1
|
Karimkhani MM, Jamshidi A, Nasrollahzadeh M, Armin M, Jafari SM, Zeinali T. Fermentation of Rubus dolichocarpus juice using Lactobacillus gasseri and Lacticaseibacillus casei and protecting phenolic compounds by Stevia extract during cold storage. Sci Rep 2024; 14:5711. [PMID: 38459201 PMCID: PMC10923800 DOI: 10.1038/s41598-024-56235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
This study aimed to investigate the biological activities of Lactobacillus gasseri SM 05 (L. gasseri) and Lacticaseibacillus casei subsp. casei PTCC 1608 (L. casei) in the black raspberry (Rubus dolichocarpus) juice (BRJ) environment, and also the anti-adhesion activity against Salmonella typhimurium (S. typhimurium) in fermented black raspberry juice (FBRJ). Results showed significant anti-adhesion activity in Caco-2 epithelial cells. In the anti-adhesion process, lactic acid bacteria (LAB) improve intestinal health by preventing the adhesion of pathogens. Adding LAB to BRJ produces metabolites with bacteriocin properties. Major findings of this research include improved intestinal health, improved antidiabetic properties, inhibition of degradation of amino acids, and increase in the nutritional value of foods that have been subjected to heat processing by preventing Maillard inhibition, and inhibition of oxidation of foodstuff by increased antioxidant activity of BRJ. Both species of Lactobacillus effectively controlled the growth of S. typhimurium during BRJ fermentation. Moreover, in all tests, as well as Maillard's and α-amylase inhibition, L. gasseri was more effective than L. casei. The phenolic and flavonoid compounds increased significantly after fermentation by both LAB (p < 0.05). Adding Stevia extract to FBRJ and performing the HHP process showed convenient protection of phenolic compounds compared to heat processing.
Collapse
Affiliation(s)
- Mohammad Mahdi Karimkhani
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdollah Jamshidi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mohammad Armin
- Department of Agronomy, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Tayebeh Zeinali
- Department of Nutrition and Food Hygiene, School of Health, Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
2
|
Impact of Gum Arabic Coating Pretreatment on Quality Attributes of Oven-Dried Red Raspberry (Rubus idaeus L.) Fruit. Processes (Basel) 2022. [DOI: 10.3390/pr10081629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present study evaluated the effect of gum arabic (GA) edible coating pretreatment on the quality of dried red raspberries. Red raspberries were independently pretreated with varied concentrations of GA (3, 5, and 10% (w/v) by dipping for 2 min before oven-drying at 60 °C until the moisture content was below 8% (18–24 h). Raspberries dipped in distilled water were used as the control samples. Quality attributes including colour, moisture content, water activity (aw), hardness, hygroscopicity, rehydration capacity, total soluble solids (TSS), titratable acidity (TA), pH, anthocyanin composition, ascorbic acid (AA) content, total phenolic content (TPC), antioxidant activity, peroxidase (POD), and polyphenol oxidase (PPO) enzyme activity were investigated. GA pretreatment of the raspberries improved the aw (lower), hardness (lower), TSS, TSS/TA ratio, BrimA, AA content, and TPC, whilst it significantly (p < 0.05) reduced the colour properties (redness, chroma, hue angle, and total colour differences) and the total anthocyanin content when compared with the control samples. The DPPH radical scavenging activity, POD, and PPO enzymes residual activities were not significantly (p > 0.05) affected by GA pretreatment. Five different types of anthocyanins, including cyanidin dihexoside, cyanidin 3-O-galactoside, cyanidin 3-O-glucosyl-rutinoside, and cyanidin 3-O-rutinoside were identified and quantified with cyanidin dihexoside being the primary anthocyanin, varying from 951.18–1053.70 µg/g DM. GA pretreatment of raspberries between 3 and 5% could result in improved physicochemical, antioxidant properties and minimum loss of anthocyanins.
Collapse
|
3
|
Grabek-Lejko D, Miłek M, Sidor E, Puchalski C, Dżugan M. Antiviral and Antibacterial Effect of Honey Enriched with Rubus spp. as a Functional Food with Enhanced Antioxidant Properties. Molecules 2022; 27:4859. [PMID: 35956811 PMCID: PMC9370118 DOI: 10.3390/molecules27154859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the effect of blackberry and raspberry fruits (1 and 4%) and leaves (0.5 and 1%) on the biological activities of rape honey. Honey and plant material extracts were analyzed regarding total phenolic, flavonoid, anthocyanin contents, HPTLC and HPLC polyphenol profiles, as well as antioxidant activity. The antiviral potential was analyzed against bacteriophage phi 6-a coronavirus surrogate-whereas antimicrobial was tested against S. aureus and E. coli. Blackberry extracts were more abundant in antioxidants than raspberry extracts, with better properties found for leaves than fruits and for cultivated rather than commercial plants. The addition of both Rubus plant additives significantly increased the antioxidant potential of honey by four-fold (for 4% fruits additive) to five-fold (for 1% of leaves). Honey with the addition of fruits possessed higher antiviral potential compared with raw rape honey (the highest for 4% of raspberry fruit and 1% of blackberry leaf additive). Honey enriched with Rubus materials showed higher antibacterial potential against S. aureus than rape honey and effectively inhibited S. aureus biofilm formation. To summarize, honey enriched with Rubus fruit or leaves are characterized by increased pro-health value and can be recommended as a novel functional food.
Collapse
Affiliation(s)
- Dorota Grabek-Lejko
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland;
| | - Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland; (M.M.); (E.S.)
| | - Ewelina Sidor
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland; (M.M.); (E.S.)
- Doctoral School, University of Rzeszow, Rejtana 16c, 35-959 Rzeszow, Poland
| | - Czesław Puchalski
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland;
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland; (M.M.); (E.S.)
| |
Collapse
|
4
|
De Santis D, Carbone K, Garzoli S, Laghezza Masci V, Turchetti G. Bioactivity and Chemical Profile of Rubus idaeus L. Leaves Steam-Distillation Extract. Foods 2022; 11:foods11101455. [PMID: 35627025 PMCID: PMC9140405 DOI: 10.3390/foods11101455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The leaves of Rubus idaeus L., a by-product of the fruit food industry, are a known source of bioactive molecules, although the chemical composition has only been partially investigated. The main objective of this study was to examine the biological activities and the chemical composition of the extract of leaves of R. idaeus (RH), obtained by steam distillation (SD). The antioxidant capacity; the total phenolic content (TPC); the cytotoxic activity against tumor cell lines; and the antibacterial activity, in addition to the study of the chemical fingerprinting, carried out by Gas/Chromatography-Mass-Spectrometry (GC/MS) and Headspace (HS)-GC/MS, were established. The extract showed a strong antioxidant capacity and a modest antibacterial activity against two bacterial strains, as well as significant cytotoxic activity against tumor cell lines (Caco-2 and HL60) and being proliferative on healthy cells. Many of the GC-identified volatile molecules (1,8-cineol, β-linalool, geraniol, caryophyllene, τ-muurolol, citral, α-terpineol, 3- carene, α-terpinen-7-al, etc.) can explain most of the biological properties exhibited by the extract of R. idaeus L. The high biological activity of the RH and the high compatibility with the various matrices suggest good prospects for this extract, both in the food and cosmetic fields or in dietary supplements for improving human health.
Collapse
Affiliation(s)
- Diana De Santis
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
- Correspondence:
| | - Katya Carbone
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, Square Aldo Moro 5, 00185 Rome, Italy;
| | - Valentina Laghezza Masci
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
| | - Giovanni Turchetti
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
| |
Collapse
|
5
|
Biowaste as a Potential Source of Bioactive Compounds-A Case Study of Raspberry Fruit Pomace. Foods 2021; 10:foods10040706. [PMID: 33810427 PMCID: PMC8066284 DOI: 10.3390/foods10040706] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
Raspberry fruit pomace, a byproduct of juice production, was studied as a potential source of antioxidant compounds. Target high-performance liquid chromatography analysis of important polyphenolic compounds (gallic, p-coumaric, caffeic, quercitrin, chlorogenic, and ellagic acid) was performed together with analysis of total phenolic content (TPC), total flavonoid content (TFC), total anthocyanins content (TAC), and antioxidant capacity (via ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays). The differences in polyphenolic content of Rubus idaeus L. pomace were evaluated following ultrasound-assisted extraction and conventional maceration with different organic solvents. Additionally, the yield of free phenolics was measured in hydrolyzed pomace extracts. The results obtained show that the ultrasound method maximizes the quantity of antioxidant compounds in terms of TPC (27.79 mg/L gallic acid equivalent (GAE)), TFC (8.02 mg/g quercetin equivalent (QE)), TAC (7.13 mg/L cyanidine-3-glucoside equivalent (C3G Eq)), caffeic (19.17 µg/g), chlorogenic (3.56 µg/g), ellagic (105.52 µg/g), and gallic acids (8.75 µg/g), as well as FRAP (1002.72 µmol/L) and DPPH assays (969.71 µmol/mL vitamin C equivalent (vit C Eq); 567.00 µmol/100 g Trolox equivalent (TE)). On the other hand, conventional maceration maximizes the yield of quercetin and p-coumaric acid. In terms of biowaste valorization, raspberry fruit pomace has a promising industrial potential and may prove to be useful in the development of antioxidant dietary supplements.
Collapse
|
6
|
Tokarz KM, Wesołowski W, Tokarz B, Makowski W, Wysocka A, Jędrzejczyk RJ, Chrabaszcz K, Malek K, Kostecka-Gugała A. Stem Photosynthesis-A Key Element of Grass Pea ( Lathyrus sativus L.) Acclimatisation to Salinity. Int J Mol Sci 2021; 22:E685. [PMID: 33445673 PMCID: PMC7828162 DOI: 10.3390/ijms22020685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/19/2022] Open
Abstract
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.
Collapse
Affiliation(s)
- Krzysztof M. Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (B.T.); (W.M.); (A.W.)
| | - Wojciech Wesołowski
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (W.W.); (A.K.-G.)
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (B.T.); (W.M.); (A.W.)
| | - Wojciech Makowski
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (B.T.); (W.M.); (A.W.)
| | - Anna Wysocka
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (B.T.); (W.M.); (A.W.)
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Roman J. Jędrzejczyk
- Plant-Microorganism Interactions Group, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland;
| | - Karolina Chrabaszcz
- Raman Imaging Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (K.C.); (K.M.)
| | - Kamilla Malek
- Raman Imaging Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (K.C.); (K.M.)
| | - Anna Kostecka-Gugała
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (W.W.); (A.K.-G.)
| |
Collapse
|
7
|
TARASEVIČIENĖ Ž, ČECHOVIČIENĖ I, JUKNIŪTĖ K, ŠLEPETIENĖ A, PAULAUSKIENĖ A. Qualitative properties of cookies enriched with berries pomace. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.02120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Uma Maheswari TN, Chaithanya M, Rajeshkumar S. Anti-inflammatory and antioxidant activity of lycopene, raspberry, green tea herbal formulation mediated silver nanoparticle. JOURNAL OF INDIAN ACADEMY OF ORAL MEDICINE AND RADIOLOGY 2021. [DOI: 10.4103/jiaomr.jiaomr_98_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
What is the Difference between the Response of Grass Pea (Lathyrus sativus L.) to Salinity and Drought Stress?—A Physiological Study. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the mechanisms of plant tolerance to osmotic and chemical stress is fundamental to maintaining high crop productivity. Soil drought often occurs in combination with physiological drought, which causes chemical stress due to high concentrations of ions. Hence, it is often assumed that the acclimatization of plants to salinity and drought follows the same mechanisms. Grass pea (Lathyrus sativus L.) is a legume plant with extraordinary tolerance to severe drought and moderate salinity. The aim of the presented study was to compare acclimatization strategies of grass pea seedlings to osmotic (PEG) and chemical (NaCl) stress on a physiological level. Concentrations of NaCl and PEG were adjusted to create an osmotic potential of a medium at the level of 0.0, −0.45 and −0.65 MPa. The seedlings on the media with PEG were much smaller than those growing in the presence of NaCl, but had a significantly higher content percentage of dry weight. Moreover, the stressors triggered different accumulation patterns of phenolic compounds, soluble and insoluble sugars, proline and β-N-oxalyl-L-α,β-diamino propionic acid, as well as peroxidase and catalase activity. Our results showed that drought stress induced a resistance mechanism consisting of growth rate limitation in favor of osmotic adjustment, while salinity stress induced primarily the mechanisms of efficient compartmentation of harmful ions in the roots and shoots. Furthermore, our results indicated that grass pea plants differed in their response to drought and salinity from the very beginning of stress occurrence.
Collapse
|
10
|
Kostecka-Gugała A, Kruczek M, Ledwożyw-Smoleń I, Kaszycki P. Antioxidants and Health-Beneficial Nutrients in Fruits of Eighteen Cucurbita Cultivars: Analysis of Diversity and Dietary Implications. Molecules 2020; 25:E1792. [PMID: 32295156 PMCID: PMC7221643 DOI: 10.3390/molecules25081792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 01/18/2023] Open
Abstract
Aging is accompanied by gradual accumulation of molecular damage within cells in response to oxidative stress resulting from adverse environmental factors, inappropriate lifestyle, and numerous diseases. Adequate antioxidant intake is a key factor of proper diet. The study aimed to assess the antioxidant/antiradical capacities of Cucurbita fruits (18 cultivars of the species: C. maxima Duch., C. moschata Duch., C. pepo L., and C. ficifolia Bouché) grown in central Europe. The analyses were based on the FRAP (ferric reducing antioxidant power), CUPRAC (cupric ion reducing antioxidant capacity), and DPPH (2,2-diphenyl-1-picrylhydrazyl radical) assays. The content of phenolic compounds and β-carotene was evaluated with HPLC (high performance liquid chromatography), while the main macro- and micronutrients by ICP-OES (inductively coupled plasma mass spectrometry). The results revealed high intraspecies variability within the Cucurbita genus. The Japanese 'Kogigu' fruits were distinguished as extraordinary sources of phenolic compounds, including syringic and protocatechuic acids, catechin, and kaempferol. Another popular cultivar 'Hokkaido' exhibited the highest antioxidant and antiradical capacities. Most of the fruits proved to be rich sources of zinc and copper. The obtained data are discussed in the context of optimized nutrition of the elderly and suggest that Cucurbita fruits should become daily components of their diet.
Collapse
Affiliation(s)
- Anna Kostecka-Gugała
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al.29 Listopada 54, 31-425 Kraków, Poland; (M.K.); (I.L.-S.)
| | | | | | - Paweł Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al.29 Listopada 54, 31-425 Kraków, Poland; (M.K.); (I.L.-S.)
| |
Collapse
|
11
|
|
12
|
Szymanowska U, Baraniak B, Bogucka-Kocka A. Antioxidant, Anti-Inflammatory, and Postulated Cytotoxic Activity of Phenolic and Anthocyanin-Rich Fractions from Polana Raspberry ( Rubus idaeus L.) Fruit and Juice-In Vitro Study. Molecules 2018; 23:E1812. [PMID: 30037097 PMCID: PMC6099503 DOI: 10.3390/molecules23071812] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 01/21/2023] Open
Abstract
In this study, the antioxidative and anti-inflammatory potential of crude extracts (CE), anthocyanin-rich fractions (ARF), and phenolic fractions (PF) from raspberry (R) and raspberry juice (J) were evaluated. The antioxidant properties were evaluated with three complementary assays: DPPH radical scavenging activity, chelating Fe(II) power, and ferric reducing power. The highest antioxidant activity was determined for the crude extract from raspberry pulp (RCE) in the case of all methods used. The anti-inflammatory activity was demonstrated by inhibitory effect on lipoxygenase (LOX) and cyclooxygenase-2 (COX-2) activity in vitro. The highest efficiency in inhibiting the activity of both enzymes was exhibited by RCE, 0.79 and 0.59 mg FW/mL, respectively. In turn, JARF had the lowest ability to inhibit LOX (EC50 = 4.5 mg FW/mL) and JPF caused the lowest COX-2 inhibition (1.75 mg FW/mL). Additionally, we have performed a pilot study of in vitro cytotoxic activity using two human leukemia cell lines: J45 and HL60. All examined extracts inhibited the viability of J45 cells more effectively than HL60. The highest cytotoxic effect was observed in the J45.01 cell line after exposure to RCE (EC50 = 0.0375 mg FW/mL).
Collapse
Affiliation(s)
- Urszula Szymanowska
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland.
| | - Barbara Baraniak
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland.
| | - Anna Bogucka-Kocka
- Chair and Department of Biology with Genetics, Medical University of Lublin, Chodźki Str. 4a, 20-093 Lublin, Poland.
| |
Collapse
|
13
|
Abstract
The enduring relationship between dietary patterns and human health has led us to investigate the bioactive components present in fruits and vegetables for a very long time. Berries, notably the popular ones such as strawberry, raspberry, blueberry, blackberry, and the Indian gooseberry, are among the best known dietary sources due to the presence of a wide range of bioactive nutritive components. Bioactive components in berries include phenolic compounds, flavonoids, and tannins apart from vitamins, minerals, sugars, and fibers. Individually or synergistically, these have been shown to provide protection against several disorders. Mounting evidence suggests that consumption of berries confer antioxidant and anticancer protection to humans and animals. Free radical scavenging, protection from DNA damage, induction of apoptosis, and inhibition of growth and proliferation of cancer cells are just to name a few. This review comprehensively summarizes the key phytochemicals present in berries and their biological action in preventing oxidative stress and carcinogenesis.
Collapse
Affiliation(s)
- Bincy Baby
- a Department of Biology, College of Science , United Arab Emirates University , Al Ain , United Arab Emirates
| | - Priya Antony
- a Department of Biology, College of Science , United Arab Emirates University , Al Ain , United Arab Emirates
| | - Ranjit Vijayan
- a Department of Biology, College of Science , United Arab Emirates University , Al Ain , United Arab Emirates
| |
Collapse
|
14
|
Antioxidant Properties of "Natchez" and "Triple Crown" Blackberries Using Korean Traditional Winemaking Techniques. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2017; 2017:5468149. [PMID: 28713820 PMCID: PMC5497650 DOI: 10.1155/2017/5468149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/25/2017] [Indexed: 11/18/2022]
Abstract
This research evaluated blackberries grown in Oklahoma and wines produced using a modified traditional Korean technique employing relatively oxygen-permeable earthenware fermentation vessels. The fermentation variables were temperature (21.6°C versus 26.6°C) and yeast inoculation versus wild fermentation. Wild fermented wines had higher total phenolic concentration than yeast fermented wines. Overall, wines had a relatively high concentration of anthocyanin (85–320 mg L−1 malvidin-3-monoglucoside) and antioxidant capacity (9776–37845 µmol Trolox equivalent g−1). “Natchez” berries had a higher anthocyanin concentration than “Triple Crown” berries. Higher fermentation temperature at the start of the winemaking process followed by the use of lower fermentation/storage temperature for aging wine samples maximized phenolic compound extraction/retention. The Korean winemaking technique used in this study produced blackberry wines that were excellent sources of polyphenolic compounds as well as being high in antioxidant capacity as measured by the Oxygen Radical Absorbance Capacity (ORAC) test.
Collapse
|