1
|
Raj D, Kumar A, Kumar D, Kant K, Mathur A. Gold-Graphene Quantum Dot Hybrid Nanoparticle for Smart Diagnostics of Prostate Cancer. BIOSENSORS 2024; 14:534. [PMID: 39589993 PMCID: PMC11591764 DOI: 10.3390/bios14110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024]
Abstract
Prostate cancer is one of the most prevalent cancers afflicting men worldwide, often detected at advanced stages, leading to increased mortality rates. Addressing this challenge, we present an innovative approach employing electrochemical biosensing for early-stage prostate cancer detection. This study used Indium-Tin Oxide (ITO) as a substrate and a deposited gold-graphene quantum dot (Au-GQD) nanohybrid to establish electrochemical sensing platforms for DNA-hybridization assays. A capturing DNA probe, PCA3, was covalently immobilized on the surface of the Au-GQDs and deposited electrochemically onto the ITO electrode surface. The Au-GQDs enabled the capturing of the target PCA3 biomarker probe. The sensor achieved a limit of detection (LoD) of up to 211 fM and presented a linear detection range spanning 1 µM to 100 fM. A rapid 5-min response time was also achieved. The tested shelf life of the pre-immobilized sensor was approximately 19 ± 1 days, with pronounced selectivity for its intended target amidst various interferants. The sensing device has the potential to revolutionize prostate cancer management by facilitating early-stage detection and screening with enhanced treatment efficacy.
Collapse
Affiliation(s)
- Divakar Raj
- Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India; (D.R.); (D.K.)
| | - Arun Kumar
- Mahavir Cancer Sansthan, and Research Centre, Patna 801505, Bihar, India;
| | - Dhruv Kumar
- Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India; (D.R.); (D.K.)
| | - Krishna Kant
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida 201310, Uttar Pradesh, India
- CINBIO, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain
| | - Ashish Mathur
- Centre for Interdisciplinary Research and Innovation (CIDRI), University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
2
|
Alves D, Neves A, Vecchi L, Souza T, Vaz E, Mota S, Nicolau-Junior N, Goulart L, Araújo T. Rho GTPase activating protein 21-mediated regulation of prostate cancer associated 3 gene in prostate cancer cell. Braz J Med Biol Res 2024; 57:e13190. [PMID: 38896642 PMCID: PMC11186590 DOI: 10.1590/1414-431x2024e13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
The overexpression of the prostate cancer antigen 3 (PCA3) gene is well-defined as a marker for prostate cancer (PCa) diagnosis. Although widely used in clinical research, PCA3 molecular mechanisms remain unknown. Herein we used phage display technology to identify putative molecules that bind to the promoter region of PCA3 gene and regulate its expression. The most frequent peptide PCA3p1 (80%) was similar to the Rho GTPase activating protein 21 (ARHGAP21) and its binding affinity was confirmed using Phage Bead ELISA. We showed that ARHGAP21 silencing in LNCaP prostate cancer cells decreased PCA3 and androgen receptor (AR) transcriptional levels and increased prune homolog 2 (PRUNE2) coding gene expression, indicating effective involvement of ARHGAP21 in androgen-dependent tumor pathway. Chromatin immunoprecipitation assay confirmed the interaction between PCA3 promoter region and ARHGAP21. This is the first study that described the role of ARHGAP21 in regulating the PCA3 gene under the androgenic pathway, standing out as a new mechanism of gene regulatory control during prostatic oncogenesis.
Collapse
Affiliation(s)
- D.A. Alves
- Laboratório de Genética e Biotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Patos de Minas, MG, Brasil
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - A.F. Neves
- Laboratório de Biologia Molecular, Universidade Federal de Catalão, Catalão, GO, Brasil
| | - L. Vecchi
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - T.A. Souza
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - E.R. Vaz
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - S.T.S. Mota
- Laboratório de Genética e Biotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Patos de Minas, MG, Brasil
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - N. Nicolau-Junior
- Laboratório de Modelagem Molecular, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - L.R. Goulart
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - T.G. Araújo
- Laboratório de Genética e Biotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Patos de Minas, MG, Brasil
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| |
Collapse
|
3
|
Elkahwagy DM, Kiriacos CJ, Sobeih ME, Khorshid OMR, Mansour M. The lncRNAs Gas5, MALAT1 and SNHG8 as diagnostic biomarkers for epithelial malignant pleural mesothelioma in Egyptian patients. Sci Rep 2024; 14:4823. [PMID: 38413635 PMCID: PMC10899637 DOI: 10.1038/s41598-024-55083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Long noncoding RNAs have been shown to be involved in a myriad of physiological and pathological pathways. To date, malignant pleural mesothelioma (MPM) is considered an extremely aggressive cancer. One reason for this is the late diagnosis of the disease, which can occur within 30-40 years of asbestos exposure. There is an immense need for the development of new, sensitive, inexpensive and easy methods for the early detection of this disease other than invasive methods such as biopsy. The aim of this study was to determine the expression of circulating lncRNAs in mesothelioma patient plasma to identify potential biomarkers. Ten previously identified lncRNAs that were shown to be aberrantly expressed in mesothelioma tissues were selected as candidates for subsequent validation. The expression of the ten selected candidate lncRNAs was verified via quantitative PCR (qPCR) in human plasma samples from mesothelioma patients versus healthy controls. The expression levels of circulating GAS5, SNHG8 and MALAT1 were significantly greater in plasma samples from patients than in those from controls. The ROC analysis of both MALAT1 and SNHG8 revealed 88.89% sensitivity and 66.67% specificity. The sensitivity of these markers was greater than that of GAS5 (sensitivity 72.22% and specificity 66.67%). The regression model for GAS5 was statistically significant, while that for SNHG8 and MALAT1 was not significant due to the small sample size. The area under the curve (AUC) of the three ROC curves was acceptable and significant: 0.7519 for GAS5, 0.7352 for SNHG8 and 0.7185 for MALAT1. This finding confirmed their ability to be used as markers. The three lncRNAs were not affected by age, sex or smoking status. The three lncRNAs showed great potential as independent predictive diagnostic biomarkers. Although the prediction model for MALAT1 did not significantly differ, MALAT1 was significantly expressed in patients more than in controls (p = 0.0266), and the recorded sensitivity and specificity were greater than those of GAS5.
Collapse
Affiliation(s)
- Dina Mohamed Elkahwagy
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Caroline Joseph Kiriacos
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mohamed Emam Sobeih
- Department of Medical Oncology, National Cancer Institute, NCI, Cairo University, Cairo, Egypt
| | - Ola M Reda Khorshid
- Department of Medical Oncology, National Cancer Institute, NCI, Cairo University, Cairo, Egypt
| | - Manar Mansour
- Pharmaceutical Biology and Microbiology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
4
|
Abaza T, El-Aziz MKA, Daniel KA, Karousi P, Papatsirou M, Fahmy SA, Hamdy NM, Kontos CK, Youness RA. Emerging Role of Circular RNAs in Hepatocellular Carcinoma Immunotherapy. Int J Mol Sci 2023; 24:16484. [PMID: 38003674 PMCID: PMC10671287 DOI: 10.3390/ijms242216484] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly fatal malignancy with limited therapeutic options and high recurrence rates. Recently, immunotherapeutic agents such as immune checkpoint inhibitors (ICIs) have emerged as a new paradigm shift in oncology. ICIs, such as programmed cell death protein 1 (PD-1) inhibitors, have provided a new source of hope for patients with advanced HCC. Yet, the eligibility criteria of HCC patients for ICIs are still a missing piece in the puzzle. Circular RNAs (circRNAs) have recently emerged as a new class of non-coding RNAs that play a fundamental role in cancer pathogenesis. Structurally, circRNAs are resistant to exonucleolytic degradation and have a longer half-life than their linear counterparts. Functionally, circRNAs possess the capability to influence various facets of the tumor microenvironment, especially at the HCC tumor-immune synapse. Notably, circRNAs have been observed to control the expression of immune checkpoint molecules within tumor cells, potentially impeding the therapeutic effectiveness of ICIs. Therefore, this renders them potential cancer-immune biomarkers for diagnosis, prognosis, and therapeutic regimen determinants. In this review, the authors shed light on the structure and functional roles of circRNAs and, most importantly, highlight the promising roles of circRNAs in HCC immunomodulation and their potential as promising biomarkers and immunotherapeutic regimen determinants.
Collapse
Affiliation(s)
- Tasneem Abaza
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mostafa K. Abd El-Aziz
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71631, Egypt
| | - Kerolos Ashraf Daniel
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Maria Papatsirou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt;
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Rana A. Youness
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
| |
Collapse
|
5
|
Dey Ghosh R, Guha Majumder S. Circulating Long Non-Coding RNAs Could Be the Potential Prognostic Biomarker for Liquid Biopsy for the Clinical Management of Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:5590. [PMID: 36428681 PMCID: PMC9688117 DOI: 10.3390/cancers14225590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) have little or no coding potential. These transcripts are longer than 200 nucleotides. Since lncRNAs are master regulators of almost all biological processes, recent evidence proves that aberrantly expressed lncRNAs are pathogenic for oral squamous cell carcinoma (OSCC) and other diseases. LncRNAs influence chromatin modifications, transcriptional modifications, post-transcriptional modifications, genomic imprinting, cell proliferation, invasion, metastasis, and apoptosis. Consequently, they have an impact on the disease transformation, progression, and morbidity in OSCC. Therefore, circulating lncRNAs could be the potential cancer biomarker for the better clinical management (diagnosis, prognosis, and monitoring) of OSCC to provide advanced treatment strategies and clinical decisions. In this review, we report and discuss the recent understandings and perceptions of dysregulated lncRNAs with a focus on their clinical significance in OSCC-disease monitoring and treatment. Evidence clearly indicates that a specific lncRNA expression signature could act as an indicator for the early prediction of diagnosis and prognosis for the initiation, progression, recurrence, metastasis and other clinical prognostic-factors (overall survival, disease-free survival, etc.) in OSCC. The present review demonstrates the current knowledge that all potential lncRNA expression signatures are molecular biomarkers for the early prediction of prognosis in OSCC. Finally, the review provides information about the clinical significance, challenges and limitations of the clinical usage of circulating lncRNAs in a liquid biopsy method in early, pre-symptomatic, sub-clinical, accurate OSCC prognostication. More studies on lncRNA are required to unveil the biology of the inherent mechanisms involved in the process of the development of differential prognostic outcomes in OSCC.
Collapse
Affiliation(s)
- Ruma Dey Ghosh
- Molecular Biology Department, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India
| | | |
Collapse
|
6
|
Badowski C, He B, Garmire LX. Blood-derived lncRNAs as biomarkers for cancer diagnosis: the Good, the Bad and the Beauty. NPJ Precis Oncol 2022; 6:40. [PMID: 35729321 PMCID: PMC9213432 DOI: 10.1038/s41698-022-00283-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer ranks as one of the deadliest diseases worldwide. The high mortality rate associated with cancer is partially due to the lack of reliable early detection methods and/or inaccurate diagnostic tools such as certain protein biomarkers. Cell-free nucleic acids (cfNA) such as circulating long noncoding RNAs (lncRNAs) have been proposed as a new class of potential biomarkers for cancer diagnosis. The reported correlation between the presence of tumors and abnormal levels of lncRNAs in the blood of cancer patients has notably triggered a worldwide interest among clinicians and oncologists who have been actively investigating their potentials as reliable cancer biomarkers. In this report, we review the progress achieved ("the Good") and challenges encountered ("the Bad") in the development of circulating lncRNAs as potential biomarkers for early cancer diagnosis. We report and discuss the diagnostic performance of more than 50 different circulating lncRNAs and emphasize their numerous potential clinical applications ("the Beauty") including therapeutic targets and agents, on top of diagnostic and prognostic capabilities. This review also summarizes the best methods of investigation and provides useful guidelines for clinicians and scientists who desire conducting their own clinical studies on circulating lncRNAs in cancer patients via RT-qPCR or Next Generation Sequencing (NGS).
Collapse
Affiliation(s)
- Cedric Badowski
- University of Hawaii Cancer Center, Epidemiology, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| | - Bing He
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Lana X Garmire
- University of Hawaii Cancer Center, Epidemiology, 701 Ilalo Street, Honolulu, HI, 96813, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
7
|
Electrochemical and optical detection and machine learning applied to images of genosensors for diagnosis of prostate cancer with the biomarker PCA3. Talanta 2020; 222:121444. [PMID: 33167198 PMCID: PMC7413169 DOI: 10.1016/j.talanta.2020.121444] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022]
Abstract
The development of simple detection methods aimed at widespread screening and testing is crucial for many infections and diseases, including prostate cancer where early diagnosis increases the chances of cure considerably. In this paper, we report on genosensors with different detection principles for a prostate cancer specific DNA sequence (PCA3). The genosensors were made with carbon printed electrodes or quartz coated with layer-by-layer (LbL) films containing gold nanoparticles and chondroitin sulfate and a layer of a complementary DNA sequence (PCA3 probe). The highest sensitivity was reached with electrochemical impedance spectroscopy with the detection limit of 83 pM in solutions of PCA3, while the limits of detection were 2000 pM and 900 pM for cyclic voltammetry and UV–vis spectroscopy, respectively. That detection could be performed with an optical method is encouraging, as one may envisage extending it to colorimetric tests. Since the morphology of sensing units is known to be affected in detection experiments, we applied machine learning algorithms to classify scanning electron microscopy images of the genosensors and managed to distinguish those exposed to PCA3-containing solutions from control measurements with an accuracy of 99.9%. The performance in distinguishing each individual PCA3 concentration in a multiclass task was lower, with an accuracy of 88.3%, which means that further developments in image analysis are required for this innovative approach. Low-cost biosensors fabricated with gold nanoparticles and chondroitin sulfate used for detecting PCA3 biomarker. PCA3 detection from machine learning with accuracy of 99.9%. The highest sensitivity was reached with electrochemical impedance spectroscopy with the detection limit of 83 pM.
Collapse
|
8
|
Promoter polymorphisms of the PCA3 gene are not associated with its overexpression in prostate cancer patients. J Genet 2020. [DOI: 10.1007/s12041-020-01202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Soares JC, Soares AC, Rodrigues VC, Melendez ME, Santos AC, Faria EF, Reis RM, Carvalho AL, Oliveira ON. Detection of the Prostate Cancer Biomarker PCA3 with Electrochemical and Impedance-Based Biosensors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46645-46650. [PMID: 31765118 DOI: 10.1021/acsami.9b19180] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Diagnosis of prostate cancer via PCA3 biomarker detection is promising to be much more efficient than with the prostatic specific antigens currently used. In this study, we present the first electrochemical and impedance-based biosensors that are capable of detecting PCA3 down to 0.128 nmol/L. The biosensors were made with a layer of PCA3-complementary single-stranded DNA (ssDNA) probe, immobilized on a layer-by-layer (LbL) film of chitosan (CHT) and carbon nanotubes (MWCNT). They are highly selective to PCA3, which was confirmed in impedance measurements and with polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Using information visualization methods, we could also distinguish between cell lines expressing the endogenous PCA3 long noncoding RNA (lncRNA) from cells that did not contain detectable levels of this biomarker. Since the methods involved in fabrication the biosensors are potentially low cost, one may hope to deploy PCA3 tests in any laboratory of clinical analyses and even for point-of-care diagnostics.
Collapse
Affiliation(s)
- Juliana Coatrini Soares
- São Carlos Institute of Physics , University of São Paulo , 13566-590 São Carlos , Brazil
- National Laboratory of Nanotechnology for Agribusiness (LNNA) , Embrapa Instrumentation , 13560-970 São Carlos , Brazil
| | - Andrey Coatrini Soares
- São Carlos Institute of Physics , University of São Paulo , 13566-590 São Carlos , Brazil
- National Laboratory of Nanotechnology for Agribusiness (LNNA) , Embrapa Instrumentation , 13560-970 São Carlos , Brazil
| | | | - Matias Eliseo Melendez
- Molecular Oncology Research Center , Barretos Cancer Hospital , 14784-400 Barretos , Brazil
| | - Alexandre Cesar Santos
- Molecular Oncology Research Center , Barretos Cancer Hospital , 14784-400 Barretos , Brazil
| | - Eliney Ferreira Faria
- Molecular Oncology Research Center , Barretos Cancer Hospital , 14784-400 Barretos , Brazil
| | - Rui M Reis
- Molecular Oncology Research Center , Barretos Cancer Hospital , 14784-400 Barretos , Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine , University of Minho , Braga , Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - Andre Lopes Carvalho
- Molecular Oncology Research Center , Barretos Cancer Hospital , 14784-400 Barretos , Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics , University of São Paulo , 13566-590 São Carlos , Brazil
| |
Collapse
|
10
|
Marangoni K, Neves AF, Rocha RM, Faria PR, Alves PT, Souza AG, Fujimura PT, Santos FAA, Araújo TG, Ward LS, Goulart LR. Prostate-specific RNA aptamer: promising nucleic acid antibody-like cancer detection. Sci Rep 2015; 5:12090. [PMID: 26174796 PMCID: PMC4502603 DOI: 10.1038/srep12090] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/18/2015] [Indexed: 12/04/2022] Open
Abstract
We described the selection of a novel nucleic acid antibody-like prostate cancer (PCa) that specifically binds to the single-stranded DNA molecule from a 277-nt fragment that may have been partially paired and bound to the PCA3 RNA conformational structure. PCA3-277 aptamer ligands were obtained, and the best binding molecule, named CG3, was synthesized for validation. Aiming to prove its diagnostic utility, we used an apta-qPCR assay with CG3-aptamer conjugated to magnetic beads to capture PCA3 transcripts, which were amplified 97-fold and 7-fold higher than conventional qPCR in blood and tissue, respectively. Histopathologic analysis of 161 prostate biopsies arranged in a TMA and marked with biotin-labeled CG3-aptamer showed moderate staining in both cytoplasm and nucleus of PCa samples; in contrast, benign prostatic hyperplasia (BPH) samples presented strong nuclear staining (78% of the cases). No staining was observed in stromal cells. In addition, using an apta-qPCR, we demonstrated that CG3-aptamer specifically recognizes the conformational PCA3-277 molecule and at least three other transcript variants, indicating that long non-coding RNA (lncRNA) is processed after transcription. We suggest that CG3-aptamer may be a useful PCa diagnostic tool. In addition, this molecule may be used in drug design and drug delivery for PCa therapy.
Collapse
Affiliation(s)
- Karina Marangoni
- 1] Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas, SP, Brazil [2] Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil
| | - Adriana F Neves
- Laboratory of Molecular Biology, Institute of Biotechnology, Federal University of Goiás, Catalão/GO, Brazil
| | | | - Paulo R Faria
- Laboratory of Histology, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Patrícia T Alves
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil
| | - Aline G Souza
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil
| | - Patrícia T Fujimura
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil
| | - Fabiana A A Santos
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil
| | - Thaise G Araújo
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil
| | - Laura S Ward
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas, SP, Brazil
| | - Luiz R Goulart
- 1] Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil [2] University of California-Davis, Dept. of Medical Microbiology and Immunology, Davis/CA, USA
| |
Collapse
|
11
|
Gezer U, Tiryakioglu D, Bilgin E, Dalay N, Holdenrieder S. Androgen Stimulation of PCA3 and miR-141 and Their Release from Prostate Cancer Cells. CELL JOURNAL 2015; 16:488-93. [PMID: 25685739 PMCID: PMC4297487 DOI: 10.22074/cellj.2015.494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/25/2013] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Prostate cancer antigen 3 (PCA3) and microRNA-141 (miR-141) are emerging molecules in prostate cancer (PCa) pathogenesis and have been shown to be involved in androgen signaling. In this original research, we designed an experimental cell model with androgen-sensitive LNCaP cells to comparatively assess the extent of androgen responsiveness of PCA3-mRNA and miR-141 along with prostate specific antigen (PSA)mRNA and their release into culture medium. These molecules were also measured in the plasma of the patients with early PCa which is considered to be analogous to androgenresponsive cells. MATERIALS AND METHODS In this experimental study, LNCaP cells were exposed to androgen ablation for 48 hours and treated then with dihydrotestosterone (DHT) for 24 hours. Expression of all three RNA molecules in cells, culture medium or plasma was measured by quantitative polymerase chain reaction (qPCR). RESULTS Our results show that DHT differentially affects the expression of these molecules. PCA3 was the most evidently induced molecule (up to 400-fold, p<0.001), while the effect was moderate for PSA-mRNA (up to 30-fold, p<0.001). In contrast, the stimulation of miR-141 was much weaker (up to 1.5-fold, p>0.05). With regard to the release into culture medium, a similar picture was observed except for PCA3. PCA3 was below the detection level despite its high stimulation. DHT treatment led to a significant release of PSA-mRNA (up to 12-fold). Similar to its induction pattern in LNCaP cells, miR-141 was released at a limited quantity into the medium (up to 1.7- fold, p=0.07). In plasma, only PCA3 differed significantly between the patients and healthy subjects (p=0.001). CONCLUSION Our findings indicate that PCa-related RNA molecules respond differentially to androgen stimulation suggesting differential regulation by androgens.
Collapse
Affiliation(s)
- Ugur Gezer
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Duygu Tiryakioglu
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Elif Bilgin
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Nejat Dalay
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Stefan Holdenrieder
- Insitute of Clinical Chemistry and Pharmacology, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Melichar B. The highs and lows of tumor biomarkers: lost illusions. Clin Chem Lab Med 2015; 53:343-7. [DOI: 10.1515/cclm-2015-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Novel RNA markers in prostate cancer: functional considerations and clinical translation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:765207. [PMID: 25250334 PMCID: PMC4163430 DOI: 10.1155/2014/765207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/31/2022]
Abstract
The availability of ultra-high throughput DNA and RNA sequencing technologies in recent years has led to the identification of numerous novel transcripts, whose functions are unknown as yet. Evidence is accumulating that many of these molecules are deregulated in diseases, including prostate cancer, and potentially represent novel targets for diagnosis and therapy. In particular, functional genomic analysis of microRNA (miRNA) and long noncoding RNA (lncRNA) in cancer is likely to contribute insights into tumor development. Here, we compile recent efforts to catalog differential expression of miRNA and lncRNA in prostate cancer and to understand RNA function in tumor progression. We further highlight technologies for molecular characterization of noncoding RNAs and provide an overview of current activities to exploit them for the diagnosis and therapy of this complex tumor.
Collapse
|
14
|
Rastogi V, Yadav P, Bhattacharya SS, Mishra AK, Verma N, Verma A, Pandit JK. Carbon nanotubes: an emerging drug carrier for targeting cancer cells. JOURNAL OF DRUG DELIVERY 2014; 2014:670815. [PMID: 24872894 PMCID: PMC4020363 DOI: 10.1155/2014/670815] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/26/2014] [Accepted: 03/12/2014] [Indexed: 12/18/2022]
Abstract
During recent years carbon nanotubes (CNTs) have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes which were rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalised with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicty, and drug delivery in tumor cells. This review attempts to highlight all aspects of CNTs which render them as an effective anticancer drug carrier and imaging agent. Also the potential application of CNT in targeting metastatic cancer cells by entrapping biomolecules and anticancer drugs has been covered in this review.
Collapse
Affiliation(s)
- Vaibhav Rastogi
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244001, India
| | - Pragya Yadav
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244001, India
| | | | - Arun Kumar Mishra
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244001, India
| | - Navneet Verma
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244001, India
| | - Anurag Verma
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244001, India
| | - Jayanta Kumar Pandit
- Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
15
|
MicroRNAs and long non-coding RNAs: prospects in diagnostics and therapy of cancer. Radiol Oncol 2013; 47:311-8. [PMID: 24294175 PMCID: PMC3814275 DOI: 10.2478/raon-2013-0062] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/20/2013] [Indexed: 12/11/2022] Open
Abstract
Background Non-coding RNAs (ncRNAs) are key regulatory molecules in cellular processes, and are potential biomarkers in many diseases. Currently, microRNAs and long non-coding RNAs are being pursued as diagnostic and prognostic biomarkers, and as therapeutic tools in cancer, since their expression profiling is able to distinguish different cancer types and classify their sub-types. Conclusions There are numerous studies confirming involvement of ncRNAs in cancer initiation, development and progression, but have only been recently identified as new diagnostic and prognostic tools. This can be beneficial in future medical cancer treatment options, since ncRNAs are natural antisense interactors included in regulation of many genes connected to survival and proliferation. Research is directed in development of useful markers for diagnosis and prognosis in cancer and in developing new RNA-based cancer therapies, of which some are already in clinical trials.
Collapse
|
16
|
Tiryakioglu D, Bilgin E, Holdenrieder S, Dalay N, Gezer U. miR-141 and miR-375 induction and release are different from PSA mRNA and PCA3 upon androgen stimulation of LNCaP cells. Biomed Rep 2013; 1:802-806. [PMID: 24649032 DOI: 10.3892/br.2013.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
Recent studies have demonstrated the differential expression of miR-141 and miR-375 in circulation of patients with advanced/metastatic prostate cancer (PCa). The aim of this study was to investigate the regulation of miR-141 and miR-375 by androgens and their release into the incubation medium in relation to prostate-specific antigen (PSA) mRNA and prostate cancer antigen 3 (PCA3). Plasma levels of these molecules were measured in a small cohort of patients with localized PCa. As an in vitro cell model we used androgen-sensitive LNCaP cells exposed to an androgen ablation of 48 h, and then treated with dihydrotestosterone (DHT) for 24 h. Expression of the four RNA molecules was measured by quantitative polymerase chain reaction (qPCR). miR-141 and miR-375 were induced in a dose-dependent manner where the median stimulation reached only 1.5-fold at maximum. The effect of DHT on PSA mRNA (up to 30-fold) and PCA3 (up to 195-fold) was much more evident. With regard to the release into the incubation medium, similar results were obtained with the exception of PCA3. At the highest DHT dose (100 nM), median miR-141 and miR-375 release was increased 1.7- and 1.4-fold (P=0.07), respectively. DHT treatment led to a significant release of PSA mRNA (up to 12-fold) into the medium while PCA3 could not be amplified from the incubation medium. In plasma only PCA3 differed significantly between localized PCa patients and healthy subjects. In conclusion, our study provides evidence that miR-141 and miR-375 are increasingly released into incubation medium from androgen-stimulated cells. However, the extent of their induction was weaker than PSA mRNA or PCA3, suggesting differential regulation by androgens.
Collapse
Affiliation(s)
- Duygu Tiryakioglu
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Capa, Istanbul 34390, Turkey
| | - Elif Bilgin
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Capa, Istanbul 34390, Turkey
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Pharmacology, University of Bonn, D-53105 Bonn, Germany
| | - Nejat Dalay
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Capa, Istanbul 34390, Turkey
| | - Ugur Gezer
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Capa, Istanbul 34390, Turkey
| |
Collapse
|
17
|
|