines.
Collapse
Affiliation(s)
- Jörg Fahrer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Pillay S, Patterson S. Expression of a versatile DC-targeting fusion protein using an Adenovirus expression system. Protein Expr Purif 2012; 84:270-9. [PMID: 22728768 DOI: 10.1016/j.pep.2012.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/29/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
The importance of viral and tumour vaccines in eliciting elicit strong CD8+ T-cell responses has been widely acknowledged. Strategies exploring ways to enhance CD8+ T-cell responses have been developed, including targeting of vaccine antigens to dendritic cell (DC) receptors to access to the cross presentation pathway. Many DC endocytic receptors could potentially lead to augmented CD8+ T-cell responses if antigens were targeted directly to them, however only a few receptors have been explored because current targeting reagents are limited in the number of receptors that they are able to target. Consequently, this study describes the production and purification of a streptavidin-fusion protein that provides a versatile and efficient means to target antigen to more than one DC receptor. A model antigen gene, CMV pp65, and a streptavidin core gene, were spliced together using an overlap-extension PCR technique. The resulting fusion gene was cloned into a vector allowing expression in an Adenovirus-based expression system. Expression was verified and optimised before Ni-NTA affinity chromatography purification. Evaluation of pp65-streptavidin immunogenicity revealed that it elicits similar levels of CD8+ T-cell proliferative responses as pp65 and is able to effectively target specific DC receptors when used in addition to biotinylated receptor-specific antibodies. Additionally, enhancement of CD8+ T-cell responses was shown after directing pp65-strep to selected DC receptors in preliminary in vitro experiments. Collectively, this highlights the ease of production of a streptavidin-fusion protein, and demonstrates its use as a promising strategy to evaluate numerous DC receptors as potential targets in vaccine strategies.
Collapse
Affiliation(s)
- Sirika Pillay
- Imperial College London, Immunology Department, Chelsea and Westminster Hospital, London, United Kingdom
| | | |
Collapse
|
9
|
Lillich M, Chen X, Weil T, Barth H, Fahrer J. Streptavidin-conjugated C3 protein mediates the delivery of mono-biotinylated RNAse A into macrophages. Bioconjug Chem 2012; 23:1426-36. [PMID: 22681511 DOI: 10.1021/bc300041z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The C3 toxin produced by Clostridium botulinum (C3bot) catalyzes the mono-ADP-ribosylation of the small GTPases Rho A, B and C, resulting in their inactivation. Recently, a specific endocytotic uptake mechanism of C3bot was identified in macrophages and myeloid leukemia cells. Here, we present a novel delivery system based upon a mutant C3bot devoid of ADP-ribosylation activity (C3Mut) and wild-type streptavidin (Stv). The C3Mut moiety mediates endocytosis into macrophages, whereas Stv functions as an adaptor protein for attaching biotinylated molecules to facilitate their subsequent internalization. First, a bioconjugate consisting of recombinant C3Mut and Stv was generated via a thioether linkage that tightly interacted with biotinylated bovine serum albumin as demonstrated by dot blot analysis. We then showed the internalization of C3Mut-Stv into J774A.1 macrophages by confocal microscopy and observed translocation into the cytosol using cell fractionation. The C3Mut-Stv bioconjugate did not affect cell viability. Next, we prepared mono-biotinylated RNase A, which was attached to the C3Mut-Stv transporter, and demonstrated its C3Mut-Stv-mediated delivery into the cytosol of J774A.1 cells. Finally, C3Mut-Stv also promoted the efficient uptake of mono-biotinylated lysozyme into J774A.1 cells, highlighting its versatility. This study intriguingly demonstrates the use of the novel C3Mut-Stv delivery system for protein transduction and may provide a basis for future applications, in particular, of cytotoxic RNase A mutants.
Collapse
Affiliation(s)
- Maren Lillich
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
10
|
Stiles BG, Wigelsworth DJ, Popoff MR, Barth H. Clostridial binary toxins: iota and C2 family portraits. Front Cell Infect Microbiol 2011; 1:11. [PMID: 22919577 PMCID: PMC3417380 DOI: 10.3389/fcimb.2011.00011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/10/2011] [Indexed: 02/04/2023] Open
Abstract
There are many pathogenic Clostridium species with diverse virulence factors that include protein toxins. Some of these bacteria, such as C. botulinum, C. difficile, C. perfringens, and C. spiroforme, cause enteric problems in animals as well as humans. These often fatal diseases can partly be attributed to binary protein toxins that follow a classic AB paradigm. Within a targeted cell, all clostridial binary toxins destroy filamentous actin via mono-ADP-ribosylation of globular actin by the A component. However, much less is known about B component binding to cell-surface receptors. These toxins share sequence homology amongst themselves and with those produced by another Gram-positive, spore-forming bacterium also commonly associated with soil and disease: Bacillus anthracis. This review focuses upon the iota and C2 families of clostridial binary toxins and includes: (1) basics of the bacterial source; (2) toxin biochemistry; (3) sophisticated cellular uptake machinery; and (4) host–cell responses following toxin-mediated disruption of the cytoskeleton. In summary, these protein toxins aid diverse enteric species within the genus Clostridium.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, Chambersburg, PA, USA; Integrated Toxicology Division, Medical Research Institute of Infectious Diseases, Frederick, MD, USA.
| | | | | | | |
Collapse
|
11
|
Popoff MR. Multifaceted interactions of bacterial toxins with the gastrointestinal mucosa. Future Microbiol 2011; 6:763-97. [PMID: 21797691 DOI: 10.2217/fmb.11.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The digestive tract is one of the ecosystems that harbors the largest number and greatest variety of bacteria. Among them, certain bacteria have developed various strategies, including the synthesis of virulence factors such as toxins, to interact with the intestinal mucosa, and are responsible for various pathologies. A large variety of bacterial toxins of different sizes, structures and modes of action are able to interact with the gastrointestinal mucosa. Some toxins, termed enterotoxins, directly stimulate fluid secretion in enterocytes or cause their death, whereas other toxins pass through the intestinal barrier and disseminate by the general circulation to remote organs or tissues, where they are active. After recognition of a membrane receptor on target cells, toxins can act at the cell membrane by transducing a signal across the membrane in a hormone-like manner, by pore formation or by damaging membrane compounds. Other toxins can enter the cells and modify an intracellular target leading to a disregulation of certain physiological processes or disorganization of some structural architectures and cell death. Toxins are fascinating molecules, which mimic or interfere with eukaryotic physiological processes. Thereby, they have permitted the identification and characterization of new natural hormones or regulatory pathways. Besides use as protective antigens in vaccines, toxins offer multiple possibilities in pharmacology, such as immune modulation or specific delivery of a protein of interest into target cells.
Collapse
Affiliation(s)
- M R Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, 25 rue du Dr Roux, 757245 Paris cedex 15, France.
| |
Collapse
|
12
|
Stenger S, van Zandbergen G. Measuring the killing of intracellular pathogens: Leishmania. CURRENT PROTOCOLS IN IMMUNOLOGY 2011; Chapter 14:Unit14.23. [PMID: 21462165 DOI: 10.1002/0471142735.im1423s93] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Macrophages are professional phagocytes serving as a first line of defence against pathogenic organisms. Macrophages are equipped with efficient effector functions to kill invading microorganisms. The first important mechanism of macrophage host-defence is phagocytosis of pathogens. Subsequently, internalized pathogens are targeted for destruction in maturating phagolysosomal compartments. This process is mediated by lysosomal proteases and an acidified compartment. To investigate macrophages' killing potential in this chapter, we describe an assay based on human primary cells infected with the obligatory intracellular parasite Leishmania. For this pathogen the macrophage has a dual role. The parasite can use macrophages for its intracellular multiplication, but at the same time host macrophages, upon stimulation, can kill the parasite.
Collapse
Affiliation(s)
- S Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital of Ulm, Ulm, Germany
| | | |
Collapse
|
13
|
Fahrer J, Funk J, Lillich M, Barth H. Internalization of biotinylated compounds into cancer cells is promoted by a molecular Trojan horse based upon core streptavidin and clostridial C2 toxin. Naunyn Schmiedebergs Arch Pharmacol 2010; 383:263-73. [DOI: 10.1007/s00210-010-0585-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 11/24/2010] [Indexed: 12/16/2022]
|
14
|
Klotz LO, Giehl K. Highlight: xenobiotics and cell signaling. Biol Chem 2010; 391:1233-4. [PMID: 21087178 DOI: 10.1515/bc.2010.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
No abstract available
Collapse
|