1
|
Dzombo M, Hughes AL, Hollis SL, Trabue CH, Nelson GE, Larue RW, Busenbark M, Wheat LJ, Scalise ML. Effect of hydration on urine and serum Histoplasma antigen levels in patients with disseminated histoplasmosis. Microbiol Spectr 2024; 12:e0371423. [PMID: 38606971 PMCID: PMC11064509 DOI: 10.1128/spectrum.03714-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Affiliation(s)
- Michael Dzombo
- Department of Medicine, Ascension/St. Thomas, University of Tennessee Health Science Center, Nashville, Tennessee, USA
| | - Allyson L. Hughes
- Department of Medicine, Ascension/St. Thomas, University of Tennessee Health Science Center, Nashville, Tennessee, USA
| | - Sara L. Hollis
- Department of Medicine, Ascension/St. Thomas, University of Tennessee Health Science Center, Nashville, Tennessee, USA
| | - Christopher H. Trabue
- Department of Medicine, Ascension/St. Thomas, University of Tennessee Health Science Center, Nashville, Tennessee, USA
| | - George E. Nelson
- Department of Medicine, Division of Infectious Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Richard W. Larue
- Department of Medicine, Division of Infectious Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Molly Busenbark
- MiraVista Diagnostics and MiraBella Technologies, Indianapolis, Indiana, USA
| | - L. Joseph Wheat
- MiraVista Diagnostics and MiraBella Technologies, Indianapolis, Indiana, USA
| | - Melissa L. Scalise
- Department of Medicine, Ascension/St. Thomas, University of Tennessee Health Science Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Kosenko E, Tikhonova L, Alilova G, Montoliu C. Erythrocytes Functionality in SARS-CoV-2 Infection: Potential Link with Alzheimer's Disease. Int J Mol Sci 2023; 24:5739. [PMID: 36982809 PMCID: PMC10051442 DOI: 10.3390/ijms24065739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapidly spreading acute respiratory infection caused by SARS-CoV-2. The pathogenesis of the disease remains unclear. Recently, several hypotheses have emerged to explain the mechanism of interaction between SARS-CoV-2 and erythrocytes, and its negative effect on the oxygen-transport function that depends on erythrocyte metabolism, which is responsible for hemoglobin-oxygen affinity (Hb-O2 affinity). In clinical settings, the modulators of the Hb-O2 affinity are not currently measured to assess tissue oxygenation, thereby providing inadequate evaluation of erythrocyte dysfunction in the integrated oxygen-transport system. To discover more about hypoxemia/hypoxia in COVID-19 patients, this review highlights the need for further investigation of the relationship between biochemical aberrations in erythrocytes and oxygen-transport efficiency. Furthermore, patients with severe COVID-19 experience symptoms similar to Alzheimer's, suggesting that their brains have been altered in ways that increase the likelihood of Alzheimer's. Mindful of the partly assessed role of structural, metabolic abnormalities that underlie erythrocyte dysfunction in the pathophysiology of Alzheimer's disease (AD), we further summarize the available data showing that COVID-19 neurocognitive impairments most probably share similar patterns with known mechanisms of brain dysfunctions in AD. Identification of parameters responsible for erythrocyte function that vary under SARS-CoV-2 may contribute to the search for additional components of progressive and irreversible failure in the integrated oxygen-transport system leading to tissue hypoperfusion. This is particularly relevant for the older generation who experience age-related disorders of erythrocyte metabolism and are prone to AD, and provide an opportunity for new personalized therapies to control this deadly infection.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
3
|
Jones AW, Tilson C. Distribution ratios of ethanol and water between whole blood, plasma, serum, and erythrocytes: Recommendations for interpreting clinical laboratory results in a legal context. J Forensic Sci 2023; 68:9-21. [PMID: 36317846 DOI: 10.1111/1556-4029.15164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/30/2022]
Abstract
This article reviews the scientific literature dealing with the distribution of ethanol and water between whole blood (WB), plasma, serum, and erythrocytes (red-blood cells). Knowledge of the ethanol distribution ratio is important when analytical results derived from hospital clinical laboratories are interpreted in a forensic context, such as during the prosecution of traffic offenders. Statutory blood-alcohol concentration (BAC) limits for driving are defined as the concentration of ethanol in WB and not in plasma, serum or red-blood cells. These bio-fluids differ in their water content and thereby the concentrations of ethanol. Plasma and serum contain ~90%-92% w/w water, WB ~78%-80% w/w and erythrocytes ~64%-66% w/w. The mean plasma/WB and serum/WB distribution ratios of ethanol are therefore expected to be ~1.15:1 (91/79 = 1.15), which is in good agreement with values determined empirically. However, in individual cases, the actual distribution ratio will depend on the person's age, gender, and biochemical and hematological properties of the blood specimen, such as its hematocrit. For legal purposes, we recommend that the concentration of ethanol in plasma or serum determined at hospital laboratories is divided by a factor of 1.2, which would provide a conservative estimate of the co-existing BAC and the chance of overestimating the true value is only 1 in 2000 (0.05%).
Collapse
Affiliation(s)
- Alan Wayne Jones
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, University of Linköping, Linköping, Sweden
| | - Christopher Tilson
- Georgia Bureau of Investigation, Division of Forensic Sciences, Decatur, Georgia, USA
| |
Collapse
|
4
|
Cadegiani FA, Kater CE. Inter-correlations Among Clinical, Metabolic, and Biochemical Parameters and Their Predictive Value in Healthy and Overtrained Male Athletes: The EROS-CORRELATIONS Study. Front Endocrinol (Lausanne) 2019; 10:858. [PMID: 31920971 PMCID: PMC6914842 DOI: 10.3389/fendo.2019.00858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
Objectives: The Endocrine and Metabolic Responses on Overtraining Syndrome (EROS) study identified multiple hormonal and metabolic conditioning processes in athletes, and underlying mechanisms and biomarkers of overtraining syndrome (OTS). The present study's objective was to reveal independent predictors and linear correlations among the parameters evaluated in the EROS study to predict clinical, metabolic, and biochemical behaviors in healthy and OTS-affected male athletes. Methods: We used multivariate linear regression and linear correlation to analyze possible combinations of the 38 parameters evaluated in the EROS study that revealed significant differences between healthy and OTS-affected athletes. Results: The testosterone-to-estradiol (T:E) ratio predicted the measured-to-predicted basal metabolic rate (BMR) ratio; the T:E ratio and total testosterone level were inversely predicted by fat mass and estradiol was not predicted by any of the non-modifiable parameters. Early and late growth hormone, cortisol, and prolactin responses to an insulin tolerance test (ITT) were strongly correlated. Hormonal responses to the ITT were positively correlated with fat oxidation, predicted-to-measured BMR ratio, muscle mass, and vigor, and inversely correlated with fat mass and fatigue. Salivary cortisol 30 min after awakening and the T:E ratio were inversely correlated with fatigue. Tension was inversely correlated with libido and directly correlated with body fat. The predicted-to-measured BMR ratio was correlated with muscle mass and body water, while fat oxidation was directly correlated with muscle mass and inversely correlated with fat mass. Muscle mass was directly correlated with body water, and extracellular water was directly correlated with body fat and inversely correlated with body water and muscle mass. Conclusions: Hypothalamic-pituitary responses to stimulation were diffuse and indistinguishable between the different axes. A late hormonal response to stimulation, increased cortisol after awakening, and the T:E ratio were correlated with vigor and fatigue. The T:E ratio was also correlated with body metabolism and composition, testosterone was predicted by fat mass, and estradiol predicted anger. Hydration status was inversely correlated with edema, and inter-correlations were found among fat oxidation, hydration, and body fat.
Collapse
|
5
|
Stefanaki C, Pervanidou P, Boschiero D, Chrousos GP. Chronic stress and body composition disorders: implications for health and disease. Hormones (Athens) 2018; 17:33-43. [PMID: 29858868 DOI: 10.1007/s42000-018-0023-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023]
Abstract
Recent studies have suggested that body composition is key to health and disease. First, fat tissue is a complex, essential, and highly active metabolic and endocrine organ that responds to afferent signals from traditional hormone systems and the central nervous system but also expresses and secretes factors with important endocrine, metabolic, and immune functions. Second, skeletal muscle mass is an important predictor of health in adult life, while severe mass loss has been associated with the frailty of old age. Studies have shown that skeletal muscle is also an important endocrine organ that secretes factors with autocrine, paracrine, or endocrine actions, which have been associated with inflammatory processes. Third, the bone is also a systemic endocrine regulator playing a pivotal role in health and disease. Finally, proper hydration in humans has been neglected as a health factor, especially in adults. Chronic stress and stress hormone hypersecretion alone or associated with distinct disorders, such as anxiety, depression, obesity, metabolic syndrome, autoimmune disorders, type 2 diabetes mellitus, and polycystic ovary syndrome (PCOS), have been associated with psychological and somatic manifestations, typically, increased fat mass, osteosarcopenia/frailty, cellular dehydration, and chronic systemic inflammation. This review aims to provide new insights into the newly developed concept of stress-related osteosarcopenic obesity and its prevention.
Collapse
Affiliation(s)
- Charikleia Stefanaki
- Choremeion Research Laboratory, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Thivon and Levadeias streets, Goudi, 11527, Athens, Greece.
- Unit of Translational and Clinical Research in Endocrinology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Panagiota Pervanidou
- Choremeion Research Laboratory, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Thivon and Levadeias streets, Goudi, 11527, Athens, Greece
| | | | - George P Chrousos
- Choremeion Research Laboratory, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Thivon and Levadeias streets, Goudi, 11527, Athens, Greece
- Unit of Translational and Clinical Research in Endocrinology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
De Paula EV. Tides within ourselves: how posture can affect blood volume, blood cells and clinical reasoning. Rev Bras Hematol Hemoter 2017; 39:100-101. [PMID: 28577644 PMCID: PMC5457476 DOI: 10.1016/j.bjhh.2017.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 11/17/2022] Open
|
7
|
Tam RK, Wong H, Plint A, Lepage N, Filler G. Comparison of clinical and biochemical markers of dehydration with the clinical dehydration scale in children: a case comparison trial. BMC Pediatr 2014; 14:149. [PMID: 24935348 PMCID: PMC4081489 DOI: 10.1186/1471-2431-14-149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/30/2014] [Indexed: 12/19/2022] Open
Abstract
Background The clinical dehydration scale (CDS) is a quick, easy-to-use tool with 4 clinical items and a score of 1–8 that serves to classify dehydration in children with gastroenteritis as no, some or moderate/severe dehydration. Studies validating the CDS (Friedman JN) with a comparison group remain elusive. We hypothesized that the CDS correlates with a wide spectrum of established markers of dehydration, making it an appropriate and easy-to-use clinical tool. Methods This study was designed as a prospective double-cohort trial in a single tertiary care center. Children with diarrhea and vomiting, who clinically required intravenous fluids for rehydration, were compared with minor trauma patients who required intravenous needling for conscious sedation. We compared the CDS with clinical and urinary markers (urinary electrolytes, proteins, ratios and fractional excretions) for dehydration in both groups using receiver operating characteristic (ROC) curves to determine the area under the curve (AUC). Results We enrolled 73 children (male = 36) in the dehydration group and 143 (male = 105) in the comparison group. Median age was 32 months (range 3–214) in the dehydration and 96 months (range 2.6-214 months, p < 0.0001) in the trauma group. Median CDS was 3 (range 0–8) within the dehydration group and 0 in the comparison group (p < 0.0001). The following parameters were statistically significant (p < 0.05) between the comparison group and the dehydrated group: difference in heart rate, diastolic blood pressure, urine sodium/potassium ratio, urine sodium, fractional sodium excretion, serum bicarbonate, and creatinine measurements. The best markers for dehydration were urine Na and serum bicarbonate (ROC AUC = 0.798 and 0.821, respectively). CDS was most closely correlated with serum bicarbonate (Pearson r = -0.3696, p = 0.002). Conclusion Although serum bicarbonate is not the gold standard for dehydration, this study provides further evidence for the usefulness of the CDS as a dehydration marker in children. Trial registration Registered at ClinicalTrials.gov (NCT00462527) on April 18, 2007.
Collapse
Affiliation(s)
| | | | | | | | - Guido Filler
- Department of Pediatrics, Western University, 800 Commissioners Road East, London, ON N6A 5W9, Canada.
| |
Collapse
|