1
|
Abstract
Calcium phosphate nanoparticles have a high biocompatibility and biodegradability due to their chemical similarity to human hard tissue, for example, bone and teeth. They can be used as efficient carriers for different kinds of biomolecules such as nucleic acids, proteins, peptides, antibodies, or drugs, which alone are not able to enter cells where their biological effect is required. They can be loaded with cargo molecules by incorporating them, unlike solid nanoparticles, and also by surface functionalization. This offers protection, for example, against nucleases, and the possibility for cell targeting. If such nanoparticles are functionalized with fluorescing dyes, they can be applied for imaging in vitro and in vivo. Synthesis, functionalization and cell uptake mechanisms of calcium phosphate nanoparticles are discussed together with applications in transfection, gene silencing, imaging, immunization, and bone substitution. Biodistribution data of calcium phosphate nanoparticles in vivo are reviewed.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| | - Matthias Epple
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| |
Collapse
|
2
|
Sandhiya V, Ubaidulla U. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00050-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Background
The herbal drug is molded in nanocarriers to boost growing interest in a pharmaceutical era for various fields in sort to amplify therapeutic worth. Nowadays, a promising interest has been developed in nanotechnology using herbal medicines as core material to provoke its activity on the target site.
Main body
By administering herbal medicine in the nano-size form, there are chances for improving the bioavailability, binding receptor selectivity due to higher active surface energy thereby enhancing the effectiveness and safety of the active entity. In the last few decades, formulations with nano-sized herbal active ingredients have emerged as nano-phytomedicines owing to its wide range of interest and effectiveness because of its unique nature. Nanonized drug delivery structure of herbal drug has an approaching outlook for getting bigger the doings and overcome problems associated with plant medicine. The current review will focus on nanoparticles, herbal drug-loading techniques, herbal nanoformulations, and applications in various fields.
Conclusion
We conclude that by formulating herbal drug in nanocarriers would be a promising guide for the progress of core remedy and will act as a promising proposal for many pathological conditions.
Collapse
|
3
|
Kollenda SA, Klose J, Knuschke T, Sokolova V, Schmitz J, Staniszewska M, Costa PF, Herrmann K, Westendorf AM, Fendler WP, Epple M. In vivo biodistribution of calcium phosphate nanoparticles after intravascular, intramuscular, intratumoral, and soft tissue administration in mice investigated by small animal PET/CT. Acta Biomater 2020; 109:244-253. [PMID: 32251787 DOI: 10.1016/j.actbio.2020.03.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Abstract
Calcium phosphate nanoparticles were covalently surface-functionalized with the ligand DOTA and loaded with the radioisotope 68Ga. The biodistribution of such 68Ga-labelled nanoparticles was followed in vivo in mice by positron emission tomography in combination with computer tomography (PET-CT). The biodistribution of 68Ga-labelled nanoparticles was compared for different application routes: intravenous, intramuscular, intratumoral, and into soft tissue. The particle distribution was measured in vivo by PET-CT after 5 min, 15 min, 30 min, 1 h, 2 h, and 4 h, and ex vivo after 5 h. After intravenous injection (tail vein), the nanoparticles rapidly entered the lungs with later redistribution into liver and spleen. The nanoparticles remained mostly at the injection site following intramuscular, intratumoral, or soft tissue application, with less than 10 percent being mobilized into the blood stream. STATEMENT OF SIGNIFICANCE: The in vivo biodistribution of DOTA-terminated calcium phosphate nanoparticles was followed by PET/CT. To our knowledge, this is the first study of this kind. Four different application routes of clinical relevance were pursued: Intravascular, intramuscular, intratumoral, and into soft tissue. Given the high importance of calcium phosphate as biomaterial and for nanoparticular drug delivery and immunization, this is most important to assess the biofate of calcium phosphate nanoparticles for therapeutic application and also judge biodistribution of nanoscopic calcium phosphate ceramics, including debris from endoprostheses and related implants.
Collapse
Affiliation(s)
- Sebastian A Kollenda
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Jasmin Klose
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany
| | - Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Viktoriya Sokolova
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Jochen Schmitz
- Department of Radiopharmacy and Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Magdalena Staniszewska
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany
| | - Pedro Fragoso Costa
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany.
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
4
|
Sokolova V, Loza K, Knuschke T, Heinen-Weiler J, Jastrow H, Hasenberg M, Buer J, Westendorf A, Gunzer M, Epple M. A systematic electron microscopic study on the uptake of barium sulphate nano-, submicro-, microparticles by bone marrow-derived phagocytosing cells. Acta Biomater 2018; 80:352-363. [PMID: 30240952 DOI: 10.1016/j.actbio.2018.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 01/15/2023]
Abstract
Nanoparticles can act as transporters for synthetic molecules and biomolecules into cells, also in immunology. Antigen-presenting cells like dendritic cells are important targets for immunotherapy in nanomedicine. Therefore, we have used primary murine bone marrow-derived phagocytosing cells (bmPCs), i.e. dendritic cells and macrophages, to study their interaction with spherical barium sulphate particles of different size (40 nm, 420 nm, and 1 µm) and to follow their uptake pathway. Barium sulphate is chemically and biologically inert (no dissolution, no catalytic effects), i.e. we can separate the particle uptake effect from potential biological reactions. The colloidal stabilization of the nanoparticles was achieved by a layer of carboxymethylcellulose (CMC) which is biologically inert and gives the particles a negative zeta potential (i.e. charge). The particles were made fluorescent by conjugating 6-aminofluoresceine to CMC. Their uptake was visualized by flow cytometry, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and correlative light and electron microscopy (CLEM). Barium sulphate particles of all sizes were readily taken up by dendritic cells and even more by macrophages, with the uptake increasing with time and particle concentration. They were mainly localized inside phagosomes, heterophagosomes, and in the case of nanoparticles also in the nearby cytosol. No particles were found in the nucleus. In nanomedicine, inorganic nanoparticles from the nanometer to the micrometer size are therefore well suited as transporters of biomolecules, including antigens, into dendritic cells and macrophages. The presented model system may also serve to describe the aseptic loosening of endoprostheses caused by abrasive wear of inert particles and the subsequent cell reaction, a question which relates to the field of nanotoxicology. STATEMENT OF SIGNIFICANCE: The interaction of particles and cells is at the heart of nanomedicine and nanotoxicology, including abrasive wear from endoprostheses. It also comprises the immunological reaction to different kinds of nanomaterials, triggered by an immune response, e.g. by antigen-presenting cells. However, it is often difficult to separate the particle effect from a chemical or biochemical reaction to particles or their cargo. We show how chemically inert barium sulphate particles with three different sizes (nano, sub-micro, and micro) interact with relevant immune cells (primary dendritic cells and macrophages). Particles of all three sizes are readily taken up into both cell types by phagocytosis, but the uptake by macrophages is significantly more prominent than that by dendritic cells. The cells take up particles until they are virtually stuffed, but without direct adverse effect. The uptake increases with time and particle concentration. Thus, we have an ideal model system to follow particles into and inside cells without the side effect of a chemical particle effect, e.g. by degradation or ion release.
Collapse
|
5
|
Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater 2018; 77:1-14. [PMID: 30031162 DOI: 10.1016/j.actbio.2018.07.036] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
Calcium phosphate is applied in many products in biomedicine, but also in toothpastes and cosmetics. In some cases, it is present in nanoparticulate form, either on purpose or after degradation or mechanical abrasion. Possible concerns are related to the biological effect of such nanoparticles. A thorough literature review shows that calcium phosphate nanoparticles as such have no inherent toxicity but can lead to an increase of the intracellular calcium concentration after endosomal uptake and lysosomal degradation. However, cells are able to clear the calcium from the cytoplasm within a few hours, unless very high doses of calcium phosphate are applied. The observed cytotoxicity in some cell culture studies, mainly for unfunctionalized particles, is probably due to particle agglomeration and subsequent sedimentation onto the cell layer, leading to a very high local particle concentration, a high particle uptake, and subsequent cell death. There is no risk from an oral uptake of calcium phosphate nanoparticles due to their rapid dissolution in the stomach. The risk from dermal or mucosal uptake is very low. Calcium phosphate nanoparticles can enter the bloodstream by inhalation, but no adverse effects have been observed, except for a prolonged exposition to high particle doses. Calcium phosphate nanoparticles inside the body (e.g. after implantation or due to abrasion) do not pose a risk as they are typically resorbed and dissolved by osteoclasts and macrophages. There is no indication for a significant influence of the calcium phosphate phase or the particle shape (e.g. spherical or rod-like) on the biological response. In summary, the risk associated with an exposition to nanoparticulate calcium phosphate in doses that are usually applied in biomedicine, health care products, and cosmetics is very low and most likely not present at all. STATEMENT OF SIGNIFICANCE Calcium phosphate is a well-established biomaterial. However, there are occasions when it occurs in a nanoparticulate form (e.g. as nanoparticle or as nanoparticulate bone substitution material) or after abrasion from a calcium phosphate-coated metal implant. In the light of the current discussion on the safety of nanoparticles, there have been concerns about potential adverse effects of nano-calcium phosphate, e.g. in a statement of a EU study group from 2016 about possible dangers associated with non-spherical nano-hydroxyapatite in cosmetics. In the US, there was a discussion in 2016 about the dangers of nano-calcium phosphate in babyfood. In this review, the potential exposition routes for nano-calcium phosphate are reviewed, with special emphasis on its application as biomaterial.
Collapse
|
6
|
van der Meer SB, Knuschke T, Frede A, Schulze N, Westendorf AM, Epple M. Avidin-conjugated calcium phosphate nanoparticles as a modular targeting system for the attachment of biotinylated molecules in vitro and in vivo. Acta Biomater 2017; 57:414-425. [PMID: 28552820 DOI: 10.1016/j.actbio.2017.05.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 01/25/2023]
Abstract
Avidin was covalently conjugated to the surface of calcium phosphate nanoparticles, coated with a thin silica shell and terminated by sulfhydryl groups (diameter of the solid core about 50nm), with a bifunctional crosslinker connecting the amino groups of avidin to the sulfhydryl group on the nanoparticle surface. This led to a versatile nanoparticle system where all kinds of biotinylated (bio-)molecules can be easily attached to the surface by the non-covalent avidin-biotin-complex formation. It also permits the attachment of different biomolecules on the same nanoparticle (heteroavidity), creating a modular system for specific applications in medicine and biology. The variability of the binding to the nanoparticle surface of the was demonstrated with various biotinylated molecules, i.e. fluorescent dyes and antibodies. The accessibility of the conjugated avidin was demonstrated by a fluorescence-quenching assay. About 2.6 binding sites for biotin were accessible on each avidin tetramer. Together with a number of about 240 avidin tetramer units per nanoparticle, this offers about 600 binding sites for biotin on each nanoparticle. The uptake of fluorescently labelled avidin-conjugated calcium phosphate nanoparticles by HeLa cells showed the co-localization of fluorescent avidin and fluorescent biotin, indicating the stability of the complex under cell culture conditions. CD11c-antibody functionalized nanoparticles specifically targeted antigen-presenting immune cells (dendritic cells; DCs) in vitro and in vivo (mice) with high efficiency. STATEMENT OF SIGNIFICANCE Calcium phosphate nanoparticles have turned out to be very useful transporters for biomolecules into cells, both in vitro and in vivo. However, their covalent surface functionalization with antibodies, fluorescent dyes, or proteins requires a separate chemical synthesis for each kind of surface molecule. We have therefore developed avidin-terminated calcium phosphate nanoparticles to which all kinds of biotinylated molecules can be easily attached, also as a mixture of two or more molecules. This non-covalent bond is stable both in cell culture and after injection into mice in vivo. Thus, we have created a highly versatile system for many applications, from the delivery of biomolecules over the targeting of cells and tissue to in vivo imaging.
Collapse
Affiliation(s)
- Selina Beatrice van der Meer
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Torben Knuschke
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Annika Frede
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Nina Schulze
- Imaging Centre Campus Essen (ICCE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Astrid M Westendorf
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany.
| |
Collapse
|
7
|
Kopp M, Kollenda S, Epple M. Nanoparticle-Protein Interactions: Therapeutic Approaches and Supramolecular Chemistry. Acc Chem Res 2017; 50:1383-1390. [PMID: 28480714 DOI: 10.1021/acs.accounts.7b00051] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Research on nanoparticles has evolved into a major topic in chemistry. Concerning biomedical research, nanoparticles have decisively entered the field, creating the area of nanomedicine where nanoparticles are used for drug delivery, imaging, and tumor targeting. Besides these functions, scientists have addressed the specific ways in which nanoparticles interact with biomolecules, with proteins being the most prominent example. Depending on their size, shape, charge, and surface functionality, specifically designed nanoparticles can interact with proteins in a defined way. Proteins have typical dimensions of 5-20 nm. Ultrasmall nanoparticles (size about 1-2 nm) can address specific epitopes on the surface of a protein, for example, an active center of an enzyme. Medium-sized nanoparticles (size about 5 nm) can interact with proteins on a 1:1 basis. Large nanoparticles (above 20 nm) are big in comparison to many proteins and therefore are at the borderline to a two-dimensional surface onto which a protein will adsorb. This can still lead to irreversible structural changes in a protein and a subsequent loss of function. However, as most cells readily take up nanoparticles of almost any size, it is easily possible to use nanoparticles as transporters for proteins into a cell, for example, to address an internal receptor. Much work has been dedicated to this approach, but it is constrained by two processes that can only be observed in living cells or organisms. First, nanoparticles are usually taken up by endocytosis and are delivered into an intracellular endosome. After fusion with a lysosome, a degradation or denaturation of the protein cargo by the acidic environment or by proteases may occur before it can enter the cytoplasm. Second, nanoparticles are rapidly coated with proteins upon contact with biological media like blood. This so-called protein corona influences the contact with other proteins, cells, or tissue and may prevent the desired interaction. Essentially, these effects cannot be understood in purely chemical approaches but require biological environments and systems because the underlying processes are simply too complicated to be modeled in nonbiological systems. The area of nanoparticle-protein interactions strongly relies on different approaches: Synthetic chemistry is involved to prepare, stabilize, and functionalize nanoparticles. High-end analytical chemistry is required to understand the nature of a nanoparticle surface and the steps of its interaction with proteins. Concepts from supramolecular chemistry help to understand the complex noncovalent interactions between the surfaces of proteins and nanoparticles. Protein chemistry and biophysical chemistry are required to understand the behavior of a protein in contact with a nanoparticle. Finally, all chemical concepts must live up to the "biological reality", first in cell culture experiments in vitro and finally in animal or human experiments in vivo, to open new therapies in the 21st century. This interdisciplinary approach makes the field highly exciting but also highly demanding for chemists who, however, have to learn to understand the language of other areas.
Collapse
Affiliation(s)
- Mathis Kopp
- Inorganic Chemistry and Center for Nanointegration
Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Sebastian Kollenda
- Inorganic Chemistry and Center for Nanointegration
Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration
Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
8
|
Kopp M, Rotan O, Papadopoulos C, Schulze N, Meyer H, Epple M. Delivery of the autofluorescent protein R-phycoerythrin by calcium phosphate nanoparticles into four different eukaryotic cell lines (HeLa, HEK293T, MG-63, MC3T3): Highly efficient, but leading to endolysosomal proteolysis in HeLa and MC3T3 cells. PLoS One 2017; 12:e0178260. [PMID: 28586345 PMCID: PMC5460861 DOI: 10.1371/journal.pone.0178260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic molecules across the cell membrane because many molecules are not able to cross the cell membrane on their own. The uptake of nanoparticles together with their cargo typically occurs via endocytosis, raising concerns about the possible degradation of the cargo in the endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and processing is not indicative of the presence of the protein itself but only for the fluorescent label, a label-free tracking was performed with the red-fluorescing model protein R-phycoerythrin (R-PE). Four different eukaryotic cell lines were investigated: HeLa, HEK293T, MG-63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa cells, the protein was found in early endosomes (shown by the marker EEA1) and lysosomes (shown by the marker Lamp1). There, it was still intact and functional (i.e. properly folded) as its red fluorescence was detected. However, a few hours after the uptake, proteolysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the protein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein degradation in lysosomes, the fluorescence of R-PE remained intact over the whole observation period in the four cell lines. These results indicate that despite an efficient nanoparticle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent the desired (e.g. therapeutic) effect of a protein inside a cell.
Collapse
Affiliation(s)
- Mathis Kopp
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Olga Rotan
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | | | - Nina Schulze
- Imaging Centre Campus Essen (ICCE), University of Duisburg-Essen, Essen, Germany
| | - Hemmo Meyer
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Sokolova V, Westendorf AM, Buer J, Überla K, Epple M. The potential of nanoparticles for the immunization against viral infections. J Mater Chem B 2015; 3:4767-4779. [PMID: 32262665 DOI: 10.1039/c5tb00618j] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vaccination has a great impact on the prevention and control of infectious diseases. However, there are still many infectious diseases for which an effective vaccine is missing. Thirty years after the discovery of the AIDS-pathogen (human immunodeficiency virus, HIV) and intensive research, there is still no protective immunity against the HIV infection. Over the past decade, nanoparticulate systems such as virus-like particles, liposomes, polymers and inorganic nanoparticles have received attention as potential delivery vehicles which can be loaded or functionalized with active biomolecules (antigens and adjuvants). Here we compare the properties of different nanoparticulate systems and assess their potential for the development of new vaccines against a range of viral infections.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany.
| | | | | | | | | |
Collapse
|
10
|
Haedicke K, Kozlova D, Gräfe S, Teichgräber U, Epple M, Hilger I. Multifunctional calcium phosphate nanoparticles for combining near-infrared fluorescence imaging and photodynamic therapy. Acta Biomater 2015; 14:197-207. [PMID: 25529187 DOI: 10.1016/j.actbio.2014.12.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/20/2014] [Accepted: 12/14/2014] [Indexed: 01/29/2023]
Abstract
Photodynamic therapy (PDT) of tumors causes skin photosensitivity as a result of unspecific accumulation behavior of the photosensitizers. PDT of tumors was improved by calcium phosphate nanoparticles conjugated with (i) Temoporfin as a photosensitizer, (ii) the RGDfK peptide for favored tumor targeting and (iii) the fluorescent dye molecule DY682-NHS for enabling near-infrared fluorescence (NIRF) optical imaging in vivo. The nanoparticles were characterized with regard to size, spectroscopic properties and uptake into CAL-27 cells. The nanoparticles had a hydrodynamic diameter of approximately 200 nm and a zeta potential of around +22mV. Their biodistribution at 24h after injection was investigated via NIRF optical imaging. After treating tumor-bearing CAL-27 mice with nanoparticle-PDT, the therapeutic efficacy was assessed by a fluorescent DY-734-annexin V probe at 2 days and 2 weeks after treatment to detect apoptosis. Additionally, the contrast agent IRDye® 800CW RGD was used to assess tumor vascularization (up to 4 weeks after PDT). After nanoparticle-PDT in mice, apoptosis in the tumor was detected after 2 days. Decreases in tumor vascularization and tumor volume were detected in the next few days. Calcium phosphate nanoparticles can be used as multifunctional tools for NIRF optical imaging, PDT and tumor targeting as they exhibited a high therapeutic efficacy, being capable of inducing apoptosis and destroying tumor vascularization.
Collapse
Affiliation(s)
- Katja Haedicke
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller University Jena, 07747 Jena, Germany
| | - Diana Kozlova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Susanna Gräfe
- Biolitec Research GmbH, Research & Development, 07745 Jena, Germany
| | - Ulf Teichgräber
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller University Jena, 07747 Jena, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany.
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller University Jena, 07747 Jena, Germany.
| |
Collapse
|
11
|
Ahlberg S, Antonopulos A, Diendorf J, Dringen R, Epple M, Flöck R, Goedecke W, Graf C, Haberl N, Helmlinger J, Herzog F, Heuer F, Hirn S, Johannes C, Kittler S, Köller M, Korn K, Kreyling WG, Krombach F, Lademann J, Loza K, Luther EM, Malissek M, Meinke MC, Nordmeyer D, Pailliart A, Raabe J, Rancan F, Rothen-Rutishauser B, Rühl E, Schleh C, Seibel A, Sengstock C, Treuel L, Vogt A, Weber K, Zellner R. PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1944-65. [PMID: 25383306 PMCID: PMC4222445 DOI: 10.3762/bjnano.5.205] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/07/2014] [Indexed: 04/14/2023]
Abstract
PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of -20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in biological media (i.e., in the presence of proteins) the surface of silver nanoparticles is rapidly coated by a protein corona that influences their physicochemical and biological properties including cellular uptake. Silver nanoparticles are taken up by cell-type specific endocytosis pathways as demonstrated for hMSC, primary T-cells, primary monocytes, and astrocytes. A visualization of particles inside cells is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM analysis. By staining organelles, their localization inside the cell can be additionally determined. While primary brain astrocytes are shown to be fairly tolerant toward silver nanoparticles, silver nanoparticles induce the formation of DNA double-strand-breaks (DSB) and lead to chromosomal aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo induced a moderate pulmonary toxicity, however, only at rather high concentrations. The same was found in precision-cut lung slices of rats in which silver nanoparticles remained mainly at the tissue surface. In a human 3D triple-cell culture model consisting of three cell types (alveolar epithelial cells, macrophages, and dendritic cells), adverse effects were also only found at high silver concentrations. The silver ions that are released from silver nanoparticles may be harmful to skin with disrupted barrier (e.g., wounds) and induce oxidative stress in skin cells (HaCaT). In conclusion, the data obtained on the effects of this well-defined type of silver nanoparticles on various biological systems clearly demonstrate that cell-type specific properties as well as experimental conditions determine the biocompatibility of and the cellular responses to an exposure with silver nanoparticles.
Collapse
|