1
|
Naderzadeh E, Kargar M, Mokhtari MJ, Farhadi A. Activating transcription factor 3 induces oxidative stress and genotoxicity, transcriptionally modulating metastasis-related gene expression in human papillomavirus-infected cervical cancer. Virol J 2025; 22:46. [PMID: 39994644 PMCID: PMC11849226 DOI: 10.1186/s12985-025-02675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Activating Transcription Factor 3 (ATF3) is known for its tumor-suppressive properties in cervical cancer, particularly through its role in stress response and interactions with human papillomavirus (HPV) oncogenes. This study investigates ATF3's regulatory impact on metastasis-related genes, oxidative stress, and DNA damage in HPV-positive cervical cancer cells. METHODS HeLa and Ca Ski cell lines were transfected with ATF3-expressing vectors. Western blotting and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to confirm ATF3 overexpression following transfection. ROS assays and Comet assays assessed the impact of ATF3 on oxidative stress and DNA damage, while RT-qPCR was used to evaluate changes in HPV E6/E7, SHARP1, and MMP1 gene expression. RESULTS ATF3 overexpression led to elevated ROS levels (p < 0.02), resulting in oxidative DNA damage. These results demonstrate ATF3's cytotoxic impact on cervical cancer cells through oxidative stress and DNA damage. Additionally, ATF3 overexpression significantly decreased MMP1 expression (p < 0.03), indicating a potential anti-metastatic effect, while SHARP1 and HPV E6/E7 expression levels were not significantly altered, indicating selective gene modulation by ATF3. CONCLUSION These findings reveal that ATF3 contributes to tumor suppression in cervical cancer by modulating oxidative stress and DNA damage, selectively targeting genes involved in metastasis. These findings supports ATF3's role in regulating key pathways in HPV-positive cervical cancer cells, providing a basis for further exploration of ATF3 as a target in therapeutic strategies aimed at improving outcomes in cervical cancer.
Collapse
Affiliation(s)
- Elham Naderzadeh
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Kargar
- Department of Biology, Zand Institute of Higher Education, Shiraz, Iran
| | | | - Ali Farhadi
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, 7143918596, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Li R, Chi H, Liao X, Cen S, Zou Y. The Glabridin from Huangqin Decoction Prevents the Development of Ulcerative Colitis into Colitis-Associated Colorectal Cancer by Modulating MMP1/MMP3 Activity. Int Immunopharmacol 2024; 135:112262. [PMID: 38805906 DOI: 10.1016/j.intimp.2024.112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND AND AIM Huangqin decoction (HQD) is a Chinese medicine used to treat colitis and colorectal cancer (CRC). However, the specific compounds and mechanisms of HQD remain unclear despite its good curative clinical results. Through bioinformatics, network pharmacology, and experiments, this study aims to explore the progressive mechanisms of colitis-associated colorectal cancer (CAC) from ulcerative colitis (UC) while examining the protective effects of HQD and its compounds against this. METHODS Bioinformatics was utilized to identify the hub genes between UC and CRC, and their clinical predictive significance, function, and expression were validated. Employing network pharmacology in combination with hub genes, key targets of HQD for preventing the development of UC into CAC were identified. Molecular docking and molecular dynamics (MD) were utilized to procure compounds that effectively bind to these targets and their transcription factors (TFs). Finally, the expression and mechanism of key targets were demonstrated in mice with UC or CAC. RESULTS (1) Joint analysis of UC and CRC gene sets resulted in 14 hub genes, mainly related to extracellular matrix receptor binding, biological processes in the extracellular matrix, focal adhesion and neutrophil migration; (2) Network pharmacology results show HQD has 133 core targets for treating UC and CRC, acting on extracellular matrix, inflammatory bowel disease, chemical carcinogen receptor activation and other pathways; (3) The intersection of hub genes and core targets yielded two key targets, MMP1 and MMP3; (4) STAT3 is a shared TF of MMP1 and MMP3. (5) Molecular docking and MD verified that the dockings between Glabridin and STAT3/MMP1/MMP3 are stable and reliable; (6) In murine vivo experiments verified that Glabridin reduces inflammation, extracellular matrix degradation, and the occurrence of epithelial-mesenchymal transition to prevent UC transforming into CAC by inhibiting the phosphorylation of STAT3 and regulating the activity of MMP1/3.
Collapse
Affiliation(s)
- Roude Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China.
| | - Honggang Chi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China.
| | - Xiaoxia Liao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China.
| | - Shuimei Cen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China.
| | - Ying Zou
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China; Department of Traditional Chinese Medicine, Dongguan Liaobu Hospital, Dongguan 523000, China.
| |
Collapse
|
3
|
Hu Z, Sui Q, Jin X, Shan G, Huang Y, Yi Y, Zeng D, Zhao M, Zhan C, Wang Q, Lin Z, Lu T, Chen Z. IL6-STAT3-C/EBPβ-IL6 positive feedback loop in tumor-associated macrophages promotes the EMT and metastasis of lung adenocarcinoma. J Exp Clin Cancer Res 2024; 43:63. [PMID: 38424624 PMCID: PMC10903044 DOI: 10.1186/s13046-024-02989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Lung cancer is one of the most common tumors in the world, and metastasis is one of the major causes of tumor-related death in lung cancer patients. Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and are frequently associated with tumor metastasis in human cancers. However, the regulatory mechanisms of TAMs in lung cancer metastasis remain unclear. METHODS Single-cell sequencing analysis of lung cancer and normal tissues from public databases and from 14 patients who underwent surgery at Zhongshan Hospital was performed. In vitro co-culture experiments were performed to evaluate the effects of TAMs on lung cancer migration and invasion. Changes in the expression of IL-6, STAT3, C/EBPΒ, and EMT pathway were verified using RT-qPCR, western blotting, and immunofluorescence. Dual luciferase reporter assays and ChIP were used to reveal potential regulatory sites on the transcription factor sets. In addition, the effects of TAMs on lung cancer progression and metastasis were confirmed by in vivo models. RESULTS TAM infiltration is associated with tumor progression and poor prognosis. IL-6 secreted by TAMs can activate the JAK2/STAT3 pathway through autocrine secretion, and STAT3 acts as a transcription factor to activate the expression of C/EBPβ, which further promotes the transcription and expression of IL-6, forming positive feedback loops for IL6-STAT3-C/EBPβ-IL6 in TAMs. IL-6 secreted by TAMs promotes lung cancer progression and metastasis in vivo and in vitro by activating the EMT pathway, which can be attenuated by the use of JAK2/STAT3 pathway inhibitors or IL-6 monoclonal antibodies. CONCLUSIONS Our data suggest that TAMs promote IL-6 expression by forming an IL6-STAT3-C/EBPβ-IL6 positive feedback loop. Released IL-6 can induce the EMT pathway in lung cancer to enhance migration, invasion, and metastasis. The use of IL-6-neutralizing antibody can partially counteract the promotion of LUAD by TAMs. A novel mechanism of macrophage-promoted tumor progression was revealed, and the IL6-STAT3-C/EBPβ-IL6 signaling cascade may be a potential therapeutic target against lung cancer.
Collapse
Affiliation(s)
- Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Yanjun Yi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Dejun Zeng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
| | - Tao Lu
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital / Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences / Cancer Hospital Affiliated to Shanxi Medical University, No. 3 Gongren Xin Jie, Xinghualing District, Taiyuan, 030013, Shanxi Province, China.
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Hu Y, Dong Z, Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J Exp Clin Cancer Res 2024; 43:23. [PMID: 38245798 PMCID: PMC10799433 DOI: 10.1186/s13046-024-02949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor involved in almost all cancer hallmark features including tumor proliferation, metastasis, angiogenesis, immunosuppression, tumor inflammation, metabolism reprogramming, drug resistance, cancer stemness. Therefore, STAT3 has become a promising therapeutic target in a wide range of cancers. This review focuses on the up-to-date knowledge of STAT3 signaling in cancer. We summarize both the positive and negative modulators of STAT3 together with the cancer hallmarks involving activities regulated by STAT3 and highlight its extremely sophisticated regulation on immunosuppression in tumor microenvironment and metabolic reprogramming. Direct and indirect inhibitors of STAT3 in preclinical and clinical studies also have been summarized and discussed. Additionally, we highlight and propose new strategies of targeting STAT3 and STAT3-based combinations with established chemotherapy, targeted therapy, immunotherapy and combination therapy. These efforts may provide new perspectives for STAT3-based target therapy in cancer.
Collapse
Affiliation(s)
- Yamei Hu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zigang Dong
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Ben Hamouda S, Essafi-Benkhadir K. Interplay between Signaling Pathways and Tumor Microenvironment Components: A Paradoxical Role in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24065600. [PMID: 36982677 PMCID: PMC10057671 DOI: 10.3390/ijms24065600] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
The study of the tumor microenvironment (TME) has become an important part of colorectal cancer (CRC) research. Indeed, it is now accepted that the invasive character of a primary CRC is determined not only by the genotype of the tumor cells, but also by their interactions with the extracellular environment, which thereby orchestrates the development of the tumor. In fact, the TME cells are a double-edged sword as they play both pro- and anti-tumor roles. The interaction of the tumor-infiltrating cells (TIC) with the cancer cells induces the polarization of the TIC, exhibiting an antagonist phenotype. This polarization is controlled by a plethora of interconnected pro- and anti-oncogenic signaling pathways. The complexity of this interaction and the dual function of these different actors contribute to the failure of CRC control. Thus, a better understanding of such mechanisms is of great interest and provides new opportunities for the development of personalized and efficient therapies for CRC. In this review, we summarize the signaling pathways linked to CRC and their implication in the development or inhibition of the tumor initiation and progression. In the second part, we enlist the major components of the TME and discuss the complexity of their cells functions.
Collapse
|
6
|
Overexpression of miR-125a-5p Inhibits Hepatocyte Proliferation through the STAT3 Regulation In Vivo and In Vitro. Int J Mol Sci 2022; 23:ijms23158661. [PMID: 35955794 PMCID: PMC9369155 DOI: 10.3390/ijms23158661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
microRNAs (miRNAs) are critically involved in liver regeneration (LR). miR-125a-5p (miR-125a) is a tumor-suppressing miRNA, but its role in LR has not been studied. Our previous studies have proved that miR-125a was related to LR at the initiation phase, while the mechanism hepatocyte proliferation triggered by miR-125a in LR has been rarely evaluated. Herein, we mainly studied the molecular mechanism of miR-125a in triggering hepatocyte proliferation and the proliferation stage of LR. Firstly, a striking reduction of miR-125a was found at 24 h as well as 30 h following partial hepatectomy (PH) in rat liver tissue by miRNAs expression profiles as well as qRT-PCR analysis. Furthermore, in vitro, upregulation of miR-125a decreased proliferation as well as G1/S conversion, which promoted hepatocytes apoptosis. STAT3 was the target of miR-125a. In vivo, upregulation of miR-125a by tail vein injection of agomir inhibited LR index. Upregulation of miR-125a inhibited LR index and hepatocytes proliferation by STAT3/p-STAT3/JUN/BCL2 axis. In summary, these current discoveries indicated that miR-125a inhibited hepatocytes proliferation as well as LR by targeting STAT3 and via acting on the STAT3/p-STAT3/JUN/BCL2 axis.
Collapse
|
7
|
Park HJ, Park SH. Root Bark of Morus Alba L. Induced p53-Independent Apoptosis in Human Colorectal Cancer Cells by Suppression of STAT3 Activity. Nutr Cancer 2021; 74:1837-1848. [PMID: 34533079 DOI: 10.1080/01635581.2021.1968444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The root bark of Morus alba L. (MA) used in traditional oriental medicine exerts various bioactivities including anticancer effects. In this study, we investigated the molecular mechanism underlying the methylene chloride extract of MA (MEMA)-induced apoptosis in colorectal cancer (CRC) cells. We observed that MEMA decreased cell viability and colony formation in both HCT116 p53+/+ cells and HCT116 p53-/- cells. In addition, MEMA increased the sub-G1 phase DNA content, the annexin V-positive cell population, and the expression of apoptosis marker proteins in both cell lines, indicating that MEMA induced apoptosis regardless of the p53 status. Interestingly, the phosphorylation level, transcriptional activity, and target genes expression of signal transducer and activator of transcription 3 (STAT3) were commonly decreased by MEMA. The overexpression of constitutively active STAT3 in HCT116 cells reversed MEMA-induced apoptosis, demonstrating that MEMA-triggered apoptosis was mediated by the inactivation of STAT3. Taken together, we suggest that MEMA can be applied not only to p53 wild-type CRC in the early stages but also to p53-mutant advanced CRC with hyperactivated STAT3. Even though a wide range of studies are required to validate the anticancer effects of MEMA, we propose MEMA as a novel material for the treatment of CRC.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| |
Collapse
|
8
|
Yang Z, Chen Z, Wang C, Huang P, Luo M, Zhou R. STAT3/SH3PXD2A-AS1/miR-125b/STAT3 positive feedback loop affects psoriasis pathogenesis via regulating human keratinocyte proliferation. Cytokine 2021; 144:155535. [PMID: 33994260 DOI: 10.1016/j.cyto.2021.155535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 01/18/2023]
Abstract
Psoriasis is a chronic immune-mediated inflammatory dermatosis. STAT3 has been considered a critical regulator of psoriasis pathogenesis due to its role in inflammation and immune responses. Furthermore, alongside non-coding RNAs, including long non-coding RNAs (lncRNAs) and miRNAs, STAT3 also plays a critical role in psoriasis pathogenesis. Two sets of online microarray profiles (GSE50790 and GSE13355) were subsequently downloaded and analyzed to search for lncRNAs upregulated in psoriasis lesion tissues. The expression of lncRNA SH3PXD2A-AS1 could be remarkably upregulated in psoriasis specimens. SH3PXD2A-AS1 silence was found to suppress HaCaT cell proliferation and promote HaCaT cell apoptosis significantly. Meanwhile, SH3PXD2A-AS1 silence significantly increased cleaved-caspase-3 protein levels and inhibited S100A7, TNF-α, IL-6, p-STAT3, STAT3, CyclinD1, and survivin protein levels. Moreover, the expression of miR-125b could be substantially decreased within psoriasis lesion tissue samples, while miR-125b could negatively regulate the SH3PXD2A-AS1 and STAT3 expression. As predicted by an online tool and validated by luciferase reporter and RIP assays, miR-125b was found to bind to SH3PXD2A-AS1 and STAT3 3'UTR directly; SH3PXD2A-AS1 competed with 3'UTR of STAT3 for miR-125b binding to counteract miR-125b-mediated suppression of STAT3. STAT3 is known to activate the transcription of SH3PXD2A-AS1 through the targeting of its promoter region. It consequentially forms a regulatory feedback loop promoting SH3PXD2A-AS1 expression affecting HaCat cell proliferation and apoptosis. A novel STAT3 related mechanism whereby STAT 3/ SH3PXD2A-AS1/ miR-125b/STAT3 positive feedback loop which could potentially affect the pathogenesis of Psoriasis has been established.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| | - Zhenping Chen
- The Second Clinical Traditional Chinese Medicine College, Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| | - Chang Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China.
| | - Pan Huang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| | - Meijunzi Luo
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| | - Rong Zhou
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| |
Collapse
|
9
|
Wang D, Wang T, An Y, Jin L, Wang J, Wu G, Yao H, Zhang Z, Li J. Nephroblastoma overexpressed protein (NOV) enhances 5-Fu-mediated inhibitory effect of colorectal cancer cell proliferation via JNK/AP-1/caspase-8/caspase-3 pathway. Discov Oncol 2021; 12:10. [PMID: 35201461 PMCID: PMC8777523 DOI: 10.1007/s12672-021-00403-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/22/2021] [Indexed: 01/15/2023] Open
Abstract
Chemoresistance often occurs during 5-fluorouracil (5-Fu) treatment of colorectal cancer (CRC). It is significant to explore the potential strategies to sensitize colorectal cancer cells to 5-Fu treatment. We studied the sensitization of Nephroblastoma overexpressed protein (NOV) on 5-Fu treatment. NOV was overexpressed and knocked down in HT115 and RKO cells respectively. Cell proliferation experiments and related mechanism studies by RT-qPCR and Western blot were performed Subsequently. Nude mouse xenograft model was established to test the inhibitory effect of 5-FU on CRC cells in vivo. In this study, we found that NOV mRNA expression was significantly lower in tumor tissues than that in the normal tissues (P < 0.05). The cell proliferation was reduced in the HT115-NOVexp groups (P < 0.05) and increased in the RKO-NOVkd groups (P < 0.05) than that in the control groups and NC groups. The RT-PCR and Western Blot results showed that NOV inhibited the expression of activator protein (AP)-1 (P < 0.05) and promoted the expression of Caspase-8/3 (P < 0.05) in CRC cells in vitro. NOV also improved the inhibitory effect of 5-Fu on inhibiting colorectal cancer proliferation in a tumor cell xenotransplantation nude mouse model. NOV inhibited the expression of AP-1 and JUK and promoted the expression of Caspase-8/3 in cancer tissues in a tumor cell xenotransplantation nude mouse model. In summary, NOV can sensitize CRC cells towards 5-Fu-mediated inhibitory effect on cell proliferation and its sensitization may be achieved by the JNK/AP-1/Caspase-8/Caspase-3 pathway.
Collapse
Affiliation(s)
- Dong Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Tingting Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Yongbo An
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Lan Jin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Jin Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Guocong Wu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Jun Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.
| |
Collapse
|
10
|
Transcriptomic Analyses Reveal Gene Expression Profiles and Networks in Nasopharyngeal Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8890176. [PMID: 33564686 PMCID: PMC7850831 DOI: 10.1155/2021/8890176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Background Nasopharyngeal carcinoma (NPC) is a rare but highly aggressive tumor that is predominantly encountered in Southeast Asia and China in particular. Aside from radiotherapy, no effective therapy that specifically treats NPC is available, including targeted drugs. Finding more sensitive biomarkers is important for new drug discovery and for evaluating patient prognosis. Methods mRNA expression datasets from the Gene Expression Omnibus database (GSE53819, GSE64634, and GSE40290) were selected. After all samples in each dataset were subjected to quality control using principal component analyses, the qualified samples were used for additional analyses. The genes that were significantly expressed in each dataset were intersected to identify the most significant of these. Gene functional enrichment analyses were performed on these genes, using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses. The protein–protein interaction network of selected genes was analyzed using the Search Tool for the Retrieval of Interacting Genes database. Significantly, differentially expressed genes were further verified with two RNA-seq datasets (GSE68799 and GSE12452), as well as in clinical samples. Results In all, 34 (8 upregulated genes and 26 downregulated) genes were identified as significantly differentially expressed. The immune response and the regulation of cell proliferation were the most enriched biological GO terms. Using reverse transcription quantitative real-time PCR (RT-qPCR), the genes MMP1, AQP9, and TNFAIP6 were detected to be upregulated, and FAM3D, CR2, and LTF were downregulated in NPC tissue samples. Conclusion This study provides information on the genes that may be involved in the development of NPC and suggests possible druggable targets and biomarkers for diagnosing and evaluating the prognosis of NPC.
Collapse
|
11
|
Zhang X, Yi S, Xing G, Wu H, Zhu Y, Guo X, Zhang L. FOXCUT Promotes the Proliferation and Invasion by Activating FOXC1/PI3K/AKT Pathway in Colorectal Cancer. Cancer Manag Res 2020; 12:6269-6278. [PMID: 32801872 PMCID: PMC7399466 DOI: 10.2147/cmar.s259801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most commonly diagnosed world cancer. Long noncoding RNAs (lncRNAs) serve important regulatory roles in tumorigenesis. However, the contributions of lncRNAs to human CRC remain largely unknown. Material and Methods FOXC1 and FOXCUT lncRNA expression levels were detected in a panel of paired specimens obtained from 48 patients’ tissues and cell lines with CRC using RT-qPCR. RNA interference was used to investigate potential correlations between FOXC1 and FOXCUT expression in HT29. Cell proliferation was assessed by MTT assay and EdU incorporation assay. The migration and invasion of CRC cells were detected by transwell assay. Western blot was applied to assess the protein expression and PI3K/AKT signaling pathway. Results In this study, a novel long noncoding RNA (FOXCUT) was frequently overexpressed in CRC tissues and cell lines. In addition, the expressions of FOXCUT and FOXC1 were positively correlated. When the expression of FOXCUT was downregulated by small interfering RNA (siRNA), the expression of FOXC1 was also decreased. Moreover, knockdown of FOXCUT significantly inhibited proliferation and invasion of CRC cell lines and resulted in downregulated expression of the matrix metalloproteinase 1 (MMP-1). Mechanistically, FOXCUT promotes the expression of FOXC1 to activate PI3K/AKT signaling pathway for its regulation of cell growth and proliferation. Conclusion In summary, our findings indicate that FOXCUT plays an important oncogenic role and may serve as a novel biomarker and therapeutic target in CRC progression.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Shanyong Yi
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Guochen Xing
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Huili Wu
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Ying Zhu
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Xiaodan Guo
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Lei Zhang
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, People's Republic of China
| |
Collapse
|
12
|
Gharibi T, Babaloo Z, Hosseini A, Abdollahpour-alitappeh M, Hashemi V, Marofi F, Nejati K, Baradaran B. Targeting STAT3 in cancer and autoimmune diseases. Eur J Pharmacol 2020; 878:173107. [DOI: 10.1016/j.ejphar.2020.173107] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
|
13
|
Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, Liu Q, Dou R, Xiong B. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer 2019; 18:64. [PMID: 30927925 PMCID: PMC6441214 DOI: 10.1186/s12943-019-0976-4] [Citation(s) in RCA: 555] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/22/2019] [Indexed: 02/08/2023] Open
Abstract
Background Tumor-associated macrophages (TAMs) are major components of tumor microenvironment that frequently associated with tumor metastasis in human cancers. Circulating tumor cell (CTC), originating from primary tumor sites, is considered to be the precursors of tumor metastasis. However, the regulatory mechanism of TAMs in CTC-mediated tumor metastasis still remains unclear. Methods Immunohistochemical staining was used to detect the macrophages infiltration (CD68 and CD163), epithelial–mesenchymal transition (EMT) markers (E-cadherin and Vimentin) expression in serial sections of human colorectal cancer (CRC) specimens. Then, the correlations between macrophages infiltration and clinicopathologic features, mesenchymal CTC ratio, and patients’ prognosis were analyzed. A co-culture assay in vitro was used to evaluate the role of TAMs on CRC EMT, migration and invasion, and ELISA, luciferase reporter assay and CHIP were performed to uncover the underlying mechanism. Furthermore, an in vivo model was carried out to confirm the effect of TAMs on mesenchymal CTC-mediated metastasis. Results Clinically, CD163+ TAMs infiltrated in invasive front was associated with EMT, mesenchymal CTC ratio, and poor prognosis in patients with CRC. CRC–conditioned macrophages regulated EMT program to enhance CRC cells migration and invasion by secreting IL6. TAMs-derived IL6 activated the JAK2/STAT3 pathway, and activated STAT3 transcriptionally inhibited the tumor suppressor miR-506-3p in CRC cells. miR-506-3p, a key miRNA regulating FoxQ1, was downregulated in CRC cells, resulting in increased FoxQ1 expression, which in turn led to the production of CCL2 that promoted macrophage recruitment. Inhibition of CCL2 or IL6 broke this loop and reduced macrophage migration and mesenchymal CTC-mediated metastasis, respectively. Conclusions Our data indicates that TAMs induce EMT program to enhance CRC migration, invasion, and CTC-mediated metastasis by regulating the JAK2/STAT3/miR-506-3p/FoxQ1 axis, which in turn leads to the production of CCL2 that promote macrophage recruitment, revealing a new cross-talk between immune cells and tumor cells in CRC microenvironment. Electronic supplementary material The online version of this article (10.1186/s12943-019-0976-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Wei
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Dongdong Shi
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Chunxiao Zhang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Xiaobin Lin
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Qing Liu
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Rongzhang Dou
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China. .,Hubei Cancer Clinical Study Center, Wuhan, China.
| |
Collapse
|
14
|
Felton J, Hu S, Raufman JP. Targeting M3 Muscarinic Receptors for Colon Cancer Therapy. Curr Mol Pharmacol 2018; 11:184-190. [PMID: 29357811 DOI: 10.2174/1874467211666180119115828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/06/2017] [Accepted: 12/26/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Expression and activation of subtype-3 muscarinic receptors (M3R) plays an important role in the progression of colorectal neoplasia. METHOD Herein, we describe the role of muscarinic receptors in colon cancer, focusing specifically on M3R, illustrate how M3R over-expression and activation of post-receptor signaling pathways potentiates tumor progression, and explore the efficacy and safety of a variety of therapeutic approaches that can target the molecules involved. RESULTS Colon cancers overexpress M3R mRNA (CHRM3) and protein, and post-M3R signaling stimulates cell proliferation. Post-M3R signal transduction is complex, involving interplay between epidermal growth factor receptors (EGFR)/ERK and protein kinase C (PKC)/p38 mitogen-activated protein (MAP) kinase signaling pathways. In particular, the development of an invasive and metastatic phenotype requires that these signaling interactions augment cellular release of a key collagenase, matrix metalloproteinase-1 (MMP1). Blocking either M3R activation or post-M3R signaling attenuates MMP1 release and colon cancer invasiveness. CONCLUSION Parsing the complexities of these signaling interactions is important, not only to understand these mechanisms of cancer initiation and progression, but also to develop novel treatment modalities. Since the vast majority of persons with colon cancer die from disseminated disease, preventing or reversing metastatic spread of cancer cells by targeting M3R, post-M3R signaling, or MMP1 has therapeutic potential.
Collapse
Affiliation(s)
- Jessica Felton
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shien Hu
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Small-molecule compounds targeting the STAT3 DNA-binding domain suppress survival of cisplatin-resistant human ovarian cancer cells by inducing apoptosis. Eur J Med Chem 2018; 157:887-897. [DOI: 10.1016/j.ejmech.2018.08.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/19/2018] [Accepted: 08/12/2018] [Indexed: 12/24/2022]
|
16
|
Jiang XF, Ding L, Tian Y, Han N, Li ZQ. Interaction of STAT3 and RelB modulates MMP-1 in colon cancer. Chem Biol Interact 2018; 293:94-99. [PMID: 30040915 DOI: 10.1016/j.cbi.2018.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/06/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND MMP-1 (Matrix metalloproteinase-1) promotes carcinogenesis and distant metastasis in different cancers. Regulation of MMP-1 could occur at multiple levels: epigenetically, post-transcriptionally, or post-translationally. An increasing body of evidence supports that the cytoplasmic transcription factor STAT3 (signal transducer and activator of transcription 3) is activated constitutively in a variety of cancers wherein it significantly affects the growth of tumors and also facilitates metastasis. In addition, STAT3 has been found to regulate nuclear activity pro-inflammatory transcriptional factor, NF-κB signaling, especially, the alternative one (RelB/p100) by directly interacting with them METHOD AND RESULTS: In this proof of concept study, we tested the hypothesis that STAT3 interacts with RelB to promote tumor invasion by positively regulating MMP-1 in colon cancer. We found that RelB and STAT3 were constitutively localized in the nucleus of colon cancer in surgically-resected specimens with use of Western blot analysis, which was further confirmed by immunofluorescence (IF) staining in colon carcinoma cell line HT29. We further observed that STAT3/RelB knockdown resulted in reduced MMP-1. Our results from chromatin immunoprecipitation studies further established that association between RelB and MMP-1 promoter decreased when STAT3 was depleted, and conversely, STAT3 association with MMP-1 decreased with the knockdown of RelB. CONCLUSION These results suggest that STAT3 and ReB constitute a minimal activator complex for positive regulation of MMP-1 in colon cancer.
Collapse
Affiliation(s)
- Xue-Feng Jiang
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, China
| | - Lei Ding
- Department of Radiology, China-Japan Union Hospital of Jilin University, China.
| | - Yuan Tian
- Medical Examination Center, China-Japan Union Hospital of Jilin University, China
| | - Ning Han
- Department of Radiology, China-Japan Union Hospital of Jilin University, China
| | - Zhi-Qi Li
- Department of Radiology, No.208 PLA Hospital, Changchun, China
| |
Collapse
|
17
|
IL-12-mediated transcriptional regulation of matrix metalloproteinases. Biosci Rep 2018; 38:BSR20171420. [PMID: 29555826 PMCID: PMC5997794 DOI: 10.1042/bsr20171420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are extracellular matrix (ECM) remodelling enzymes involved in developmental processes, tissue remodelling and repair, inflammatory and immune diseases and cancer. In a recent issue of Bioscience Reports (vol. 37, issue 6, BSR20170973), Liu and colleagues investigated the expression of MMPs such as MMP-1 (interstitial collagenase), MMP-3 (stromelysin 1) and MMP-13 (collagenase 3) in human periodontal ligament fibroblasts (hPDLFs) regulated by interleukin-12 (IL-12), a cytokine implicated in inflammatory and immune responses. They showed that IL-12 activates canonical nuclear factor-κB (NF-κB) signalling leading to increased expression of MMP-1, MMP-3 and MMP-13, and to a smaller reduction in the expression of MMP-2 (gelatinase A) and MMP-9 (gelatinase B) at both mRNA and protein levels, with corresponding changes in the secreted levels of these ECM-remodelling and immune regulatory metalloproteinases. While canonical NF-κB signalling regulates these MMPs, it also interacts with additional factors to determine whether some of these MMPs are induced or downregulated, in response to IL-12. Here, we comment on the possible mechanisms of IL-12-mediated transcriptional regulation of MMPs.
Collapse
|
18
|
Calautti E, Avalle L, Poli V. Psoriasis: A STAT3-Centric View. Int J Mol Sci 2018; 19:ijms19010171. [PMID: 29316631 PMCID: PMC5796120 DOI: 10.3390/ijms19010171] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 12/24/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT)3 has recently emerged as a key player in the development and pathogenesis of psoriasis and psoriatic-like inflammatory conditions. Indeed, STAT3 hyperactivation has been reported in virtually every cell type involved in disease initiation and maintenance, and this factor mediates the signal of most cytokines that are involved in disease pathogenesis, including the central Interleukin (IL)-23/IL-17/IL-22 axis. Despite the recent availability of effective biological agents (monoclonal antibodies) against IL-17 and IL-23, which have radically changed the current standard of disease management, the possibility of targeting either STAT3 itself or, even better, the family of upstream activators Janus kinases (JAK1, 2, 3, and TYK2) offers additional therapeutic options. Due to the oral/topical administration modality of these small molecule drugs, their lower cost, and the reduced risk of eliciting adverse immune responses, these compounds are being actively scrutinized in clinical settings. Here, we summarize the main pathological features of psoriatic conditions that provide the rationale for targeting the JAK/STAT3 axis in disease treatment.
Collapse
Affiliation(s)
- Enzo Calautti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
19
|
Cutler SJ, Doecke JD, Ghazawi I, Yang J, Griffiths LR, Spring KJ, Ralph SJ, Mellick AS. Novel STAT binding elements mediate IL-6 regulation of MMP-1 and MMP-3. Sci Rep 2017; 7:8526. [PMID: 28819304 PMCID: PMC5561029 DOI: 10.1038/s41598-017-08581-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/24/2017] [Indexed: 01/30/2023] Open
Abstract
Dynamic remodelling of the extracellular matrix (ECM) is a key feature of cancer progression. Enzymes that modify the ECM, such as matrix metalloproteinases (MMPs), have long been recognised as important targets of anticancer therapy. Inflammatory cytokines are known to play a key role in regulating protease expression in cancer. Here we describe the identification of gamma-activated site (GAS)-like, signal transducer and activator of transcription (STAT) binding elements (SBEs) within the proximal promoters of the MMP-1 and MMP-3 genes, which in association with AP-1 components (c-Fos or Jun), bind STAT-1 in a homodimer like complex (HDLC). We further demonstrate that MMP expression and binding of this complex to SBEs can either be enhanced by interleukin (IL)-6, or reduced by interferon gamma (IFN-γ), and that IL-6 regulation of MMPs is not STAT-3 dependent. Collectively, this data adds to existing understanding of the mechanism underlying cytokine regulation of MMP expression via STAT-1, and increases our understanding of the links between inflammation and malignancy in colon cancer.
Collapse
Affiliation(s)
- Samuel J Cutler
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia
| | - James D Doecke
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia
| | - Ibtisam Ghazawi
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia
| | - Jinbo Yang
- Department of Molecular Genetics, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio, 44195, USA
| | - Lyn R Griffiths
- Institute for Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Kevin J Spring
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.,Ingham Institute for Applied Medical Research, South Western Sydney Clinical School UNSW & CONCERT Translational Cancer Research Centre, 1 Campbell Street, Liverpool, NSW 2170, Australia
| | - Stephen J Ralph
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia.
| | - Albert S Mellick
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia. .,School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia. .,Ingham Institute for Applied Medical Research, South Western Sydney Clinical School UNSW & CONCERT Translational Cancer Research Centre, 1 Campbell Street, Liverpool, NSW 2170, Australia.
| |
Collapse
|
20
|
Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy. Int J Mol Sci 2017; 18:ijms18061234. [PMID: 28594363 PMCID: PMC5486057 DOI: 10.3390/ijms18061234] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1), a non-receptor protein tyrosine phosphatase, has been reported as a negative regulator of phosphorylated signal transducer and activator of transcription 3 (STAT3) and linked to tumor development. In this present review, we will discuss the importance and function of SHP-1/p-STAT3 signaling in nonmalignant conditions as well as malignancies, its cross-talk with other pathways, the current clinical development and the potential role of inhibitors of this pathway in anticancer therapy and clinical relevance of SHP-1/p-STAT3 in cancers. Lastly, we will summarize and highlight work involving novel drugs/compounds targeting SHP-1/p-STAT3 signaling and combined strategies that were/are discovered in our and our colleagues’ laboratories.
Collapse
|
21
|
Li WX, Yang MX, Hong XQ, Dong TG, Yi T, Lin SL, Qin XY, Niu WX. Overexpression of gelsolin reduces the proliferation and invasion of colon carcinoma cells. Mol Med Rep 2016; 14:3059-65. [PMID: 27573444 PMCID: PMC5042772 DOI: 10.3892/mmr.2016.5652] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 01/04/2016] [Indexed: 01/18/2023] Open
Abstract
The enhanced motility of cancer cells via the remodeling of the actin cytoskeleton is crucial in the process of cancer cell invasion and metastasis. It was previously demonstrated that gelsolin (GSN) may be involved as a tumor or a metastasis suppressor, depending on the cell lines and model systems used. In the present study, the effect of GSN on the growth and invasion of human colon carcinoma (CC) cells was investigated using reverse transcription quantitative polymerase chain reaction and western blotting. It was observed that upregulation of the expression of GSN in human CC cells significantly reduced the invasiveness of these cells. The expression levels of GSN were observed to be reduced in CC cells, and the reduced expression level of GSN was often associated with a poorer metastasis-free survival rate in patients with CC (P=0.04). In addition, the overexpression of GSN inhibited the invasion of CC cells in vitro. Furthermore, GSN was observed to inhibit signal transducer and activator of transcription (STAT) 3 signaling in CC cells. Together, these results suggested that GSN is critical in regulating cytoskeletal events and inhibits the invasive and/or metastatic potential of CC cells. The results obtained in the present study may improve understanding of the functional and mechanistic links between GSN as a possible tumor suppressor and the STAT3 signaling pathway, with respect to the aggressive nature of CC. In addition, the present study demonstrated the importance of GSN in regulating the invasion and metastasis of CC cells at the molecular level, suggesting that GSN may be a potential predictor of prognosis and treatment success in CC.
Collapse
Affiliation(s)
- Wen-Xiang Li
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Meng-Xuan Yang
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Xin-Qiang Hong
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Tian-Geng Dong
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Tuo Yi
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Sheng-Li Lin
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Xin-Yu Qin
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Wei-Xin Niu
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
22
|
Lee JH, Kim JE, Kim BG, Han HH, Kang S, Cho NH. STAT3-induced WDR1 overexpression promotes breast cancer cell migration. Cell Signal 2016; 28:1753-60. [PMID: 27521604 DOI: 10.1016/j.cellsig.2016.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023]
Abstract
WD repeat domain 1 (WDR1), a protein that assists cofilin-mediated actin filament disassembly, is overexpressed in the invading front of invasive ductal carcinoma (IDC), but its implication of overexpression and how to be regulated have not been studied. In our study, we demonstrated that STAT3 bound to the 5' upstream sequence (-1971 to -1964), a putative promoter region, of WDR1 gene, and its activation induced WDR1 overexpression in breast cancer cells. The exogenous overexpression of WDR1 increased the migration of MDA-MB-231, which was attenuated by WDR1 knockdown. In the analysis of breast cancer patients, WDR1 overexpression was associated with a shorter distant metastasis-free survival (DMFS), more specifically in basal-like tumors.
Collapse
Affiliation(s)
- Joo Hyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Baek Gil Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Han
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suki Kang
- The Severance Biomedical Science Institute, Seoul, Republic of Korea
| | - Nam Hoon Cho
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea; The Severance Biomedical Science Institute, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Weng MT, Tsao PN, Lin HL, Tung CC, Change MC, Chang YT, Wong JM, Wei SC. Hes1 Increases the Invasion Ability of Colorectal Cancer Cells via the STAT3-MMP14 Pathway. PLoS One 2015; 10:e0144322. [PMID: 26650241 PMCID: PMC4674118 DOI: 10.1371/journal.pone.0144322] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/15/2015] [Indexed: 12/21/2022] Open
Abstract
The Notch pathway contributes to self-renewal of tumor-initiating cell and inhibition of normal colonic epithelial cell differentiation. Deregulated expression of Notch1 and Jagged1 is observed in colorectal cancer. Hairy/enhancer of split (HES) family, the most characterized targets of Notch, involved in the development of many cancers. In this study, we explored the role of Hes1 in the tumorigenesis of colorectal cancer. Knocking down Hes1 induced CRC cell senescence and decreased the invasion ability, whereas over-expression of Hes1 increased STAT3 phosphorylation activity and up-regulated MMP14 protein level. We further explored the expression of Hes1 in human colorectal cancer and found high Hes1 mRNA expression is associated with poor prognosis in CRC patients. These findings suggest that Hes1 regulates the invasion ability through the STAT3-MMP14 pathway in CRC cells and high Hes1 expression is a predictor of poor prognosis of CRC.
Collapse
Affiliation(s)
- MT Weng
- Department of Internal Medicine, Far-Eastern Memorial Hospital, New Taipei, Taiwan
- Department of Chemical Engineering & Materials Science, Yuan-Ze University, Taoyuan, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - PN Tsao
- Department of Pediatrics, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - HL Lin
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - CC Tung
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - MC Change
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - YT Chang
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - JM Wong
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - SC Wei
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
24
|
Hierold J, Baek S, Rieger R, Lim TG, Zakpur S, Arciniega M, Lee KW, Huber R, Tietze LF. Design, Synthesis, and Biological Evaluation of Quercetagetin Analogues as JNK1 Inhibitors. Chemistry 2015; 21:16887-94. [PMID: 26541354 DOI: 10.1002/chem.201502475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 11/09/2022]
Abstract
The recent discovery of c-Jun NH2-terminal kinase JNK1 suppression by natural quercetagetin (1) is a promising lead for the development of novel anticancer agents. Using both X-ray structure and docking analyses we predicted that 5'-hydroxy- (2) and 5'-hydroxymethyl-quercetagetin (3) would inhibit JNK1 more actively than the parent compound 1. Notably, our drug design was based on the active enzyme-ligand complex as opposed to the enzyme's relatively open apo structure. In this paper we test our theoretical predictions, aided by docking-model experiments, and report the first synthesis and biological evaluation of quercetagetin analogues 2 and 3. As calculated, both compounds strongly suppress JNK1 activity. The IC50 values were determined to be 3.4 μM and 12.2 μM, respectively, which shows that 2 surpasses the potency of the parent compound 1 (IC50 =4.6 μM). Compound 2 was also shown to suppress matrix metalloproteinase-1 expression with high specificity after UV irradiation.
Collapse
Affiliation(s)
- Judith Hierold
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany), Fax: (+49) 551-39-9476
| | - Sohee Baek
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany).,Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Republic of Korea).,Proteros Biostructures GmbH, Bunsenstr. 7a, 82152 Martinsried (Germany)
| | - Rene Rieger
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany), Fax: (+49) 551-39-9476
| | - Tae-Gyu Lim
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Republic of Korea)
| | - Saman Zakpur
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany), Fax: (+49) 551-39-9476
| | - Marcelino Arciniega
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany)
| | - Ki Won Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Republic of Korea).,WCU Biomodulation Major, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, Seoul National University, Seoul (Republic of Korea)
| | - Robert Huber
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany).,Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching (Germany).,Center for Medical Biotechnology, University of Duisburg-Essen, 45117 Essen (Germany).,School of Biosciences, Cardiff University, Cardiff (Wales, UK)
| | - Lutz F Tietze
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany), Fax: (+49) 551-39-9476.
| |
Collapse
|
25
|
Schütz A, Röser K, Klitzsch J, Lieder F, Aberger F, Gruber W, Mueller KM, Pupyshev A, Moriggl R, Friedrich K. Lung Adenocarcinomas and Lung Cancer Cell Lines Show Association of MMP-1 Expression With STAT3 Activation. Transl Oncol 2015; 8:97-105. [PMID: 25926075 PMCID: PMC4415137 DOI: 10.1016/j.tranon.2015.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/21/2015] [Accepted: 02/04/2015] [Indexed: 01/10/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non–small cell lung carcinoma (NSCLC) cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1) was analyzed and correlated with the STAT3 activity status. Studies on both surgical biopsies and on lung cancer cell lines revealed a coincidence of STAT3 activation and strong expression of MMP-1. MMP-1 and tyrosine-phosphorylated activated STAT3 were found co-localized in cancer tissues, most pronounced in tumor fronts, and in particular in adenocarcinomas. STAT3 activity was constitutive, although to different degrees, in the lung cancer cell lines investigated. Three cell lines (BEN, KNS62, and A549) were identified in which STAT3 activitation was inducible by Interleukin-6 (IL-6). In A549 cells, STAT3 activity enhanced the level of MMP-1 mRNA and stimulated transcription from the MMP-1 promoter in IL-6–stimulated A549 cells. STAT3 specificity of this effect was confirmed by STAT3 knockdown through RNA interference. Our results link aberrant activity of STAT3 in lung cancer cells to malignant tumor progression through up-regulation of expression of invasiveness-associated MMPs.
Collapse
Affiliation(s)
| | - Katrin Röser
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Jana Klitzsch
- Institute of Pathology, University of Leipzig, Leipzig, Germany
| | - Franziska Lieder
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Fritz Aberger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Wolfgang Gruber
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | | |
Collapse
|
26
|
Abstract
The Janus tyrosine kinases JAK1-3 and tyrosine kinase-2 (TYK2) are frequently hyperactivated in tumors. In lung cancers JAK1 and JAK2 induce oncogenic signaling through STAT3. A putative role of TYK2 in these tumors has not been reported. Here, we show a previously not recognized TYK2-STAT3 signaling node in lung cancer cells. We reveal that the E3 ubiquitin ligase seven-in-absentia-2 (SIAH2) accelerates the proteasomal degradation of TYK2. This mechanism consequently suppresses the activation of STAT3. In agreement with these data the analysis of primary non-small-cell lung cancer (NSCLC) samples from three patient cohorts revealed that compared to lung adenocarcinoma (ADC), lung squamous cell carcinoma (SCC) show significantly higher levels of SIAH2 and reduced STAT3 phosphorylation levels. Thus, SIAH2 is a novel molecular marker for SCC. We further demonstrate that an activation of the oncologically relevant transcription factor p53 in lung cancer cells induces SIAH2, depletes TYK2, and abrogates the tyrosine phosphorylation of STAT1 and STAT3. This mechanism appears to be different from the inhibition of phosphorylated JAKs through the suppressor of cytokine signaling (SOCS) proteins. Our study may help to identify molecular mechanisms affecting lung carcinogenesis and potential therapeutic targets.
Collapse
|
27
|
Zhang Q, Yang Z, Jia Z, Liu C, Guo C, Lu H, Chen P, Ma K, Wang W, Zhou C. ISL-1 is overexpressed in non-Hodgkin lymphoma and promotes lymphoma cell proliferation by forming a p-STAT3/p-c-Jun/ISL-1 complex. Mol Cancer 2014; 13:181. [PMID: 25070240 PMCID: PMC4125377 DOI: 10.1186/1476-4598-13-181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 07/22/2014] [Indexed: 12/20/2022] Open
Abstract
Background Insulin enhancer binding protein-1 (ISL-1), a LIM-homeodomain transcription factor, is essential for the heart, motor neuron and pancreas development. Recently, ISL-1 has been found in some types of human cancers. However, how ISL-1 exerts the role in tumor development is not clear. Methods and results The expression of ISL-1 was assessed in 211 human lymphoma samples and 23 normal lymph node samples. Immunohistochemistry results demonstrated a markedly higher expression of ISL-1 in 75% of non-Hodgkin lymphoma (NHL) samples compared with that in normal lymph nodes or Hodgkin lymphoma (HL) samples. CCK-8 analysis, cell cycle assay and xenograft model were performed to characterize the association between ISL-1 expression level and biological functions in NHL. The results showed that ISL-1 overexpression obviously promoted NHL cells proliferation, changed the cell cycle distribution in vitro and significantly enhanced xenografted lymphoma development in vivo. Real-time PCR, Western blot, luciferase assay and ChIP assay were used to explore the potential regulatory targets of ISL-1 and the results demonstrated that ISL-1 activated the c-Myc expression in NHL by direct binding to a conserved binding site on the c-Myc enhancer. Further results revealed that ISL-1 could be positively regulated by the c-Jun N-terminal kinase (JNK) and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways. Both the JNK and JAK/STAT signaling inhibitors could significantly suppressed the growth of NHL cells through the down-regulation of ISL-1 as demonstrated by CCK-8 and Western blot assays. Bioinformatic analysis and luciferase assay exhibited that ISL-1 was a novel target of p-STAT3 and p-c-jun. ChIP, Co-IP and ChIP-re-IP analysis revealed that ISL-1 could participate with p-STAT3 and p-c-Jun to form a p-STAT3/p-c-Jun/ISL-1 transcriptional complex that binds directly on the ISL-1 promoter, demonstrating a positive feedback regulatory mechanism for ISL-1 expression in NHL. Conclusions Our results provide the first evidence that ISL-1 is tightly linked to NHL proliferation and development by promoting c-Myc transcription, and its aberrant expression was regulated by p-STAT3/p-c-Jun/ISL-1 complex activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xueyuan Road, 100191 Beijing, China.
| | | |
Collapse
|
28
|
STAT3 Target Genes Relevant to Human Cancers. Cancers (Basel) 2014; 6:897-925. [PMID: 24743777 PMCID: PMC4074809 DOI: 10.3390/cancers6020897] [Citation(s) in RCA: 389] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/22/2014] [Accepted: 03/28/2014] [Indexed: 12/29/2022] Open
Abstract
Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers.
Collapse
|
29
|
Wang SW, Sun YM. The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (Review). Int J Oncol 2014; 44:1032-40. [PMID: 24430672 DOI: 10.3892/ijo.2014.2259] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/07/2014] [Indexed: 11/06/2022] Open
Abstract
Among the cytokines linked to inflammation-associated cancer, interleukin (IL)-6 drives many of the cancer 'hallmarks' through downstream activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway. Additionally, dysregulation of the interleukin (IL)-6-mediated JAK/STAT3 signaling pathway is closely related to the development of diverse human solid tumors including colorectal cancer (CRC). On this basis, modulation of the IL-6/JAK/STAT3 signaling pathway is currently being widely explored to develop novel therapies for CRC. The present review details the mechanisms and roles of the IL-6/JAK/STAT3 pathway in CRC, describes current therapeutic strategies, and the search for potential therapeutic approaches to treat CRC.
Collapse
Affiliation(s)
- Shu-Wei Wang
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Yue-Ming Sun
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
30
|
Díaz Flaqué MC, Galigniana NM, Béguelin W, Vicario R, Proietti CJ, Russo RC, Rivas MA, Tkach M, Guzmán P, Roa JC, Maronna E, Pineda V, Muñoz S, Mercogliano MF, Charreau EH, Yankilevich P, Schillaci R, Elizalde PV. Progesterone receptor assembly of a transcriptional complex along with activator protein 1, signal transducer and activator of transcription 3 and ErbB-2 governs breast cancer growth and predicts response to endocrine therapy. Breast Cancer Res 2013; 15:R118. [PMID: 24345432 PMCID: PMC3978912 DOI: 10.1186/bcr3587] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/09/2013] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION The role of the progesterone receptor (PR) in breast cancer remains a major clinical challenge. Although PR induces mammary tumor growth, its presence in breast tumors is a marker of good prognosis. We investigated coordinated PR rapid and nonclassical transcriptional effects governing breast cancer growth and endocrine therapy resistance. METHODS We used breast cancer cell lines expressing wild-type and mutant PRs, cells sensitive and resistant to endocrine therapy, a variety of molecular and cellular biology approaches, in vitro proliferation studies and preclinical models to explore PR regulation of cyclin D1 expression, tumor growth, and response to endocrine therapy. We investigated the clinical significance of activator protein 1 (AP-1) and PR interaction in a cohort of 99 PR-positive breast tumors by an immunofluorescence protocol we developed. The prognostic value of AP-1/PR nuclear colocalization in overall survival (OS) was evaluated using Kaplan-Meier method, and Cox model was used to explore said colocalization as an independent prognostic factor for OS. RESULTS We demonstrated that at the cyclin D1 promoter and through coordinated rapid and transcriptional effects, progestin induces the assembly of a transcriptional complex among AP-1, Stat3, PR, and ErbB-2 which functions as an enhanceosome to drive breast cancer growth. Our studies in a cohort of human breast tumors identified PR and AP-1 nuclear interaction as a marker of good prognosis and better OS in patients treated with tamoxifen (Tam), an anti-estrogen receptor therapy. Rationale for this finding was provided by our demonstration that Tam inhibits rapid and genomic PR effects, rendering breast cancer cells sensitive to its antiproliferative effects. CONCLUSIONS We here provided novel insight into the paradox of PR action as well as new tools to identify the subgroup of ER+/PR + patients unlikely to respond to ER-targeted therapies.
Collapse
Affiliation(s)
- María C Díaz Flaqué
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Natalia M Galigniana
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Wendy Béguelin
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Rocío Vicario
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Cecilia J Proietti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Rosalía Cordo Russo
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Martín A Rivas
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Mercedes Tkach
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | | | - Juan C Roa
- Universidad de La Frontera, Temuco, Chile
| | - Esteban Maronna
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
- Sanatorio Mater Dei, Buenos Aires, Argentina
| | | | | | | | - Eduardo H Charreau
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Patricio Yankilevich
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Roxana Schillaci
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Patricia V Elizalde
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| |
Collapse
|
31
|
Drago E, Bordonaro M, Lee S, Atamna W, Lazarova DL. Propolis augments apoptosis induced by butyrate via targeting cell survival pathways. PLoS One 2013; 8:e73151. [PMID: 24023824 PMCID: PMC3762847 DOI: 10.1371/journal.pone.0073151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/19/2013] [Indexed: 12/19/2022] Open
Abstract
Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC), and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling) may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors.
Collapse
Affiliation(s)
- Eric Drago
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
| | - Michael Bordonaro
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
| | - Seon Lee
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
| | - Wafa Atamna
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
| | - Darina L. Lazarova
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Spitzner M, Roesler B, Bielfeld C, Emons G, Gaedcke J, Wolff HA, Rave-Fränk M, Kramer F, Beissbarth T, Kitz J, Wienands J, Ghadimi BM, Ebner R, Ried T, Grade M. STAT3 inhibition sensitizes colorectal cancer to chemoradiotherapy in vitro and in vivo. Int J Cancer 2013; 134:997-1007. [PMID: 23934972 DOI: 10.1002/ijc.28429] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/23/2013] [Indexed: 01/05/2023]
Abstract
Increased activity of signal transducer and activator of transcription 3 (STAT3) is common in human malignancies, including colorectal cancers (CRCs). We have recently reported that STAT3 gene expression correlates with resistance of CRC cell lines to 5-fluorouracil (5-FU)-based chemoradiotherapy (CT/RT). This is of considerable clinical importance, because a large proportion of rectal cancers are resistant to preoperative multimodal treatment. To test whether STAT3 contributes to CT/RT-resistance, we first confirmed that STAT3 protein expression correlated positively with increasing resistance. While STAT3 was not constitutively active, stimulation with interleukin-6 (IL-6) resulted in remarkably higher expression levels of phosphorylated STAT3 in CT/RT-resistant cell lines. A similar result was observed when we determined IL-6-induced expression levels of phosphorylated STAT3 following irradiation. Next, STAT3 was inhibited in SW480 and SW837 using siRNA, shRNA and the small-molecule inhibitor STATTIC. Successful silencing and inhibition of phosphorylation was confirmed using Western blot analysis and a luciferase reporter assay. RNAi-mediated silencing as well as STATTIC treatment resulted in significantly decreased clonogenic survival following exposure to 3 µM of 5-FU and irradiation in a dose-dependent manner, with dose-modifying factors of 1.3-2.5 at a surviving fraction of 0.37. Finally, STAT3 inhibition led to a profound CT/RT-sensitization in a subcutaneous xenograft model, with a significantly delayed tumor regrowth in STATTIC-treated mice compared with control animals. These results highlight a potential role of STAT3 in mediating treatment resistance and provide first proof of concept that STAT3 represents a promising novel molecular target for sensitizing resistant rectal cancers to CT/RT.
Collapse
Affiliation(s)
- Melanie Spitzner
- Department of General and Visceral Surgery, University Medicine Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gordziel C, Bratsch J, Moriggl R, Knösel T, Friedrich K. Both STAT1 and STAT3 are favourable prognostic determinants in colorectal carcinoma. Br J Cancer 2013; 109:138-46. [PMID: 23756862 PMCID: PMC3708576 DOI: 10.1038/bjc.2013.274] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/30/2013] [Accepted: 05/14/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Aberrant activities of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling pathways have been implicated in the development and spread of various cancer entities, among them colorectal carcinoma (CRC). Transcription factors STAT3 and STAT1, both downstream effectors of interleukin (IL)-6 and its receptor, are involved in growth and developmental control of CRC cells. Constituents of the signalling network around IL-6 and STAT activation are discussed as potential biomarkers and therapeutic targets in CRC. METHODS By immunohistochemical analysis of a tissue microarray covering >400 CRC biopsies, the expression and activity status of STAT1, STAT3 as well as of IL-6 and the IL-6 receptor α-chain was determined. The outcome was correlated with clinical information and patients' survival data. Colorectal carcinoma biopsies were also analysed for specific DNA-binding activity of STATs. RESULTS Statistical analysis showed tendential associations between individual STATs, IL-6/IL-6 receptor-α and clinicopathological parameters. The study revealed a significant correlation of high STAT1 activity with longer patient overall survival. Surprisingly, strong STAT3 expression in surgical specimens was correlated with an increase in median overall survival by about 30 months. Statistical analysis revealed that high expression levels of STAT1 and STAT3 were associated. This finding was backed up by biochemical data that showed simultaneous STAT1 and STAT3 DNA-binding activity in randomly selected CRC biopsies. CONCLUSION By multivariate data analysis, we could show that STAT3 expression and activity constitutes an independent favourable prognostic marker for CRC.
Collapse
Affiliation(s)
- C Gordziel
- Institute of Biochemistry II, University Hospital Jena, Jena, Germany
| | | | | | | | | |
Collapse
|
34
|
Chen HJ, Jiang YL, Lin CM, Tsai SC, Peng SF, Fushiya S, Hour MJ, Yang JS. Dual inhibition of EGFR and c-Met kinase activation by MJ-56 reduces metastasis of HT29 human colorectal cancer cells. Int J Oncol 2013; 43:141-50. [PMID: 23677180 DOI: 10.3892/ijo.2013.1941] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/09/2013] [Indexed: 11/05/2022] Open
Abstract
Quinazolinone derivatives are known to possess anticancer activities on cell metastasis and cell death in different human cancer cell lines. Here, we studied the anti-metastasis activity and the underlying mechanisms of the novel quinazoline derivative MJ-56 (6-pyrrolidinyl-2-(3-bromostyryl)quinazolin-4-one). MJ-56 inhibited cell migration and invasion of HT29 human colorectal cancer cells by wound-healing and Matrigel-coated transwell assays in a concentration-dependent manner. MJ-56-treated cells resulted in the reduced expression of matrix metalloproteinase (MMP)-2, -7, -9 and -10 and the reduced enzymatic activities of MMP-2 and MMP-9. In contrast, MJ-56-treated cells enhanced the expression of the tissue inhibitors of metalloproteinases (TIMPs) TIMP-1 and TIMP-2. Further analyses showed that MJ-56 attenuated the activities of epidermal growth factor receptor (EGFR), c-Met and the downstream ERK-mediated MAPK and PI3K/AKT/mTOR signaling pathways, which led to decreased protein synthesis by dephosphorylating the translation initiation factors eIF-4B, eIF-4E, eIF-4G and S6 ribosomal protein. In addition, MJ-56 interfered with the NF-κB signaling via impairing PI3K/AKT activation and subsequently reduced the NF-κB-mediated transcription of MMPs. Taken together, the reduced expression of phosphor-EGFR and c-MET is chiefly responsible for all events of blocking metastasis. Our results suggest a potential role of MJ-56 on therapy of colorectal cancer metastasis.
Collapse
Affiliation(s)
- Hui-Jye Chen
- Graduate Institute of Molecular Systems Biomedicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Krause P, Flikweert H, Monin M, Seif Amir Hosseini A, Helms G, Cantanhede G, Ghadimi BM, Koenig S. Increased growth of colorectal liver metastasis following partial hepatectomy. Clin Exp Metastasis 2013; 30:681-93. [PMID: 23385555 PMCID: PMC3663204 DOI: 10.1007/s10585-013-9572-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/22/2013] [Indexed: 12/11/2022]
Abstract
Nearly 50 % of colorectal cancer (CRC) patients develop liver metastases with liver resection being the only option to cure patients. Residual micrometastases or circulating tumor cells are considered a cause of tumor relapse. This work investigates the influence of partial hepatectomy (PH) on the growth and molecular composition of CRC liver metastasis in a syngeneic rat model. One million CC531 colorectal tumor cells were implanted via the portal vein in WAG/Rij rats followed by a 30 % PH a day later. Control groups either received tumor cells followed by a sham-operation or were injected with a buffer solution followed by PH. Animals were examined with magnetic resonance imaging (MRI) and liver tissues were processed for immunolabeling and PCR analysis. One-third PH was associated with an almost threefold increase in relative tumor mass (MRI volumetry: 2.8-fold and transcript levels of CD44: 2.3-fold). Expression of molecular markers for invasiveness and aggressiveness (CD49f, CXCR4, Axin2 and c-met) was increased following PH, however with no significant differences when referring to the relative expression levels (relating to tumor mass). Liver metastases demonstrated a significantly higher proliferation rate (Ki67) 2 weeks following PH and cell divisions also increased in the surrounding liver tissue. Following PH, the stimulated growth of metastases clearly exceeded the compensation in liver volume with long-lasting proliferative effects. However, the distinct tumor composition was not influenced by liver regeneration. Future investigations should focus on the inhibition of cell cycle (i.e. systemic therapy strategies, irradiation) to hinder liver regeneration and therefore restrain tumor growth.
Collapse
Affiliation(s)
- P Krause
- Department of General and Visceral Surgery, University Medical Centre, Georg-August-University Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Cai QW, Huang Y. Role of STAT3 in the development and progression of gastroenteric tumors. Shijie Huaren Xiaohua Zazhi 2011; 19:2334-2339. [DOI: 10.11569/wcjd.v19.i22.2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
STAT3 is a member of the signal transducers and activators of transcription (STATs) family of proteins. Cytoplasmic STAT3 is phosphorylated by JAK to form STAT3-STAT3 dimers. After dimerization, the dimers translocate to the nucleus, where they bind to specific DNA response elements in the promoters of target genes to regulate the transcription of these genes. Recently it has been found that STAT3 plays a significant role in gastroenteric tumorigenesis, especially gastric cancer and colorectal carcinoma. STAT3 regulates the expression of genes that mediate survival & anti-apoptosis (Bcl-2, survivin, cyclin D1), invasion & metastasis (matrix metalloproteinases), and angiogenesis (vascular endothelial growth factor). Multiple mechanisms are involved in regulating the STAT3 signaling pathway. Two major groups of direct negative modulators of STAT3 signaling are the suppressors of cytokine signaling (SOCS) and the protein inhibitors of activated STATs (PIAS). STAT3 inhibitors are promising agents for the therapy of gastroenteric tumors.
Collapse
|